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We construct doubly periodic solutions in a one-dimensional exactly integrable discrete model of 
the Peierls transition. We consider solitons on the background of the periodic structure which 
carry localized spin states. We find their electric charge as a function of the total number density 
of the particles in the system. We obtain a connection between the electric charge of the soliton 
and the change in the phase of the deformation of the periodic structure at the soliton. 

I. INTRODUCTION 

Recently an exactly integrable discrete model of the 
Peierls transition has been constructed and solved.' In the 
present paper we consider the spin states in this model. We 
shall assume that the number of electrons per cell with spin 
below p/2 differs from the number of electrons with spin 
abovep/2 + c (c is the spin angular momentum). Such a situ- 
ation can be realized in an external magnetic field. In what 
follows we shall find the ground state of such a system, the 
electron spectrum, the lattice deformation and we shall ob- 
tain in the limit as c-0 a formula for the deformation of a 
spin excitation (soliton) on the background of the periodic 
structure. We shall evaluate the electric charge of the soli- 
ton, find a connection between the phase shift of the defor- 
mation at the soliton and the magnitude of the electric 
charge. In particular, we consider the important weak-cou- 
pling limit corresponding to the linearized discrete model 
studied in Refs. 2. 

The interest in the solitons considered is not exhausted 
by the spin excitation problem. As mentioned in Ref. 3 equi- 
valent structures to the spin solitons occur in any systems 
where there is a weak splitting of the electron bands. 

In this case the magnitude of the splitting plays the role 
of a magnetic field and the quantity c = n, - n,, where 
n,, n, are the electron densities in the split bands is equiva- 
lent to a spin angular momentum. Such a statement of the 
problem is particularly timely for MX, type systems 
(M = Nb, Ta; X = Se, S). In that case the splitting of the 
electron bands occurs either due to the fact that the two 
kinds of conducting chains are not equivalent or because of 
electron transitions between the chains. 

There can thus occur a number of physical situations 
where the existence of either a rarefield gas or of a periodic 
structure of objects equivalent to spin solitons in the one- 
dimensional Peierls model will play an important role. 
Clearly, the physical properties of such systems will strongly 
depend on the presence or absence of electric charges q on 
the solitons and also on the magnitude of the phase change of 
the charge density wave (CDW) on one soliton. 

The spin solitons have been considered before in a con- 
tinuum model. It was shown in Ref. 4 that in the Peierls- 
Frohlich model, valid for systems with a numberp far from 
the integers 0,1,2, the charge of the spin soliton equals zero. 
However, it was shown in Ref. 3 that the appearance of 

charge is possible due to the effect of almost twofold com- 
mensurability. For instance, for p = 1, q = 1 was obtained 
and when the quantity p got away from unity the charge 
decreased as 

Here A is the dimensionless electron-phonon interaction 
constant. In the framework of the Peierls-Frohlich model 
the effect of phonon dispersion on the nature of the spin 
excitations was taken into account in Ref. 5. The magnitude 
of the soliton charge which is caused by the phonon disper- 
sion was found: 

qme-2/L/h; 

the phase changes of the CDW with the passage of the soli- 
ton then differs from a by an amount a = qa. 

The discrete model considered in the present paper con- 
tains as limiting cases all Peierls models studied before and 
also, clearly, takes into account the dispersion of the phonon 
spectrum. We shall use the mathematical formalism and 
many results from Ref. 1. 

II. GROUND STATE 

We consider a one-dimensional chain of atoms situated 
at the points x, . At each atom there arep + c(2 electrons. 
The energy of the system consists of the energy 2 Ei of the 
electrons in the self-consistent field of the ions and the poten- 
tial energy U (x, ) of the atoms: 

