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A theory is proposed of the tilt effect in the absorption and velocity dispersion of high-frequency 
sound in weak magnetic fields, in which the electron cyclotron radius is much greater than the 
sound wavelength. The mechanism and the expression of the tilt effect in this case differs appre- 
ciably from those in strong fields. Due to the three-dimensional character of the electron motion, 
the effect is determined by the transverse conductivity (with respect to the magnetic field vector) 
rather than by the longitudinal conductivity. Asymptotic formulas are derived for the angular 
dependence of the absorption and velocity dispersion. Numerical calculations are carried out for 
a finite relaxation frequency, and the results are analyzed. The theory is in qualitative agreement 
with the experiments. 

1. The tilt effect is one in which the absorption and ve- 
locity dispersion of high-frequency sound in metals change 
sharply as a function of the angle between the magnetic field 
H and the direction of propagation of the sound wave. The 
physical reason for this phenomenon is connected with the 
jump-like onset of resonant collision-free absorption of 
sound by the conduction electrons. There appear on the Fer- 
mi surface electron states for which the condition of in-phase 
motion of electrons with the field is satisfied: 

In this equation, w and q are the frequency and the wave 
vector of sound, respectively, v is the Fermi velocity of the 
electrons, 7r/2 - p is the angle between the vectors q and H. 
At p < pc (sin p, = o/qu) the sound absorption in metals is a 
collision phenomenon and is proportional to the frequency 
of scattering of the electrons Y.  At p > p, the resonance in- 
teraction (1) will dominate in comparison with the collisional 
absorption if 

In recent times, the tilt effect has been studied experi- 
mentally and the~ret ical ly '~ in the region of strong magnet- 
ic fields, when 

(R is the cyclotron radius) and the motion of the electrons 
has a quasi-one-dimensional character. Therefore, the point 
of view has been taken by many investigators that the tilt 
effect exists only in strong magnetic fields. Such a point of 
view has recently been demolished in a publication5 in which 
the observation of the tilt effect has been reported in single 
tungsten crystals in the region of weak magnetic fields, when 

Only the deformation mechanism of interaction of the 
electrons with the lattice was considered in the theoretical 

section of Ref. 5, and electromagnetic fields accompanying 
the sound in the metal were not taken into account. This 
approximation validly describes the kinematic nature of the 
features of the tilt effect in a weak field but is not subject to 
rigorous analysis and serves only as an illustration of the 
possibility of the existence, in principle, of the observed 
phenomenon. 

The purpose of the present work is the theoretical inves- 
tigation of the mechanism and features of the tilt effect in 
weak fields. It should be emphasized that the kinematic na- 
ture of the tilt effect, which is connected with the keying in of 
collision-free interaction of electrons with phonons at 
p = pc , is the same in both weak and strong fields. However, 
the appearance of these features turns out to be significantly 
different, since the motion of the electrons in weak fields is 
three-dimensional and the characteristics of the tilt effect are 
determined by the transverse, and not the longitudinal (rela- 
tive to the vector H), components of the kinetic coefficients. 

In strong fields, the collision-free interaction is due to 
the entire region of electron states on the Fermi surface, and 
not only to electrons with maximal velocity along the direc- 
tion of the vector H near a turning point. In this case, the 
damping and change in sound velocity do not contain the 
small parameter s/v (s is the speed of sound, i.e., the tilt effect 
in the region of strong magnetic fields turns out to be essen- 
tially a non-adiabatic phen~menon.~ In contrast to this, un- 
der conditions of strong spatial inhomogeneity, the resonant 
interaction of electrons with sound takes place not over the 
entire electron orbit, but only on a small portion, where the 
condition (1) is satisfied. This means that a relatively small 
number of electrons take part in the resonance. Therefore, a 
power of the small parameter l/qR appears in the damping 
and sound velocity dispersion, while the features on the 
curves of the angular dependence of the damping, r (p ) and 
s(p ) are accentuated. 

2. We now proceed to the derivation of the dispersion 
equation. The complete set of equations describing the prop- 
agation of sound waves in metals, as is well known, consists 
in the equations of elasticity theory for the field of displace- 
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ments u(r,t ), the Maxwell equations for the electromagnetic 
fields accompanying the sound wave, and the kinetic equa- 
tion for the conduction electron distribution function. In the 
case of longitudinal sound (11114, u - exp(iqr - iwt ) the equa- 
tion of elasticity, after substitution in it of the distribution 
function, can be represented in the form 

Herep is the density of the crystal, K is the longitudi- 
nal adiabatic elastic modulus, so is the velocity of longitudi- 
nal sound, 

