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A nonpolar dielectric medium (gas or liquid) on the surface of a solid is considered. It is shown 
that the inhomogeneity of the fluctuating substrate field and the weak spatial dispersion of the 
medium produce near the surface a quasi-two-dimensional layer that is dipole-ordered in a direc- 
tion perpendicular to the substrate. The interaction between the atoms and the correlations in the 
layer are long-range and decrease like 1/? with increasing distance. The dipole moment and the 
interaction between the atom decrease with increasing distance from the surface like l/x4 and 1/ 
xS, respectively, and their values are determined by two macroscopic parameters, the dielectric 
constant of the substrate and the quadrupole susceptibility of the medium. Numerical estimates 
demonstrate the existence of a temperature region in which these phenomena are effective and can 
have observable aftereffects. 

1. INTRODUCTION 

Many phenomena in liquids and gases interfacing with 
solids are determined by the interaction of the atoms with 
the substrate and by their interaction with one another 
through the substrates. Forces of varying origin contribute 
to these interactions for different adatoms and substrates. 
There are grounds for assuming that a noticeable contribu- 
tion to the interaction between noble-gas atoms on metal, 
quartz, or graphite surfaces is made by inhomogenous long- 
wave electromagnetic fluctuations. 

The present paper deals with thin layers of simple gases 
and liquids on solid surfaces. The contributions of the inho- 
mogeneous parts of long-wave electromagnetic fluctuations 
to the interaction between the atoms in a gas and to the cor- 
relation function in a liquid are calculated. 

These contributions have already been discussed in the 
literature (see, e.g., Refs. 1 and 2), with the following results. 
If two atoms are located at distances x1 and x, from a plane 
substrate and r is the distance between them, then at r >x,,  
x, and at a < r, x,, x, <A, (a is the atom size and A, is the 
characteristic wavelength in the absorption spectrum of the 
solid), the interatomic interaction V, is always an attraction 
with a l/r6 law and can be represented in the form -A (x)/ 
4. The interaction with the substrate alters the coefficient A 
compared with the case of two atoms in vacuum, decreasing 
or increasing it in accord with the placement of the atoms 
relative to the substrate. The situation is similar for the cor- 
relation function g of a liquid at points x, and x, of the sub- 
strate. The correlation is positive and proportional to l/r6 
for all liquids and substrates and at all x,, x, < r. The contri- 
bution of the inhomogeneity to V, and g is quite noticeable 
here and has some physical applications, but does not lead to 
any qualitatively new properties of the gas or liquid at the 
substrate. 

A recalculation of V, and g may be prompted by the 
following considerations. The interaction between two 
atoms is via exchange of two virtual  photon^,^ i.e., V, is pro- 
portional to the square of the photon propagator, which de- 

pends on the interatomic distance like 1/13. In the presence 
of an inhomogeneity, the propagator is replaced by the pho- 
ton Green's function in the inhomogeneous medium and V2 
acquires contributions that depend on x1 and x,. As r--tco, 
however, V, remains proportional to l/r6 as before, but in 
the presence of an inhomogeneity the following three-pho- 
ton process can contribute to the interaction: The atoms ex- 
change one photon directly (and the corresponding Green's 
function is proportional to I/?), and the other is reradiated 
by the substrate. For the last process the Green's functions 
depend only on x, and x,, and the interatomic interaction 
turns out to decrease like I/?. Such a result can be expected 
in approximation VI of invariant perturbation theory. It is 
easily noted, however, that if only the dipole moments of the 
atoms are included in the electromagnetic-interaction oper- 
ator, this process makes a zero contribution to the scattering 
amplitude. Actually, the third power of the dipole-moment 
operator will be averaged out in this case for each atom over 
its ground state. It is therefore necessary to retain in the 
electromagnetic-interaction operator also the quadrupole- 
moment operators of the atoms, and accordingly the gradi- 
ents of the electric-field operators, i.e., the effect of the 1/13 
interaction can appear only when account is taken of the 
inhomogeneity of the fluctuating electromagnetic field of 
the substrate or, equivalently, when account is taken of the 
dipole-quadrupole interaction in nonrelativistic quantum 
mechanics. The product of the squared dipole-moment and 
the quadrupole-moment operators is then averaged out over 
the ground state of the atom. Such "triangles" differ from 
zero. 

One more peculiarity in the behavior of atoms near a 
surface is noted if it is recognized that the inhomogeneity 
plays the role of a random electric field 69 and polarizes the 
atoms. In the expansion of their average dipole moment in 
powers of the field there are no odd or even powers, since 
these powers are multiplied by zero mean values of an odd 
power of the atom's dipole-moment operator. When account 
is taken of the dipole-quadrupole interaction, the nonzero 
terms of the average dipole moment are those proportional 
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to the mean value of Z5'iVZ5'k, which is the gradient of the 
inhomogeneous part of the Green's function of the photon in 
the medium. Its coefficients are equal to the "triangle." For 
a surface that coincides with the x = 0 plane, only the x- 
component of the Green's-function gradient differs from 
zero, so that the substrate-induced dipole moment is perpen- 
dicular to the substrate and decreases with increasing dis- 
tance from it like 1/x4. The described three-photon interato- 
mic interaction is therefore connected with the dipole-dipole 
interaction of the dipoles induced by the substrate. 

