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The scattering of light by interacting long-wave low-frequency phonons is investigated theoreti- 
cally under conditions when their intensity exceeds considerably the equilibrium value. Non- 
Peierls interaction via electron-density waves is considered as the actual mechanism of the 
phonon-phonon interaction. It was found possible to obtain an expression for the intensity of the 
scattered light also under advanced turbulence conditions, and the parameters that describe the 
turbulence serve as the constants of the theory. The equations are analyzed for a typical experi- 
mental situation in which the phonon intensity increases along the sample. 

1. INTRODUCTION 

The long-wave low-frequency part of the phonon distri- 
bution in (piezo) semiconductors deviates noticeably from 
equilibrium near the threshold of acoustic instability. This 
makes Brillouin scattering (BS) of light by such phonons a 
highly useful tool for the investigation of the changes that 
occur in a phonon system. Beyond the instability threshold, 
the intensity (or number) of the phonons increases even more 
in this part of the spectrum,' and this leads in turn to a steep 
increase of the BS and improves the observation conditions. 
A theory of BS under condition of a growing phonon intensi- 
ty in the linear regime (i.e., when the phonons interact only 
with the medium, referred to arbitrarily as the thermostat) 
was developed in Refs. 2 and 3. As the phonon intensity 
increases (in time or along the sample), nonlinear effects con- 
nected with the interaction of the phonons with one another 
come into ~ l a y . ~ , ~  These nonlinear effects alter the frequen- 
cy-integrated intensity of the scattered light as well as the 
profile and width of the scattering line. By observing these 
characteristics we can assess the changes in the properties of 
the phonon system as the phonons are enhanced. We develop 
in this paper a theory of BS under conditions when the phon- 
ons are not linear in intensity. We can take the nonlinear 
effects into account either as corrections to the linear theory 
or else rigorously; the latter permits in principle the light 
scattering to be described under conditions of advanced 
phonon turbulence. We derive the BS equations by a kinetic 
diagram  technique^,^,' and for the description of the spatial 
inhomogeneity of the phonon distribution we base the tech- 
nique on wave packets rather than on plane waves as in Refs. 
6 and 7. The technique developed makes it relatively easy to 
obtain expressions for the BS line shape at various forms of 
nonlinearity. We consider in this paper a case when the 
phonon interact via a dissipative electron system. It is 
known5 that in this case only departure processes are signifi- 
cant in phonon-phonon collisions, while the collision term 
does not have the usual Peierls form. The nonlinear interac- 
tion of the phonons has here the character of an interaction 
via a self-consistent field, and differs little in essence from 
their interaction with the medium. Accordingly, the results 
will also be somewhat reminiscent of the equations of the 

linear theory. Whereas, however, in the linear theory the 
width of the BS line was independent of the occupation 
numbers of the phonon states, here it turns out to be a func- 
tional of the phonon distributions in the momentum and 
coordinate spaces. Depending on the sign of the nonlinear- 
ity, the nonlinear interaction can either broaden or narrow 
the BS line. It may happen that when only departure-type 
processes are taken into account the linewidth tends to zero 
with increasing phonon intensity. In this case the residual 
width is determined by arrival-type processes, e.g., by emis- 
sion of phonons from the electron system or else by colli- 
sional arrival (the Peierls collision term). 

We develop first a diagram technique for light scatter- 
ing. We consider next the nonlinear effects in the phonon 
system and their influence on the BS line shape. In the con- 
clusion we use the equations derived to analyze BS in a situa- 
tion, more or less typical of e~periment ,~ wherein the 
phonon intensity increases along the sample. 

2. DIAGRAM TECHNIQUE 

The purpose of the present section is to adapt the kinetic 
diagram technique6" to the description of light scattering. 
We consider first light scattering in an infinite spatially ho- 
mogeneous system and obtain the well known9.10 equation 
for the BS cross section. 