E is the electric field, which satisfies the Maxwell equation 

The density of the electric field j is expressed in terms of E' 
and u by the formula 

The kinetic coefficients a (the conductivity tensor), 7, x ,  S in 
Eqs. (5)-(8) can be represented in the form 

where e is the absolut~value of the electronic charge. The 
action of the operator t is determined by the relation 

The symbol 8 denotes summation over the different 
groups of quasiparticles, p, is the projection of the electron 
momentum on the vector H, p,,, andp,, are the maximal 
and minimal values ofp, on the Fermi surface, 0 = eH /mc 
is the cyclotron frequency, m is the cyclotron mass. The 
quantity A represents the longitudinal (relative to the vector 
q) component of the deformation potential which vanishes in 
averaging over the Fermi surface. 

The kinetic coefficients (9) are easily calculated in the 
set of coordinates xyz, in which the z axis is parallel to the 
field H, while thex axis is perpendicular to the vectors q and 
H. The kinetic coefficients were found under the condition 

I v-io 1 <Q, ( 10) 

consistent with the inequality (4). All the quantities (9) are 
conveniently represented in the form of an expansion in the 
small parameter I Y  - iwl/0. It  turns out that the compo- 

nents a,, , % and xy are small, at least by the factor (0 / 
I Y  - i ~ 1 ) ~  as a consequence of the fact that the vector q is 
almost parallel to they axis. For this reason, the component 
of the current jy in (7) can be set equal to zero, while, j, = 0 
because of the condition of electric neutrality. Consequent- 
ly, the set of Maxwell equations reduces to only two equa- 
tions for the determination of the components Ex and E,. 
After their solution and substitution of the result in the equa- 
tion of elasticity ( S ) ,  we can find the dispersion equation for 
longitudinal sound in a metal: 

The function P describes the interaction of electrons 
with sound and has the form 

It is seen from Eqs. (12) and (9) that the term S is due to the 
direct action of the electrons with the sound, while the other 
terms describe the effect due to the electromagnetic field (6) 
that accompanies the propagation of the sound wave. 

3. The dispersion relations (1 1) and (12) have a general 
character and are valid upon satisfaction of the inequalities 
(4) and (10) for an arbitrary, multiconnected Fermi surface in 
both compensated and uncompensated metals. We now 
carry out further calculations for the simplest model of a 
metal with isotropic square law dispersion. 

For the model of the Fermi surface considered, the de- 
formation potential tensor is equal to 

where the coefficientA is of the order of the Fermi energy E,, 

ni are the components of the unit vectors of the velocity of 
the electron. With accuracy to terms that are small in the 
parameter I Y - iw I/f2 the kinetic coefficients (9) can be writ- 
ten in the form 
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Here we have introduced the following notation: 

3Ne2 
= - 2mQ , qzR=qR sin cp, 

sin cp, 
z=qRcosp. p===(l+:), 

J, ( x )  is the Bessel function, p is the Fermi momentum, N is 
the concentration of electrons. The remaining terms of the 
kinetic coefficients are negligibly small and we shall not 
write them down. 

It is seen from Eqs. (14) and (15) that the kinetic coeffi- 
cient contains a singular integral (f(z), which is due to the 
quantity (t -8)-' in the integrand of (IS), and which 
changes strongly in the vicinity of the point to = sin e,, / 
sin e, with width At =: toy/@. The presence of such a singular- 
ity also describes the tilt effect, upon satisfaction of the con- 
dition (2). In fact, at e, < e,, , the singular point to turns out to 
be outside the interval of integration and terms with f (z) turn 
out to be small in comparison with the nonsingular terms. At 
pap, the singular terms increase strongly, which leads to a 
strong angular dependence in the spectrum and to damping 
of the sound at q, - e,, . 

The structure of the function Y (qR,e, ) is such that the 
very large singular term S and 7, '/a, compensate one an- 
other. This means that the contribution of the vortex terms 
of the electric field E, to a significant amount wipe out the 
contribution of the direct deformation interaction. A similar 
compensation was established previously in case of the tilt 
effect, in the region of strong magnetic fields4 and in a num- 
ber of other cases (see, for example, Ref. 6). As a result of 
such compensation a small factor (qR )-I  appears in the 
expression (12) for the function !P (the term H '/47rm is less 
than the quantity 6 - 7, by at least a factor of q R s  1). 
After taking the asymptote (at z> 1) in the nonsingular terms, 
which contain the function g(z), and a series of transforma- 
tions, we can represent the dispersion equation (1 1) in the 
following form: 

3NhZ 
02-qzS2 = - o sin (2q,R-n/4) 