All this means that a thin "quasi-two-dimensional" di- 
pole-ordered layer in which long-range 1/13 repulsion takes 
place can be produced in the gas near the substrate. Such 
systems are of considerable interest and are extensively dis- 
cussed in the literature. 

On the surface of a liquid, paired interatomic interac- 
tion can be introduced only in a certain effective sense. A 
more suitable characteristic is the correlation function g, 
from which the aforementioned effective interaction can be 
deduced. It follows from the consideration of V, above, that 
to extract g from the general theory of Van der Waals forces4 
it is necessary to take into account in this theory spatial dis- 
persion, i.e., go outside the framework of the loop approxi- 
mation in the free-energy expansion. It suffices for this pur- 
pose to take into account the appearance of the new 
topological element, the "triangle" and then turn attention 
to three-photon processes in the calculation of g. Just as in 
the case of V,, this leads to the appearance of long-range 
correlations and of an effective long-range repulsion in the 
dipole-ordered surface layer of the liquid. 

In $2 are calculated the interaction of two atoms on the 
surface and their dipole moments, the correlation function 
of the liquid near the surface is found in $3, while $4 contains 
a discussion of the results and numerical estimates. 

42. INTERACTION AND DIPOLE MOMENTS OF ATOMS AT A 
SURFACE 

Consider a medium at temperature T = 0, constituting 
a solid occupying the half-space x <O with its surface at 
x = 0, and a vacuum at x > 0. We denote the Hamiltonian of 
the medium by H and the Green's function of a photon in the 
medium by Dik (ri, r,, o) .  We place atoms 1 and 2 at distances 
x,, x, > a  from the surface. The distance r between the atoms 
exceeds x, and x,. Under these conditions only long-range 
forces contribute to the interaction between the atoms. The 
potential energy V, of the interaction is the electronic term 
of the two-atom system in the substrate field. A formalism 
for the calculation of V, can be easily developed on the basis 
of Dzyaloshinskii's method3 for atoms in a vacuum and by 
applying the Dzyaloshinskii-Pitaevskii diagram technique 
to the long-wave field in a condensed medium4 at T = 0. We 
represent the Hamiltonian of the atoms and of the medium 
as a sum of H, of the Hamiltonians H ,  and H2 of the immo- 
bile isolated atoms, and of the operator V of the potential 
energy of the atoms in the field produced by them and by the 
medium. In accordance with the premises set forth in $ 1, we 
take into account in V, besides the atom dipole-moment op- 

erators d("' (n = 1,2) also the quadrupole-moment operators 
Q (n): 

Here r, are the coordinates of the nuclei, while E (r, ) and 
[ViEk]rn are the operators of the long-wave electric field 
and of its gradient at the point r, . We neglect the influence of 
the atoms on the medium. 

The potential energy V,, which depends on the interato- 
mic distance r, is connected with the value of the S operator 
of the considered problem for the ground state of the system 
with Hamiltonian H ,  + H2 + H, by a relation known from 
the problem of the interaction of two atoms in a vacuum2 For 
the three-photon process of interest to us we then obtain in 
approximation VI of perturbation theory 

(2) 
The dipole and quadrupole moment operators are averaged 
in (2) over the state of the noninteracting atoms. The electric- 
field operators, on the other hand, are averaged over the 
ground state of the condensed medium with Hamiltonian H, 
and Wick's theorem does not hold for them. 

After substitution of (1) in (2), averaging of the opera- 
tors lead to functions of the type 

Their Fourier transforms f i  I:', (w,,o,) are the frequency-de- 
pendent quadrupole polarizabilities of the atoms5 The func- 
tion remaining in the integral of (2) is 

(TE,(r,, tl)Ek(rl, t2)Ei(rl, t3)E,(r2, tl)Ep(r2, tS)Eq(r2, h ) ) H .  