The diagrams for the anti-Stokes component of the 
scattered light are shown in Fig. 1. The dashed lines repre- 
sent photons and the wavy one phonons. The photon and 
phonon states are characterized respectively by wave vectors 
k and q by frequencies (energies) f2, and w, . The triple ver- 
tices describe the photon-phonon interaction. The diagrams 
are time-ordered (time flows from left to right). We distin- 

FIG. 1. 
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guish between retarded Green's functions (propagators) and 
advanced ones (antipropagators). The propagator direction 
(indicated by the arrow) coincides with the time direction, 
while that of the antipropagator is reversed. The propagator 
is set in correspondence with exp( - i ~ t  ), where E is the ener- 
gy (frequency) of the corresponding state, and 0 0 .  Corre- 
sponding to the antipropagator is the complex conjugate 
[exp( - i ~ t  )I*. (This definition is convenient because it can be 
automatically extended also to the case of complex frequen- 
cies, i.e., to allowance for damping.) 

The vertical lines joining the propagator and antipropa- 
gator on the left are the initial occupation numbers (intensi- 
ties) specified at the instant of time t = 0, viz., I, (0) for pho- 
tons and Nq (0) for phonons. The section of the diagram from 
the instant t = 0 to the instant t ' when the first interaction 
act takes place describes the evolution in time of the initial 
photon and phonon intensities. Neglecting the interaction 
with the medium, the initial intensities are obviously con- 
served. We shall neglect photon damping, but phonon 
damping (enhancement) will be taken into account. 

In a semiconductor, the phonons interact with the car- 
riers (electrons). The interaction leads in the linear approxi- 
mation to the appearance of a complex increment to the 
phonon frequency: 

The interaction with the medium is taken into account on 
the diagrams by including in the phonon lines double-vertex 
points, each of which is set in correspondence with 
- ihq  + yq/2=Dq (if included in a propagator) or with 

ismq + yq /2=D : (for an antipropagator). A complex inter- 
action constant means that the interaction is not instantan- 
eous-the vertex turns out to be a point only to the extent 
that we are interested in slow variations of the occupation 
numbers of the phonon states, which are characterized by an 
absorption coefficient (gain) yq satisfying the condition 

This condition means that the states of the phonon system at 
an arbitrary instant of time can be described with sufficient 
accuracy by a set of occupation number. Summation of dia- 
grams with double vertices yields the obvious result: 

To each interaction point on the diagram corresponds 
its own interaction time t ' from the interval [0, t 1. It is pro- 
posed to integrate in succession with respect to all such t ', 
from zero to the subsequent time. These successive integra- 
tions can be replaced by drawing vertical cuts through the 
interaction points and using Laplace transforms. Each sec- 
tion is associated with a frequency (energy) denominator in 
accordance with the rule 

Here w, are the frequencies (energies) of the cut propagators, 

o, are the frequencies of the cut antipropagators, and s is the 
Laplace parameter. Application of this rule to the phonon 
intensity yields 

N q ( a )  " N q  (s) = - - N, ( t )  e-" clt. 
si-7, -S 

We consider now the right-hand sections of the dia- 
grams of Fig. l ,  where the photon propagator and antipropa- 
gator emerge at the instant t. This is the measured intensity 
I,. (t ) of the light scattered by the optical inhomogeneity due 
to the presence of phonons in the system. The transition 
I, +I,, requires two k+kf transitions at the level of the am- 
plitudes, which make up the diagrams of the "arrival" type: 
one interaction point is included in the propagator and the 
other in the antipropagator. (Diagrams of the "departure" 
type, when both points are included in one photon line, de- 
scribe absorption of light by the phonons and are not consid- 
ered here.) Each transition is due to a perturbation propor- 
tional to the phonon amplitude at the instant of the 
transition. The triple photon-phonon interaction vertices, 
just as the vertices of the phonon interaction with the medi- 
um, have a structure, i.e., they correspond to some compli- 
cated process. The duration of this process, however, is very 
small, of the order of l/O,, much less than all the time scales 
of interest to us, so that we can regard the vertex as a point 
and relate it to a matrix element ce .  of the effective interac- 
tion potential. By virtue of the spatial homogeneity we have 
k' = k + q, so that the interaction constants depend only on 
k and q. We associate the point to - ic, (q) in the propagator 
and to ic, (q) in the antipropagator, and assume the constants 
themselves to be real (they are proportional to the usual pho- 
toelastic constants). 