4 p s ' ~ ~  ( l + i v / o )  quR { ' + (nq,R) " 
- " [cos ( 2 g u ~  - 

n (v - io)  (q,R)Z 

where 0, = rhrNe2/m. It is seen that the right side of the 
dispersion equation (16), in contrast to the case of a strong 
magnetic field, actually turns out to be proportional to the 
small parameter l/qR. The second term in the curly brack- 

ets of (16) describes the oscillations of the geometric reso- 
nance of electrons on the central cross section of the Fermi 
surface. These oscillations can appear in the angular depe- 
dence of the spectrum and the sound damping in the range of 

-pc (0 )/oq,, )'I2. It followsfrom the lat- anglesq, 2 (qR )- 'I2 - 
ter estimate that Pippard oscillations as a function of the tilt 
angle take place in the range of angles q,>e,,. It is also seen 
from Eq. (16) that singular terms in the region of the charac- 
teristic discrepancy values e, -e,, are present only in the last 
term in the curly brackets of (16). 

The last term on the right side of the dispersion equa- 
tion (16) admits of further simplification. Analysis shows 
that the conditions (2), (4) and (10) are sufficient for us to 
neglect the quantity lo;, l 2  in comparison with Iu,u,, 1. If 
we take this circumstance into account, then it turns out that 
the conductivity will no longer enter into the dispersion 
equation. The tilt effect in the absorption and velocity of 
high-frequency sound is determined by the transverse (rela- 
tive to the vector H) conductivity ox,, in contrast with the 
case of a strong magnetic field, in which the effect is on the 
whole due to the quantity a,, . If the sound frequency is not 
too large, then we cannot take into account the quantity 
q2c2/4?To in comparison with laxx I. For this, it is sufficient 
that the following inequalities be satisfied: 

wheremo2 = 3 0 ,  'S 3/2~2v. For typical metals, the conditions 
(17) provide an upper bound to the sound frequency of the 
order of 10" rad/s, while the magnetic field should be no less 
than 10 kOe. In principle, it is not difficult to analyze the 
opposite limiting case, when q2c2~4mluxx  I .  Here the tilt 
effect will exist at lower frequencies and much weaker mag- 
netic fields, while the denominator in the dispersion equa- 
tion (16) should be expanded in a,. However, we shall not 
concern ourselves here with the investigation of this limiting 
case. Thus, we represent the dispersion equation finally in 
the form 

3NhZ 
{ I +  

sin (2qR-n/4) 
0-qs, = - 

8psZ&, ( l + i v / 0 )  q R  ( n q R )  '" 

- Q 
[cos ( 2qR - 7 

n ( v - i o )  (qR) '  

Here q,, is replaced by q because of the smallness of the an- 
gles e, and p, . 

4. In this section, we shall write down and discuss the 
results of the calculations of the relative damping r a n d  the 
change in the sound velocity A d s ,  as functions of the angle 
e, : 

r=-Im 0161, As/so= (s-s,)/s,. (19) 

We consider the collision-free regime, in which v can 
approach zero. In this limiting case, the real part of the con- 
ductivity uxx is easily obtained from (14), if we replace Im 
(t -B)- '  in the integrand by r6 (t - X-I), where 
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and then take the asymptote of the Bessel function 
J,[qR (1 - x - ~ ) " ~ ]  at large values of its argument. Here we 
shall not consider the very narrow region of angles p directly 
adjacent to the critical angle p,, where this asymptote is 
inapplicable. The imaginary part of a,, is due to the contri- 
bution of all the values oft in the interval (14) and its asymp- 
totic expression is obtained directly from (14) by the replace- 
ment of the function J,[z(l - t 2)'/2] by its asymptote. Since 
the right side of (18) contains the small factor (qR ), the ex- 
pressions for r and Adso have the form 

As A sin(2qR-n/4) x2 
-=-{I+ so 2qR - -[ cos (2qR-nil) 

(nqR) '" l6nqR 

where A = 3NA 2/ps2~, is dimensionless constant of order 
unity. The unit step function 8 (x - 1) describes the turning 
on of the collision-free interaction at angles p > p, . 

A singular discrepancy effect in regions of weak fields is 
the oscillation dependence of T and Adso on the angle p, 
which is characterized by the presence of the factor 
sin2[qR (1 - x - ~ ) ' / ~  - 77/41 in Eqs. (21) and (22). These oscil- 
lations are due to electrons belonging to noncentral cross 
sections of the Fermi surface with a radius equal to 
R (1 - p, '/p ')ll'.   he character of the oscillations and their 
number in the interval p - pc , which is of the order of sever- 
al times the value of p, , depend significantly on the param- 
eter qR, i.e., on the magnetic field H. In fact, oscillations of 
the collision-free absorption, upon change in x (the angle p), 
are possible only under the condition that the argument of 
the sine in (21) can reach the values ?r, 277, . . . . More pre- 
cisely, the quantity qR (1 - x - ~ ) ' / ~  should, as x increases in 
the regionx > l(p > p,), take on valuespln that are the roots 

FIG. 1. Dependence of the relative damping (continuous curves) and the 
change in the sound velocity (dashed curve, scale to the left) on the tilt 
angle (z = q, /q,,). The value of qR = 4.5 for all curves; 1, lf--o/v = 20, 
2--o/v = 6. 

