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New classes of exact solutions of the steady-state, one-dimensional Schrodinger equation are 
found for fields corresponding to potential wells or periodic potentials. These solutions refer to 
the 2 s  + 1 lowest energy levels (S is an integer or half-integer which appears in the potentials) 
which correspond to the eigenvalues of the spin Hamiltonian describing an anisot~opic paramag- 
net of spin S in an external magnetic field. The potentials found are one- and two-parameter 
potentials (at a fixed value of S ). Their form and the structure of the energy spectrum vary 
substantially with the parameter values. In particular, a symmetric well and an asymmetric one 
with two minima are found, as is a well with a fourfold minimum. There are simple and exact 
analytic expressions for the wave functions and the energies in, for example, the single-parameter 
case with S = 0, 1/2, 1,3/2, and 2. The coordinate and spin systems are related because the 
coordinate Hamiltonian can be written as a combination of linear differential operators which 
satisfy commutation relations for the spin components. 

A description of the dynamic interaction which is wide- 
ly used in the theory of magnetism involves only the coordi- 
nate degrees of freedom in terms of spin variables. This de- 
scription is generally only approximate and involves 
physical assumptions of some sort: that an average can be 
taken over the orbital variables, that perturbation theory is 
applicable, etc. (a good example is the Heisenberg Hamilton- 
ianIT3). There are, on the other hand, cases of a spin-coordi- 
nate correspondence with a rigorous meaning, in which the 
coordinate Hamiltonian can be expressed directly in terms 
of differential operators which actually serve as effective- 
spin operators ($4 of this paper). 

It was shown in Ref. 4 that the energy spectrum of the 
spin Hamiltonian describing a paramagnet with an easy-axis 
anisotropy in an external magnetic field directed perpendic- 
ular to the easy axis reproduces the first 2 s  + 1 energy levels 
of a particle moving in a potential well of a certain type (S is 
the spin). In this case we are dealing with the inverse trans- 
formation-from a discrete spin space to coordinate space- 
and an extremely unusual example of the effective-field 
method5 (which proves useful here in a study of the low- 
temperature properties of a paramagnet with S) 1). For the 
coordinate system we therefore find a new class of exact so- 
lutions of the Schrodinger equation. Of particular interest 
are cases in which the spin is not very large, so that the char- 
acteristic equations in spin space have simple explicit solu- 
tions. There is a similar spin-coordinate correspondence for 
an anisotropic paramagnet in a magnetic field in an arbitrary 
direction. 

We proceed to a specific analysis of the exact solutions, 
which, as we will see, fall naturally into three classes. 

Q1. CLASS OF EXACT SOLUTIONS FOR SYMMETRIC 
POTENTIALS 

We consider the steady-state Schrodinger equation for 
a particle which is moving in a one-dimensional potential 
field: 

Yf'+[~-U(E) lY=O (1) 
(for simplicity, we use dimensionless energies and a dimen- 
sionless coordinate ), where the potential is constructed 
from hyperbolic functions and has two parameters (Band S ), 

Exact solutions of this equation cannot in general be 
found. However, let us assume that we have an integer or 
half-integer value ,920, and let us assume B > 0. Direct sub- 
stitution then shows that Eq. (1) has solutions of the form 

where the coefficients c, satisfy the system of finite-order 
linear equations 

and the energy levels are found from the corresponding char- 
acteristic equation. We can conclude from the oscillation 
theorem that such solutions correspond to only the first 
2S + 1 energy levels for Schrodinger equation (1). 

It can be seen that the problem of solving system (4) is 
equivalent to that of finding the eigenvalues of the dimen- 
sionless spin Hamiltonian H = - SZ - BS,, where the op- 
erators S, and S, represent the corresponding projections of 
the spin S, c, is the wave function in the S, representation, 
and B is proportional to the magnetic field.' (The questions 
of an algebraic nature which arise here are discussed in $4.) 

For each fixed integer or half-integer value of S, expres- 
sion (2) determines a family of potential fields which depend 
on the one parameter B; a variation of this parameter leads to 
an extremely important deformation of the potential profile. 
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If B > B0=2S + 1, the potential is a single well with a simple 
minimum; if B < B,, the potential becomes a well with two 
minima; and at B = B, we find a well with a fourfold mini- 
mum. 

We mentioned above that in problems of this case there 
are exact solutions for only a limited number of low-lying 
energy levels. If Sis not too large, the wave functions and the 
energies can be described by simple explicit expressions. 
These cases are of particular interest, since it is usually the 
low-lying states which are the subject of a purely quantum 
analysis (while good results on high-lying states can be found 
by a semiclassical approach). 