The vertices of the photon-phonon interaction in Fig. 1 
differ in time by r, so that the produced phonon objects are 
more complicated than the occupation numbers. These ob- 
jects are none other than the non-equal-time amplitude cor- 
relators that become occupation numbers only at r = 0. 
When account is taken of the linear interaction with the me- 
dium (with the electrons) these propagators are equal to 

(b,+ ( t ' )  b,  ( t ' f ~ )  )=exp (--iaq~-yq.12) Nq ( t ' )  , 

(bq+(t l+z)  b ,  ( t ' )  >=exp ( i6 , t - -yq~/2)N,  ( t ' ) ,  
(2.4) 

wherei3, -wq + Soq is the phonon frequency renormalized 
by the interaction with the medium. The factors of Nq (t ') in 
Eqs. (2.4) correspond on the diagram of Fig. 1 to a section, 
stretched out by r ,  of the phonon propagator or antipropaga- 
tor. 

The analytic expressions for the diagrams in Fig. 1, tak- 
en in the limit t-+w, add up to the known formula for the 
anti-Stokes component of the scci'tered light: 

zk+,=2nI cr (q) 126 (~lr+aq-Qk+q) Nqzk, (2.5) 

where, for greater clarity, we have replaced the Lorentzian 
obtained in accordance with the correspondence rules by a 
delta function. The diagrams of Fig. 1 will be used by us for 
further generalizations. Thus, for example, if the directions 
of the arrows on the phonon lines are reversed, we find that 
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FIG. 2. 

part of the scattered-light Stokes component which is pro- 
portional to the phonon intensity. For this direction of the 
phonon lines it is possible to construct also diagrams with 
only one propagator or antipropagator phonon line-Fig. 2. 
Such diagrams (which do not contain the phonon intensity) 
describe light scattering by spontaneously emitted phonons. 
The sum of four "Stokes" diagrams yields the known expres- 
sion 

Ik-q=2n;I~r ( -q )  1'6 (Qk-@,-Qk-,) (Nq+l)zk.  (2.6) 

We shall neglect hereafter the spontaneous emission of the 
phonons and put Nq ?+ 1. The expression for the Stokes com- 
ponent can in this case be obtained by reversing the sign of 
the frequency and of the wave vector in the corresponding 
expressions for the anti-Stokes component. 

We note in conclusion that a distinguishing feature of 
the kinetic technique is the use of a special symbol for the 
initial intensity. It enables us to distinguish between (hereto- 
fore equivalent) lines that join two points, viz., lines that 
carry intensity (amplitude correlators) and pure propagator 
lines (amplitude commutators). Comparison of the diagrams 
in Figs. 1 and 2 shows that the intensity appears in a line if it 
is drawn back to the past. It is thus possible to ascribe inten- 
sity to lines of arbitrary particles encountered on diagrams. 
It must be remembered, however, that all the lines that con- 
verge to a certain point cannot carry intensity simultaneous- 
ly: at least one of them must be a line without intensity. An 
attempt to ascribe intensity right away to all lines inevitably 
produces a return point from which not even one line goes 
into the future. Diagrams with a return point have no phys- 
ical meaning in kinetics and do not turn up in the technique. 
On the other hand, since lines with intensity always enter the 
interaction point from the past, the arrow directions for 
them are arbitrary. On the contrary, in the case of spontane- 
ous emission (see Fig. 2) the phonon line goes off to the future 
from the interaction point that is first in time. The arrow 
direction on the emitted line is then not arbitrary: the propa- 
gator emits a propagator line, and the antipropagator an an- 
tipropagator line. This is precisely why diagrams with spon- 
taneous emission exist only for the Stokes component of the 
scattered light. 