FIG. 2. Dependence of r o n  q,/q,,, at w/v = 6 and different values of qR: 
1-6.0, 2-7.5, 3-9.0. 

of the first Bessel function J,(,u). If qR <p, ,  -- 51~/4, then 
oscillations of r are absent: ifp,, < qR <p ,, there is a single 
oscillation; ifp,, <qR <p,,  there are two oscillations, and 
so on. On the curve of the dependence of r on p, the maxima 
of the oscillations are shifted to the direction of smaller p 
upon increase in the parameter qR. Moreover, the amplitude 
of the oscillations of the absorption and sound velocity 
change as functions of H (i.e., qR ) at a fixed p in rather com- 
plicated fashion because of the imposition of oscillations 
from the central and noncentral cross sections on the Fermi 
surface in (21) and (22). We emphasize that the extrema on 
the angular dependence r (p) are not localized at the point 
p = pc ,  but are located the further from p, the smaller the 
value of qR. 

We have carried out numerical calculations of the angu- 
lar dependence of the absorption and sound velocity accord- 
ing to the exact dispersion equation (18) without use of the 
asymptote of the conductivity a,,. The results are shown in 
Figs. 1 4 .  Figure 1 illustrates the monotonic dependence of 
r (p) and As(p ). The monotonic character is due to the fact 
that the parameter qR = 4.5 is not large enough and there- 
fore the extrema of r (p) are shifted toward q, > 2q7, ; further- 
more, the quantity w/v  is of the order of or greater than 
(qR )', SO that the collision-free approximation (2 I), (22) turns 
out to be inadequate. The dependences o f r  (p) at large values 
of qR are shown in Figs. 2 and 3, and it is seen that there are 
oscillations of the absorption with angle-these are more 

0 I 2 
X 

FIG. 3. Dependence of r on q/p, at w/v = 20 and different values of qR: 
1-6.0, 2-7.5, 3-9.0. 
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FIG. 4. Dependence of Ads ,  on p/pc at o/v = 20 and different values of 
qR: 14.0, 1-7.5, 3-9.0. 

pronounced the greater the value of w/v.  Finally, the depen- 
dence of As/so on the angle q, is shown in Fig. 4. The tilt 
effect in the sound velocity turns out to be much weaker than 
in the absorption. This is connected with the fact that here 
oscillations from the noncentral cross section are present 
only in the denominator of the last term of Eq. (22). We note 

that there is a nonmonotonic dependence on qR in all the 
drawings, which is a consequence of the Pippard oscillations 
in r and As/s,. So far as a comparison of the results of our 
work with experiments in tungsten5 is concerned, such a 
comparison would be premature at the present time because 
of the tentative character and incompleteness of the experi- 
mental results. 

We express our gratitude to A. A. Bulgakov for help in 
carrying out the numerical calculations. 

ID. H. Reneker, Phys. Rev. 115,303 (1959). 
'A. P. Korolyuk, M. A. Obolenskii and V. L. Fal'ko, Zh. Eksp. Teor. Fiz. 
59, 377 (1971); 60, 169 (1971) [Sov. Phys. JETP 32, 377 (1971); 33, 148 
(1971)l. 

3H. N. Spector, Phys. Lett. 7, 308 (1963); Phys. Rev. 120, 1261 (1960). 
4E. A. Kaner, L. V. Chebotarev and A. V. Eremenko, Zh. Eksp. Teor. Fiz. 
80, 1058 (1981) [Sov. Phys. JETP 53, 540 (1971)l. 

'A. V. Golik, R. A. Zarudnyi, A. P. Koroluyk, V. L. Falko and V. I. 
Khizhnyi, Sol. St. Comm. 48, 373 (1983). 

6A. M. Grishin, V. G. Skobov, L. M. Fisher and A. S. Chernov, Pis'ma Zh. 
Eksp. Teor. Fiz. 35, 370 (1982) [JETP Lett. 35,455 (1982)l. 

Translated by R. T. Beyer 

1014 Sov. Phys. JETP 60 (5), November 1984 Eremenko etal. 1014 