System of linear equations (4) can be split up into two 
simpler systems: The states which are of even parity in a 
separate from those of odd parity. For an integer spin and 
even states, for example, there are S + 1 instead of 2 s  + 1 
equations. We will discuss some examples of the simple, ex- 
plicit analytic expressions which can be found for the energy 
levels and wave functions of the stationary states. 

I fS  = 0 (a trivial case for a spin system, but in the coor- 
dinate picture the potential undergoes changes in shape 
which are also typical of other values of S ), the ground-state 
energy E, = 0 is independent of B, and 

In the case S = 1/2 the corresponding quantities are 

For S = 1 we find, combining states with the same parity, 

e,=-1; Y I ( 5 )  =AI exp -+oh 5 )  sh a ( 
(here and below, the upper sign corresponds to the index at 
the left). 

The case S = 3/2 is of particular interest since it corre- 
sponds to the maximum number of exact solutions for the 
energy which are simple, explicit expressions and which 
comprehensively convey the characteristic features of the 
energy spectrum. In this case we have 

If S = 2, simple results can be found for the odd-parity sta- 
tionary states, since the characteristic equation in this case is 
quadratic (cubic for the states of even partiy): 

The energy spectrum has some general properties which are 
not restricted to integer or half-integer values of S. The de- 
formation of the potential profile which we mentioned ear- 
lier is accompanied by a substantial change in the spectral 
structure. At B 2 B, the spectrum is a fan of levels which, in a 
first approximation, depend linearly on B, while at B = B, 
the spectrum is that of an oscillator with a pronounced (four- 
fold) nonlinearity. Curiously, although we know that there 
are no exact solutions for a potential U ({ ) = Pc 4, exact solu- 
tions can be found for the more complicated function B 
sinh4(c /2) (for the low-lying states). 

At small values of B the spectrum consists of a set of 
levels of spin origin (for integer of half-integer values of S) 
which move closer together in pairs and which correspond to 
two symmetrically positioned solitary (in the limit B = 0) 
Morse potential wells and "superspin" levels which form a 
quasicontinuous part of the spectrum and which become 
more closely spaced toward a zero energy. 

These changes in the shape of the potential and in the 
nature of the energy spectrum have such physical conse- 
quences for the corresponding spin system as the existence of 
a maximum in the low-temperature magnetic susceptibility 
as a function of the magnetic field.4 

52. CLASS OF ASYMMETRIC POTENTIALS 

The results derived in 91 are generalized to the case of 
potentials of the form 

which, in contrast with (2), are asymmetric and contain two 
varying parameters B > 0 and C >  0, at a fixed value ofS. The 
wave functions of the first 2 s  + 1 levels differ from (3)  by a 
factor of exp(C{ /2), and the quantities c, satisfy an equation 
similar to (4), differing only by an additional term aC in the 
coefficient of c,. 

In this case the potential profile differs substantially, 
depending on whether the point on the B,C plane corre- 
sponding to the system lies inside, outside, or on the astroid 
B * I 3  + C2I3 + = B i'3. In the first of these cases, the poten- 
tial is a well with two minima; in the second, it is a well with a 
single minimum; and in the third the maximum and the 
nearest minimum merge, forming an inflection point with a 
horizontal slope. The point C = 0, B = B, on the astroid 
corresponds to the critical field for the symmetric case. 

Interestingly, the deformation of the potential profile 
which we mentioned above is a typical example of the trans- 
formations which are analyzed in catastrophe theory, name- 
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ly a cusp catastrophe, the simplest realization of which is in a 
so-called Ziman's machine.' 

Potential (9) corresponds to the dimensionless spin Ha- 
miltonain H = - S :  - BS, - CS,, which describes an an- 
isotropic easy-axis paramagnet, where B and Care propor- 
tional to the transverse and longitudinal components of the 
magnetic field, respectively. This astroid equation is a quan- 
tum generalization of the equation which separates the re- 
gion of metastable stables for a paramagnet of this type in the 
classical case.8 

The even states do not separate from the odd states in 
the characteristic equation now, in contrast with (4), since 
the order of the equation is 2S + 1. We can give some simple 
exact solutions for the cases S = 0 [in which the potentials in 
(6) and (2) take a form associated with a supersymmetric 
quantum mechanics9] and S = 1/2. 