3. ALLOWANCE FOR SPATIAL INHOMOGENEITY 

We consider now light scattering under conditions of 
spatial inhomogeneity. In this case momentum conservation 
in the vertices should not hold, so that generally speaking 
one must forgo the plane-wave representation and change to 
coordinate-dependent propagators. We, however, are inter- 
ested in the case of a large-scale inhomogeneity, when the 
system properties change over distances much larger than 
the wavelength of the phonons (and photons) that take part 

in the interaction. The characteristic size of the inhomogene- 
ity is of the order of the damping (or gain) line: the phonon 
occupation numbers change over distances of this order. To 
take such a large-scale inhomogeneity into account, it is con- 
venient to use the wave-packet representation. The diagram 
topology is obviously invariant to the representation, so that 
a transition to another representation does not change the 
diagram itself and we can use Fig. 1 for the diagrams in the 
wave-packet representation. The approach itself consists of 
introducing a large-scale coordinates R on which the propa- 
gators depend. In contrast to plane waves, wave packets are 
not exact eigenfunctions of the phonon Hamiltonian. There- 
fore the large-scale coordinate (as the usual coordinate in the 
coordinate representation) varies along the propagator. 
Since the interaction takes place over distances of the order 
of the wavelength, one can assume the vertices to depend 
only on one large-scale coordinate that is common for the 
end points of all the propagators that converge to the vertex. 
On the contrary, the phonon wave vector (which also be- 
comes large-scale: Aq k l/AR ) is conserved along the line, 
but changes jumpwise at the vertex (without violating the 
momentum conservation law). The conservation law for the 
large-scale momentum is obtained by integration over the 
small-scale (difference) coordinate about the large-scale 
point R. 

An analytic expression for the principal element of the 
diagram technique, namely the propagator of the wave pack- 
et, can be obtained, for example, by taking the large-scale 
Fourier transform of the momentum phonon propagator: 

Gq (R', t ( R ,  t+r )  =z exp (-ioq+.i+ix (R-R') ) 

=exp ( - io ,r  exp ( ix ( R - R ' - w , ~ ) )  )r, 

(w, is the group velocity). The small momentum x should be 
bounded by the usual inequality 

Equation (3.1) states a perfectly obvious result: the wave- 
packet propagator is the product of two factors; one is the 
usual wave propagator exp(iw,r), and the other is a delta 
function that describes the motion of the packet center in 
accordance with the laws of geometric optics. 

Linear interaction with the medium can be directly in- 
cluded in the wave-packet propagator; this adds a factor 
exp( - yq 7/2) and renormalizes the phonon frequency. We 
assume here that the phonon-phonon interaction constant is 
independent of the coordinate R. The expression for the anti- 
propagator is the complex conjugate of that for the propaga- 
tor. 

We supplement the propagator by introducing also the 
number of phonons with a given momentum q in the (large- 
scale) point R: 

N, (R ,  t )  =E Nq ( Y ,  t )  e z x R ,  (3.3) 
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where 

The coordinate-dependent phonon distribution function in 
momentum is represented by a corresponding section on the 
diagrams of Fig. 1, where the propagator lines must now be 
regarded as dependent on the large-scale coordinate. The 
first glance on this section may suggest that the distribution 
function must depend on the two coordinates R and R' cor- 
responding to the end points of the propagator and antipro- 
pagator, which generally speaking need not be identical. 
This, however, is not so (as is the case also for clear notions 
concerning the phonon intensity at a point). Indeed, regard- 
ing the vertical stroke (the initial coordinate) as diagonal in 
the large-scale coordinate and integrating with respect to it, 
the result calls for R = R'. Quantities that are nondiagonal 
in the large-scale coordinate describe interference effects; 
they should depend either on the three spatial coordinates R, 
R' and a certain initial R,, or else the corresponding quantity 
must be a non-equal-time correlator, i.e., must depend not 
only on t but also on r. The last quantities, as we shall see 
presently, indeed appear when light scattering is described. 

The phonon distribution function satisfies the kinetic 
equation. In the linear approximation it takes the form 11 

(dt+wqV+ yq)Nq ( R ,  t )  = M q  (R:  t ) .  (3.5) 

Here Uq(R, t ) is the source that describes the creation of 
phonons by electrons. Its diagrammatic representation in 
the spatially homogeneous case is given in Ref. 6. Under 
amplification conditions, when the phonon intensity in- 
creases strongly, the source becomes inessential. 