The spectrum of the electrons is determined by the equation 

and we choose the potential energy as a sum of so-called 
Langmuir chain integrals: 

where a is the average distance between the atoms, and P the 
pressure. The extremals of the functional are found in a simi- 
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lar way as in Ref. 1. The specturm of the system is symmetric 
with respect to the substitution E+ - E and contains four 
forbidden bands (Fig. 1). Whenp, p + c( 1 the band ( - Em , 
- E+) is doubly occupied, and the band ( - E,, - El) sin- 
gly; when p > 1 the bands ( - E m ,  - E,), ( - E,, - El), 
( - E-, + E-) are doubly occupied and the band (El, E,) 
singly. The ground state of the system contains two zero 
modes. We use the symmmetry of the spectrum by virtue of 
which the square of the wave function e depends only on 
E2 = A .  WeintroducethenotationA, = E;,A, = E: ,A, 
= E 5 ,  A+ = E z , A -  = E f .  The function & is com- 

pletely determined by the value of the points A,, A,,A,, 
A+,A-, yl, y, where A2aylaA+,A-ay2aA3.  The band 
edges Ai determine the hyperelliptical Riemann surface T: 

The Riemann surface of function (4) is a surface of the second 
kind in the two-dimensional complex ( y, A ) space. One can 
represent it as being two sheets of the E-plane which are 
joined with cuts along the allowed bands. There are four 
independent cycles: a ,  and a, over the forbidden bands and 
b, and b, shown in Fig. 2. 

As usual the holomorphic differentials on r are deter- 
mined as follows: 

We find their coefficients from the conditions 

$0,=61.. 
a* 

The integrals of thew, along the b, cycles are determined by 
the matrix of the Riemann coefficients B,, : 

B,,= 9 0,. (7) 
br 

We bear in mind the definition of the 9th order 8-function: 

= z . . . z exp { niBhB,,mkrn,+2ni fj vkm,}, 
m,sZ ~ I L ~ E Z  k , l = t  k= 1 

whereZ=O, + 1, +2,  ... . 
We introduce the quasimomentum differential using 

the relation 

hz+rih+r2 
idp = 

2 [LR ( h )  1'" dh. 

The coefficients r, and r, are found from the condition 

yt y4 
FIG. 1. 

$ dp-0, k=l ,  2. (9) 
a* 

The quasimomentum p > 0 and takes on values from 0 to T.  

The function & has the form6 
h 

0' ( A ,  ( h )  +nu,-V,) q,,' ( h )  =r. erp 2 i n j  dp { B2(A,(h) -Vk)  (10) 
A, 

where 

We also write down an expression for x, and c, in a 
similar way as in Ref. 6: 

0'( (n - l )  Uk+Qk) 9' (Uk+Qk) 
exp (42,) =exp (-4nIo) . 

e 2 ( ( n + l )  Uh+Qh) e"(-Uk+@k) 

0 ( (n-1) U,+@,) 0 ( (n+2) Uk-I-@,) 
@ ( ( n + l )  Uk+@R)e(nUk+@k) ' 

where @, = V, + A,? = exp( - a). 
By analogy with Ref. 1 we write down the conditions for 

self-consistency which determine the boundary points of the 
spectrum A : 

where 

We now get expressions for the electron density distri- 
bution in the system. 
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Using the results of Ref. 1 we have 

Similar to what was done in Ref. 7 we get from Eqs. (3)  and 
(18), (19) the connection between the quantities y,(n),  y,(n) 
and the c, : 

Substitution expression (19) into Eq. (18) and using (20) we 
get 

Ill. SINGLE-ELECTRON AND SPIN EXCITATIONS 

1. We consider now the case of low spin density ( c 4 ) .  
The ( A  +, A -) band then contracts into a localized level A ,  
which is determined from the self-consistency condition 
(13): 

(22) 
We have introduced here the Heuman lambda function 

where K, F, and E are elliptical integrals of the first and 
second kind. Explicit expressions for A ,, A,, and A ,  are for 
this limit found in Ref. 1 .  