In the former case, the solution is 

B C 
eo=O; yo (E) = A ~  exp ( - - C ~ F + ~ E ) ,  

and in the latter it is 

B C 
( chi+-E)(eu2- 2 B 

=Ao;, exp -- 
C=F (B2+P) "= e-E/2 

Among the special functions, the spheroidal Coulomb 
functions1° are the closest approximations of these solutions 
with C = 0. The case C # 0 gives us one generalization of this 
class of special functions. 

The energy spectrum has several extremely interesting 
properties, not found in the case of symmetric potential (2), 
which can be seen best in the limit B = 0. For example, there 
is the unusual behavior of the levels E, (C ) as a function of C. 
In the region C<2S, where the potential takes the form of 
two solitary Morse wells of different depths, the energy lev- 
els turn out to be doubly degenerate for certain integer values 
of C. As a result, we find a discontinuous behavior for all the 
levels E, (C) except the ground level, whose energy falls off 
monotonically with increasing C: E, = - S - CS. Since 
the points of discontinuity, &,(C), pertain to excited states, 
there are no discontinuities in the magnetization at low tem- 
peratures (in the case of an easy-plane spin Hamiltonian, in 
contrast, there are discontinuities," since the behavior of the 
ground level is discontinuous). 

If B #O the degeneracy is lifted, and the corresponding 
levels "repel each other." 

Typical of the behavior of the spectrum in strong 
"fields" is a linear dependence of the energy levels on the 
"intensity" (B2 + c2)l l2.  

We wish to emphasize the following distinctions 
between the classes of potential fields discussed above and 
the standard, exactly solvable quantum-mechanical mod- 
e l ~ . ' ~ , ' ~  In the first place, the latter are actually one-param- 
eter models and can be written in the form U(x) = U,J(x/a). 
As the parameter U, is varied there is a change in the "inten- 
sity" but not the shape of the potential. Examples of these 
models are the Eckart and Morse potentials 

-Uo/ch2 xla, Uo [exp (-2xla) -2 exp (-xla)] . 
The power-law models (the simple harmonic oscillator, the 
quaternary oscillator, and a linear potential), in contrast, 
contain essentially no parameter, since the Schrodinger 
equation in dimensionless variables is of the form 
'P" + (E-'grn)'P=O. 

On the other hand, the models of spin origin in which 
we are interested in the present paper are far richer in possi- 
bilities. The shape of the potential, for example, can change 
substantially even in the one-parameter case, i.e., with 
C = 0. The models with C #O, in contrast, which give rise to 
a two-parameter potential (for a given value ofS ), apparently 
have no analogs of any sort among simple models of poten- 
tial fields. Exact solutions for asymmetric double wells were 
found in Ref. 14, but the potential was expressed in a compli- 
cated way in terms of the confluent hypergeometric func- 
tion, although the spectrum is analogous to the energy levels 
of a simple harmonic oscillator. 

Second, in the case at hand the spectrum is completely 
discrete, and the potentials have no singularities. In this re- 
gard the symmetric potentials which have been found could 
be compared with only one of the standard, exactly solvable 
models: the simple harmonic oscillator. As we have already 
emphasized, however, the profile of the simple harmonic os- 
cillator is fixed, and the energy spectrum has an unambigu- 
ous structure. 

93. PERIODIC POTENTIALS WITH EXACT SOLUTIONS 

Up to this point we have studied the Schrodinger equa- 
tion for well potentials; the discrete spectrum has been found 
as a consequence of the decay of the wave function at infin- 
ity. It turns out that there also exists a class of periodic po- 
tentials which allow exact solutions and which have a direct 
relationship with a spin system. The corresponding Schro- 
dinger equation is 

This equation can be derived from (1) and (2) through the 
formal substitution g-tip. The wave functions for the ener- 
gies which belong to the spectrum of the corresponding spin 
system are 

(see $I), where the c, satisfy relations (4). These solutions 
obey periodic or antiperiodic  condition^,^ depending on S: 

Y (cpf 2n) = (-1) 2" (d. (1 1) 

The energies E of the spin system studied in $2 (an easy-axis 
paramagnet) differ only in sign from the corresponding 
eigenvalues of Eq. (10): E = - x .  In other words, they ap- 
pear in exactly the opposite order in the spectra. For S = 0, 
1/2, 1,3/2, and 2 the explicit expressions for the eigenvalues 
x and the wave functions 'P (p) are similar to those in $ 1, with 
changes in the index and the sign of the energy, and with the 
replacement of the hyperbolic functions by trigonometric 
functions. On the other hand, these eigenvalues agree in both 
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magnitude and sign with the spectrum of an easy-plane spin 
Hamiltonian H = SZ - BS, . 