We obtain now an expression for the intensity of the 
scattered light in the spatially inhomogeneous space. It suf- 
fices for this purpose to regard the phonon propagator lines 
in Fig. 1 as lines of phonon wave packets. The phonon-pho- 
ton interaction vertices are then found to depend explicitly 
on the large-scale coordinates (say, R and R' for the upper 
and lower points). It is necessary to integrate with respect to 
these coordinates over the entire light-scattering volume V; 
we integrate also with respect to T from 0 to co . As a result we 
obtain the known2v3 formula of the linear theory 

OI 

I.+,= 1 ek (q) I 'J dr jj dR dRfS (R -Rf -w , r )  
0 V 

In contrast to the spatially-inhomogeneous case, where the 
scattered light line shape is Lorentzian and its width is deter- 
mined by the temporal instability of the phonon state on 
account of absorption or amplification of phonons, we have 
included here an additional broadening mechanism, since 
the phonon-state lifetime depends now also on the size of the 
scattering region, and departure of phonons from this region 
can compete with absorption (amplification). 

4. NONLINEAR EFFECTS IN THE PHONON SYSTEM 

The interaction between phonons becomes substantial 
when their intensity is high. We can take this interaction into 
account by including in the phonon propagator lines appro- 

FIG. 3. 

priate points-vertices. Just as in the case of interaction with 
a medium, the internal structure of the new vertices (see Ref. 
6) is of no interest to us. We assign to each vertex a certain 
complex interaction constant.' 

We consider first weak nonlinearity. It is described by 
departure-type diagrams with 4 "two by two" wave ver- 
t i~es.~. '  Figure 3 shows the propagator correction that de- 
pends on the phonon intensity. This diagram shows that the 
nonlinear interaction can be likened to a linear one, but with 
an effective interaction constant that depends on the phonon 
occupation numbers. Figure 3 shows the first corrections. 
To take complete account of a nonlinearity of this type it is 
necessary to saturate all the encountered propagators with 
nonlinear-interaction points. We emphasize that in this case 
both intensity-forming phonon lines should emerge from 
one vertex-in other words, the topology of the nonlinear 
diagrams should be the topology of a growing tree. Problems 
of this type are well enough known-these are problems con- 
cerning a self-consistent field. In this case we can formulate 
the problem as follows: the interaction of an isolated phonon 
with a "phonon" medium is characterized by a certain rq 
which is itself a functional of the phonon occupation 
numbers, and these in turn must be determined from equa- 
tions with this constant. For weak nonlinearity we have 

The constant rqq . ,  just as the linear constant Pq ,  is deter- 
mined by the properties of the dissipative electron system. 

The topology of the nonlinear diagram in Fig. 3 can be 
directly generalized to include strong nonlinearity. In this 
case the effective interaction constant rq is given by a sum of 
diagrams of the type of Fig. 3, but with an arbitrary number 
of phonon lines (that carry intensity). An example of a dia- 
gram quadratic in the intensity is shown in Fig. 4. 

The analogy between the interaction with a medium 
and the diagrams of phonon-phonon interaction via a dissi- 
pative medium leads to the following conclusion: Under 
conditions of advanced turbulence, the evolution of the oc- 
cupation numbers Nq (R, t ) is described by an equation that 
coincides in form with ( 3 3 ,  but with a coefficient pq [ N  j 

FIG. 4. 
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that depends on all the phonon occupation numbers: 

(d,+w,V+~,{N}) N,(R, t) =O. (4.2) 

Here and below we have in mind the case of phonon amplifi- 
cation, and neglect the source. The nonlinear amplification 
coefficient is the sum of the linear coefficient and a nonlinear 
contribution: 

7, {N)=yq+2 Re I?, {N}. (4.3) 

The imaginary part of the nonlinear constant r, makes the 
following contribution to the renormalization of the phonon 
frequency: 

6Bq=Im ~,{N}+Im p,. (4.4) 

In contrast to the spatially homogeneous case (see Refs. 6 
and 7), the coefficient jjq and the correction 85, to the fre- 
quency depends on the large-scale coordinate R via the occu- 
pation numbers. The dependence on the time tin the nonsta- 
tionary case also enters via these numbers. 