In order to find out what the general expressions for c ,  
and x ,  become in the limit of a single soliton we must evalu- 
ate the quantities (5),  (7) ,  ( l o )  up to terms of first order in the 
density c. Performing the appropriate elementary calcula- 
tions we have 

K' ( k )  BI1=iBo+O ( c )  , Bo= - ,= [ a (a2-&) 1 l a  

K ( k )  ' (Ai-As) A2 ' 

Substituting (23), (24) into (1 1) we can after a few calculations 
get 
c , ~ = c ~ ~  (n-I-no)8 (n+2-no)/ij(n+l--no) 8 (n-no) . (25) 

Here 

where 13,(uIq ) is Jacobi's theta function. It is clear from (25) 
that the change in the phase of the deformation c ,  at an 
isolated polaron equals 

(26) 
Similarly, Eq. ( 1  1 )  becomes 

e2xn=e-zna8 (n-no-I)  8 (-no+I)/8 (n+l-no)8  ( -n ,+ l )  . (27) 

We now find the magnitude of the polaron electric 
charge. Following Ref. 3 we write 

(pn-prim) 
q=e lim 3 

0-0 C 

where p," is the asymptotic single-period solution when 
there is a single soliton present (it is clear from (25), (27) that 
p,f " =pnP "). We have from (18), (19) 

An= (h.+-y1 ( n )  ) (h+-y2 ( n )  ) , &=A+-yi ( n )  - y z  ( n )  . 

From (17) it follows that 

<An>=2[h+R (A+) ]'"c. 

Using (8)  and (29) we find 

<B,>-<Brim>=- <An)FII, 

where 
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Substituting Eqs. (30), (3 1) into (29) and (28) and evaluating 
the integrals in (29) we finally have 

Comparing Eq. (26) with (32) we find that the soliton 
charge is connected with the change in phase of the function 
c, as follows: 

q=e (9-n) In. 
(33) 

2. We consider the formulae obtained above with the 
limit corresponding to the linearized model: 

It is shown in Ref. 1 that this limit corresponds to small 
E or, in dimensionless variables to the inequality 

The quantity R /sin(np/2) =Rep corresponds to the 
usual definition of the dimensionless electron-phonon cou- 
pling constant. The linearized model corresponds also to the 
weak coupling limit Rep ( 1. The following relations were ob- 
tained in Ref. 1 : 

{ ni=4c2, A '-- -64-2 c e -WL I p-I 1 <<e-i/k 
As/&= 16 exp (-8ec1IA/ I p-I 1 ) ' (36) 

In the limit (p - 11 <e - '/* we have from (22), (32), (36) 

Equations (37) are similar to those obtained in Ref. 3. 
In the limit Ip - 11 >e - "" we get from (22), (32) 

16 exp (-2/hep) 8 exp (-2/hep) +- 
h n tgyn 1 p-11/2) 

It follows from (38) that when A <  Ip - 1 1' 
16 exp (-2/hep) 

q x - -  
h e, n 

and whenR<Ip - 112 
32 exp (-2/hep) 

q" - 
nS (p-11' ' 

Equation (40) is the same as the expression obtained in the 
continuum model in Ref. 3 and Eq. (39) gives the same kind 
ofR-dependence as the charge obtained in Ref. 5 in the con- 
tinuum model taking the phonon dispersion close to the Fer- 
mi surface into account. It is clear form (33) that the change 
in phase on the soliton varies within wide limits such that 
q-2r as p+l and e, ?r as p 4 :  

We obtain an expression for the deformation 
A ,  = u , + ,  -u,.When Ip- lI<e-"* w e h a v e { = m 6  
and 

Formula (43) gives an expression for the deformation of a 
polaron located at a distance no from the closest domain 
wall. As n o - +  - cr, we get from (43) 

Equation (44) is the same as the one obtained in Ref. 8. As 
Ip - 1 1 )e - "* we get from (25) 

1 - 4 exp (-2/Aep) -- 
E tg(nlp-l l l2) '  (45) 

1 
-no +-)I sinZ- - cos np n-no + - cos - . 

2 " [ (  2 '11 2") 
In the limit as no+ + cr, it follows from (44) that 

so that the phase change at the polaron equals q, = r ( q /  
e + l), as should be the case. 

IV. CONCLUSION 

We considered in the present paper spin states in an 
exactly soluble discrete model of the Peierls transition. We 
noted in the Introduction that such states can occur in var- 
ious physical systems. We found the ground state of the sys- 
tem, the electron spectrum, the wavefunctions, the deforma- 
tion in the system [Eqs. (81, (9), (13) to (17), (10) to (12)], and 
the electron density distribution (2 1) for arbitrary spin angu- 
lar momentum. The electron state spectrum has in the 
ground state five allowed and four forbidden bands; depend- 
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ing on the magnitudes of the densities p, c two or four al- 
lowed bands are occupied and the upper occupied allowed 
band is always occupied singly. 