By virtue of the symmetry of the potential we can trans- 
form from (1 1) to more-customary boundary conditions. For 
example, for odd states and integer spin we find the problem 
of the motion of a particle with O(q,(.rr in a potential well 
with the boundary conditions Y (0) = Y (P) = 0 (an analo- 
gous procedure can be followed in the other cases). This re- 
formulation of the boundary conditions allows us to classify 
the energy levels on the basis of an oscillation theorem, from 
which it follows that the form of the wave function implies 
that the spin system corresponds to the first 2S + 1 values of 
X .  

The solutions found here can be interpreted quite sim- 
ply in terms of an energy-band diagram: They correspond to 
quasimomentum values k = 0 in the case of an integer spin 
and k = 1/2 in the case of a semi-integer spin; in the re- 
duced-band diagram, the "energies" correspond to the alter- 
nating bottom and top of different bands. For B = 0 we find 
the usual problem of a free plane rotator for integer S or a 
rotator with antiperiodic boundary conditions for semi-in- 
teger S. 

The spectrum of Schrodinger equation (1) contains an 
infinite number of levels; the energies E which are not perti- 
nent to the spin system lie above eZS. The spectrum of Eq. 
(10) with these boundary conditions also contains an infinite 
number of energy levels, but in the opposite order because of 
the relation E = - X .  The ground-state energy (E,) of the 
spin system (for an easy-axis paramagnet) corresponds to 
x,, and the "extra" energies lie below E,. The 2 s  + 1 levels 
which are the intersection of the two sets correspond to the 
spin system. 

An equation with a complex periodic potential corre- 
sponds to a system with an oblique field (C #0), and the con- 
dition 

Y ((pS2n) =exp [ i  (C/2-S) 2n] Y (9) 

singles out real values of the energy in the band solution. 
With S = 0 and S = 1/2 we find particularly simple exact 
solutions, similar to those in $2. 

4. ALGEBRAIC STRUCTURE OF THESE HAMILTONIANS 

The exact solutions of the Schrodinger equation for the 
potentials considered here have been found on the basis of 
the correspondence between the coordinate and spin sys- 
tems. Up to this point, this correspondence has been used 
only in terms of the correspondence between spectra; the 
energy levels of the spin system have been embedded in a 
semi-infinite set of levels of the coordinate system. It is also 
interesting to determine the algebraic meaning of this corre- 
spondence between spaces of quite different natures, one fin- 
ite-dimensional and the other infinite-dimensional. As we 
will now see, this correspondence exists because the coordi- 
nate Hamiltonian is a combination of differential operators 
which satisfy commutation relations for the spin compo- 
nents. 

A direct check shows that the Hamiltonian of the 
Schrodinger equation with potential (2) can be written in the 
form 

where 

and where 

[S,, S,] ==tS,, [S,, 9-1 =2S, and S2=S(Sf 1 ) .  

The set of functions of the type in (3) which decay at infinity 
forms a subspace which is invariant under the action of oper- 
ators (12). There is a similar situation when a "longitudinal 
field" is present (C #O). 

The operators in (12), which look slightly unusual, can 
be found (within a similarity transformation) from the ex- 
presison for the generators of the spinor representation of 
the rotation group,15 

through the substitutionz = expc. It can be shown that Eqs. 
(12) and (13) correspond to the representation of coherent 
spin states,16 for which the use of these differential operators 
in the corresponding spin subspace is equivalent to the use of 
ordinary finite-dimensional spin matrices. The wave func- 
tions in (3), on the other hand, are (within a weight factor) the 
eigenvectors of the spin Hamiltonian in the representation of 
coherent spin states. 

If we choose z = exp(iq, ) (where q, is real) in (13), i.e., if 
we choose z to vary along a circle of unit radius, we arrive at 
periodic potentials (10). Accordingly, from a single picture 
with a complex z, both a potential well and a periodic poten- 
tial emergy as two different, topologically nonequivalent 
cases. We recall that for each of these cases there is a semi- 
infinite set of discrete levels, and the intersection of these sets 
gives us the energy spectrum of the spin system describing an 
easy-axis paramagnet. 

From the algebraic standpoint, the cases we have con- 
sidered here differ from the known exactly solvable models 
in two regards. First, the role of the algebra on whose basis 
the spectrum is found is played by a Lie algebra on whose 
basis the spectrum is found is played by a Lie algebra corre- 
sponding to the compact group SU(2) [while for most of the 
known exactly solvable models, it is the Lie algebra of the 
noncompact group SU(1,l) which "generates the spec- 
trum""]. Second, the Hamiltonian itself does not enter this 
algebra because of the term which is quadratic in the opera- 
tors, and the possibility of finding the exact energies stems 
from the finite dimensionality of the corresponding invar- 
iant subspace. The set of generators relates in a single irredu- 
cible representation only those states which correspond to 
this spin subspace. 