Equation (4.2) demonstrates the "linearization" typical 
of problems of the self-consistent-field type. In this case the 
linearization is natural: as the phonon intensity increases 
relatively uniformly over the spectrum, the properties of the 
medium are altered by the very large number of phonon 
modes. The influence of an individual specific mode is small 
compared with the total influence of the remaining modes- 
the self-action is small compared with the interaction. 

Thus, the condition for the applicability of Eq. (4.2) is 
the presence of a large number of independent (noncoherent) . 
modes. This number can be estimated as the ratio of the 
spectrum width of the spectrum in the gain band to the natu- 
ral line width determined by gain y. The criterion Aw)y for 
the applicability of Eq. (4.2) can be obtained also from the 
diagrams of Refs. 6 and 7 by comparing, in order of magni- 
tude, the accounted-for diagrams of the self-consistent-field 
type with the remaining diagrams that describe the correla- 
tion between the phonon modes. The topology of the correla- 
tion diagrams is such (see Fig. 23 of Ref. 6 and Fig. 7 of Ref. 
7) that the ends of the phonon lines are separated in time; 
when the corresponding cut is made this yields a factor of the 
order of l/Aw, whereas for diagrams of the self-consistent- 
field type (which have the same number of intensities and 
interaction constants) the sections always give l/y. 

Equation (4.2) for the case of weak nonlinearity was ob- 
tained in Ref. 5. Under conditions of advanced turbulence 
(in the spatially homogeneous case) its derivation is given in 
Ref. 6. A case when Aw 5 y and (4.2) is not valid was investi- 
gated in detail in Ref. 7. 

It must be stated that the very existence of an interac- 
tion of the self-consistent-field type is due to the dissipative 
character of the electron system through which the interac- 
tion is effected between the phonons. In the case of ordinary 
anharmonicity (triple vertices) we would have an interaction 
of the Peierls type with departure and arrival terms in the 
kinetic equation, in contrast to the pure departure equation 
(4.2). The Peierls interaction via an electron system is weak 
compared with a nonheierls one in a ratio y/w (see Ref. 5 
and 6). 

We note incidentally that the simplicity of Eq. (4.2) is 

only illusory. The nonlinear gain y, ( N  J is very difficult to 
calculate (as also in any problem with weak interaction). 
This coefficient, however, can in principle be easily mea- 
sured, for example by observing the gain or absorption of a 
weak acoustic signal introduced into the system from the 
outside. The same coefficient (averaged over the spectrum) 
enters also in the expression for the acoustoelectric current. 
Finally, as we shall presently show, it is this coefficient 
which determines the BS line shape under conditions of ad- 
vanced turbulence. 

5. BS UNDER CONDITIONS OF ADVANCED TURBULENCE 

To obtain an expression for the intensity of scattered 
light under conditions of advanced turbulence, we use again 
the diagrams of Fig. 1. We now regard the phonon lines on 
these diagrams not only as dependent on the large-scale co- 
ordinates and saturated with linear vertices, but also as fully 
saturated with all possible vertices of nonlinear interaction, 
the aggregate of which yields the constant r, ( N  ) . As a re- 
sult we obtain 

In contrast to the linear theory, the propagator G,(R'/R) 
that enters in this formula has no simple form. It can be 
found from the equation 

with the usual initial condition for the coordinate propaga- 
tor: 

GI r-o=6 (R-R') . (5.2a) 

Equations (5.2) and (4.2) for the propagator and intensity are 
interrelated. From Eq. (5.2) and its conjugate (for the anti- 
propagator) we can obtain Eq. (4.2) by defining N as gg *. 

BS permits in principle the determination of both N and 
6, and the latter yields in fact the line shape of the resonant 
light. 