In the limit as c - 4  two of the allowed bands present, 
(E,, E,) and ( - E,, - El )  (see Fig. 1) contract into localized 
levels f Eo, determined from condition (22). In the weak 
coupling limit we wrote down explicit expressions, (37) and 
(38), for the quantity Eo for arbitrary electron density 
p(0 < p  < 2). We obtained the shape (25) of an isolated soliton 
on the background of the periodic superstructure of the 
ground state and the magnitude (26) of the change in the 
phase p of the CDW at a single soliton. In the general case 
the magnitude of p can take on any value. In the weak cou- 
plinglimit under the condition Ip - 1 I (exp( - 1//2 ) (limit of 
rare domain walls) the quantity p z 2 ~  and is given by Eq. 
(41) while under the condition Ip - 1 l)exp( - l/A ) (Froh- 
lich limit) we get p =: 77, (42). We found the magnitude (32) of 
the electric charge q of the polaron. In the weak coupling 
limit when Ip - 1 I (exp( - l/A ) we get q=: 1, see (37); when 
Ip - l lsexp(- l/A) we have qzO, see (38); when 
Ip - 11 ,( A ' I 2  see Eqs. (39) and (40). We showed in the gen- 
eral case that there exists the exact relation (33)- 
q = e(p - n-)/T-between the electric charge of the polaron 
and the amount by which the phase of the CDW changes 
when it passes through a single polaron. 

The charge of the polaron is, as is clear from Eqs. (2 I), 
(43), (46), localized in a finite region with characteristic size 
<. The magnitude of the charge can in the general case have 
any value O<q< 1. We recall that by the magnitude of the 
charge we mean the quantity q = P ( p, - p,") which is com- 
posed not only of the magnitude of the charge brought into 
the system by the electron, but also of a contribution caused 
by the redistribution of the electron density in the system. 
The polaron charge therefore differs from the single-elec- 
tron charge; it is partly screened by the redistributed charge 
in the CDW. The interaction of an external electron, carry- 
ing an uncompensated spin, reduces mathematically in the 
CDW to a change in the phase of the CDW at the polaron. It 
is clear from the theory that the casep = 1 is a special one. In 
that case the phase change p = 277, i.e., the polaron, in fact, 
does not interact with the CDW as at the polaron the phase 
of the CDW is not changed (modulo 277). This leads to the 
fact that there does not occur a redistribution of the electron 
density and that the charge of the external electron is not 
screened: q = e in agreement with the general formula 

q = e(p - rr)/r. Another limiting case occurs when 
Ip - 11 )exp( - 1/A ). Now the interaction of the soliton 
with the CDW is a maximum (the phase changes in the re- 
gion of the polaron almost by half a period) and there occurs 
almost complete screening of the charge: q z 0. 

The theory described here can in practice be applied to 
linear polymers such as, for instance, alloyed trans-polyace- 
tylene. One can produce a spin density by putting the system 
in an external strong magnetic field. We indicated in the 
Introduction that objects like spin solitons can appear also in 
systems with a split electron spectrum. 

The physical properties of actual systems will depend to 
a large extent on the presence or absence of electric charge at 
the spin solitons. In the general case both the Frohlich con- 
ducticity and the current of the charged spin solitons will 
contribute to the magnitude of the electric conductivity. If 
for some reason in the system the Frohlich conductivity is 
pinned, only the charged spins polarons will contribute to 
the current. One can judge the magnitude of the polaron 
charge using the ratio of the magnitude of the transferred 
spin current to the magnitude of the transferred electric 
charge. The presence or absence of electric charge can be 
established in experiments about the scattering of spin soli- 
tons by charged and uncharged impurities. 

The author expresses his deep gratitude to S .  A. Bra- 
zovskii and I. E. Dzyaloshinskii for posing the problem and 
for many useful discussions. 
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