If a potential differs only slightly from those considered 
here, a perturbation theory can be constructed from these 
results, even though there will generally be no invariant, fin- 
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ite-dimensional subspace, and it will not be possible to find 
exact solutions. Although exact solutions of the unperturbed 
problem are known for only the first 2s + 1 stationary states, 
the appropriate corrections will produce a perturbation the- 
ory (see ref. 18, for example) in which it is sufficient to have 
information on only the particular level of the unperturbed 
system which is under consideration. 

Up to this point in our study of the correspondence 
between the spin and coordinate systems we have used a 
representation in which S, is diagonal, i.e., the quadratic 
term in the spin Hamiltonian. By working from the same 
spin system, but transforming to a representation in which 
S, or S, is diagonal, we can find other, less graphic differen- 
tial equations. 

CONCLUSION 

Exact solutions of the Schrodinger equation are known 
for only an extremely few problems, so that finding new ex- 
actly solvable cases is of fundamental interest in its own 
right. Furthermore, the illustrative potential found here 
have several important and extremely unusual problems 
which distinguish them from other known exactly solvable 
models. 

1) For all three classes, the shape of the potential can 
vary substantially with the parameter values. A particularly 
interesting result is that double wells-symmetric and asym- 
metric-and a well with a fourfold minimum can be found. 

2) Furthermore, there is a direct relationship between 
problems involving motion in potential-well fields and in 
fields with periodic potentials. The fourfold minimum in the 
6 representation corresponds to a fourth maximum in the p 
representation. We wish to emphasize that among all of the 
previously known periodic fields there are apparently none 
with an exact analytic expresison for the energy levels except 
the trivial case of a free rotator (e.q., there is no explicit 
expression for the energies in the Kronig-Penney model). 

3) The classes of potential fields found here have a spe- 
cific physical meaning, describing the behavior of an aniso- 
tropic paramagnet in an external magnetic field. A similar 
pseudospin Hamiltonian arises in one of the models of inter- 
acting fermions19 which is used in nuclear physics. It is par- 
ticularly interesting to note that in this manner we find cases 
in which potentials with a fourth minimum and a fourth 
maximum have direct applications. 

4) In these problems there is definite interest in not only 
the exact solutions themselves but also in the algebraic na- 
ture of the Hamiltonians and in the particular method (cor- 
responding to this algebraic nature) which is used to seek 
these solutions with the apparatus of generalized coherent 
states. 

Another point which deserves attention is the very 
method used to study spin systems with the help of effective 
potential fields. 

The results derived here may also prove useful in a va- 
riety of physical situations in which the problem reduces to 
studying the motion of a particle in potential fields similar to 
those discussed here, especially if the field profile is a double 
potential well. This comment applies not only to the example 

mentioned above4 but also to use of effective potentials in the 
quantum theory of molecular vibrations (in, say, a descrip- 
tion of the inversion splitting in ammonia2'), in the theory of 
metals (in a study of self-intersecting trajectories and nearby 
trajectories in phase space for an arbitrary dispersion law in 
a magnetic field21), in field theory, where the anharmonic 
oscillator is a simple model casez2 (in particular, in the study 
of systems with spontaneous symmetry breaking), etc. (see 
Refs. 23 and 24, for example). 

Finally, the exact solutions can be used to test the effec- 
tiveness of various analytic approximations and numerical 
methods for studying the Schrodinger equation. 

We wish to emphasize that the restriction to low-lying 
states for these elasses of potential fields with exact solutions 
is completely justified by the rich set of properties of these 
solutions. 

These is the question of whether the results and meth- 
ods of this study can be generalized, in particular, to multidi- 
mensional cases by using Lie algebras corresponding to com- 
pact groups more complex than SU (2). 

We wish to thank V. M. Tsukernik, who stimulated this 
study, for a discussion of its results. We also thank L. I. 
Glazman and Yu. P. Stepanovskii for useful comments. 

"In the transformation from a spin system to a coordinate system, the 
approach of introducing a generating function like (3) is analogous to, for 
example, the transformation of Ref. 6, used to study the Dicke model. 

"For brevity we refer to simply "a periodic potential," without specifying 
the form of the boundary conditions. In the case S = - 1/2, Eq. (10) 
reduces to the Mathieu equation. 
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