We consider now in greater detail a typical experimen- 
tal situation in which the phonon intensity increases along 
the sample, so that it suffices to consider only the depen- 
dence on the longitudinal coordinate x .  The stationary in- 
tensity N,, (x) satisfies then the equation 

where v, is the projection of the group velocity w, on the x 
axis 

vq=d~,,ldqx=wq cos a, (5-4) 

where a is the angle between the vectors q and x. For the 
propagator of the one-dimensional wave packet we have 
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Thus for the intensity of the scattered light we have in 
this case the following formula: 

Ik, = 02 \ ck (q) I2 2Re f dr 6 d x  dx' N q  (5') 8 ( I  - 5' - up%) 
0 0 

xexp i(Pli+,--Q;-o,)~+i 

x 
dx" 1 P q ( x n ) E ] .  (5.6) 

x-0,' x-Uq' vq 

Here a is the cross section of the scattering region and L is its 
length. The total gain y, and the frequency shift SZ, depend 
on the coordinate via the dependence on the occupation 
numbers N, . Using Eq. (5.3), we can transformed (5.6) into 

where we have put 

We see that the scattered-light line shape is determined by 
superposition of three factors: the departure of the phonons 
from the light-scattering region, the nonlinear amplification 
(damping) of the phonons, and the inhomogeneous broaden- 
ing due to the coordinate dependence of the phonon-disper- 
sion law. If the scattering region is small enough, the phonon 
lifetime is equal to the time of their motion in this region. 
The linewidth is in this case, as in the linear theory, 2 of the 
order of w/L. 

At w/L) 1 the departure ceases to play any role and the 
scattered-light linewidth depends on two other mechanisms 
whose contributions are difficult to separate in the general 
case. Effects connected with inhomogeneous broadening 
may turn out to be the principal ones at low supercriticalities 
in the case of density nonlinearity, since both the linear gain 
and the nonlinear additions are in this case proportional to 
the difference between the velocities of the sound and of the 
electron drift, and vanish when the two are equal, whereas 
SZ, does not have this property. 

On the other hand, the inhomogeneous broadening may 
turn out to be insignificant when phonons are amplified from 
a relatively narrow region of the spectrum, where the inte- 
gral phonon sensitivity does not change greatly, but the 
beam spectrum is noticeably broadened because the gain has 
a maximum at q = q,. The explicit form of the distribution of 
the phonon occupation numbers over the spectrum is given 
for a model problem of this type in Ref. 7 [(Eq. (4. I)]. In our 
case we must put in this equation t = x /vq ,  so that it takes 
the form 

Here N, (0) are the occupation numbers on the boundary. y, 
is the linear gain, and W is the nonlinearity constant. 

For solutions of this type at sufficiently largex, the inte- 
gral intensity saturates and it can therefore be assumed that 
SZq ceases to depend on x, so that the inhomogeneous 
broadening vanishes. In this case the line width is deter- 
mined by nonlinear amplification and damping effects and 
depends substantially on how far the light-scattering phon- 
ons are from the maximum of the spectrum. 

Far from the amplification maximum, the phonons are 
damped and the line width is determined by their nonlinear 
decrement. For the model (5. lo), the line shape will be Lor- 
entzian with a width equal to the gain difference y,, - y, .  
Near the maximum where the weak growth continues (be- 
cause of the continuing narrowing of the spectrum, we 
would see a very narrow line whose width is determined ei- 
ther by the small residual increment or by other factors, both 
accounted for in the present theory (departure and inhomo- 
geneous broadening) and unaccounted for (e.g., phonon- 
phonon collisions of the Peierls type or else coherence-caus- 
ing effects (see Ref. 7). 

We note in conclusion an interesting possibility of ob- 
serving the change of the linewidth in our situation by shift- 
ing the scattering region from that end of the sample where 
the linear effects are still small, to the other end, where they 
are decisive. For example, for phonons not located in the 
region of the maximum gain, the linewidth, initially equal to 
y, ,  decreases (to zero if departure and inhomogeneous 
broadening are neglected) in the region where the nonlinear 
damping offsets the gain, and then increases to a value of the 
order of yq , - y, . A similar behavior of the scattered-light 
linewidth can be observed also in one region of the sample 
(far enough from its low-linearity end) when the supercriti- 
cally is increased and the linear gain regime saturates. Ex- 
perimental observation of such a behavior of the linewidth 
would be of extraordinary interest and would contribute to a 
better understanding of the nature of phonon turbulence. 
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