(4) 
The averaging is carried out here over the ground state of the 
medium, and the time-dependent technique of field theory 
can be used. We separate in H terms H, and the interaction 

of the particles with the long-wave electromagnetic field. In 
Eq. (5), d(r) is the dipole-moment density operator. We carry 
out next in (5) calculations in accordance with the rules and 
approximation of Ref. 4, but for the case of a time-dependent 
diagram technique. In the zeroth approximation this leads to 
a product of three photon propagators. Allowance of the 
next approximations, neglecting the irreducible polygons, 
transforms the propagators into the Green's functions of a 
photon in the medium 

Returning to (2), we obtain from (3), (4), and (5) 
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tation for the integrals in (1 1): 

We introduce the Fourier transforms of the functions 
& $'Irn and D 2 and obtain for V2 

vz (r, xi, xz) 

In this form, the result is applicable to a surface of any shape. 
The functionsp !$!jrn are averages over the ground state of the 
atoms and reduce to the scalars 

We recognize that the inhomogeneous parts of the Green's 
functions of like argument depend in the chosen geometry 
only on the distance x to the substrate, 8'"' are even func- 
tions of w, and at T = 0 we have 

Dih (ri, rz, a )  =DikR (ri, rz, 1 1 ) (10) 

where D R, is a retarded Green's function. This leads to 

(with summation over the repeated indices k and p). We 
transform in (1 1) to integration over the positive imaginary 
axis and note that if the photon propagator D y, (r,w) is repre- 
sented in the form 

1 Di2 (r, 0 )  = - --Ti: (r, a), 
o 

(12) 

then T i ( r , o )  is the tensor of the dipole-dipole interaction in 
vacuum with allowance for the retardation. At w = 0 it be- 
comes the static tensor of the dipole-dipole interaction. Simi- 
larly, 

2 - TP(ri, rZ)=-[DITR(rl, r2, w l ) ~ I  1 0 , = ~  (13) 

is the xx component of the static dipole-dipole interaction in 
an inhomogeneous medium. We introduce the following no- 

and represent V2 in the form 

Vz (r, xi, 52) =f(') (xi) T=(ri, r2) 1"' ( ~ 2 ) .  (15) 

The retarded Green's functions in (14) are connected simply 
with the known temperature Green's functions of the con- 
sidered m e d i ~ m . ~  At the chosen r, x,, and x2 their inhomo- 
geneous parts are given by 

A ( i o )  
DmR(rn, r nr i @ -=, - 

where 
e l  ( io )  -1 

A (io)  = 
E~ ( io )  + I  

and E , ( ~ o )  is the dielectric constant of the solid on the posi- 
tive imaginary axis at T = 0. If r is considerably larger than 
x, and x,, Eq. (13) leads to2 

where ~ ~ ( 0 )  is the static dielectric constant of the solid. The 
second term of (18) is the contribution of the surface to the 
dipole-dipole interaction tensor. Substitution of ( 17) in ( 14) 
leads to 

From (1 5) and (1 8) we get for the interaction between the two 
atoms and the surface 

The interaction between the atoms via the substrate 
leads thus to a long-range repulsion between them in a thin 
layer near the surface, where the functions f'")(x,) differ 
from zero. 

We call attention to the connection between the expres- 
sion obtained for V, and the substrate-induced dipole mo- 
ments of the atoms. Let one atom be placed at a distance 
x > a from the surface and let the entire (medium + atom) 
system be in a weak constant uniform electric field 8. The 
average dipole moment (d ) of the atom is then connected 
with the mean value of the operator S of this problem over 
the ground state of the system with Hamiltonian H, + H 
(Ha is the Hamiltonian of the immobile isolated atom) by the 
relationS 

1 
( d )  =- ( {V  g S )  x = O ) X a + H  

it 
(21) 

(the contribution of the external field has been added to the 
interaction operator). Expanding the S operator in a series 
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and performing the operations indicated in (2 l), we get 

Averaging the dipole- and quadrupole-moment operators 
leads to quadrupole polarizability of the atom, and the pro- 
duct of the electric-field operators is averaged over the 
ground state of the medium with Hamiltonian H, and leads 
directly to the Green's function of a photon in the medium at 
T = 0. Since the inhomogeneous part of the Green's func- 
tion depends at equal arguments only on x, only the x com- 
ponent of the substrate-induced dipole moment of the atom 
differs from zero. The dipole moments induced by the intera- 
tomic interaction are of the same The role of the 
wall is played for the atom in this case by the other noniden- 
tical atom. 

All the subsequent operations in (22) are similar to those 
performed above in the calculation of V,. As a result we 
obtain for (d,  ) an expression that coincides with f (x) of (19): 

As follows from (23), the considered three-photon contribu- 
tion to the interaction between the atoms can be represented 
as an interaction between two substrate-induced dipoles. 

It can be concluded that dipole ordering in a direction 
perpendicular to the substrate and long-range repulsion in 
the plane of the substrate exist in a thin nonpolar-gas layer 
near or directly on the surface. 

93. CORRELATION FUNCTION OF A SIMPLE LIQUID AT A 
SURFACE 

Consider, at finite temperature, a system comprising 
flat-surface solid at x < 0 and a liquid at x > 0. We are inter- 
ested in the correlation function of the liquid at points for 
which r, x,, and x, satisfy the relations indicated in $2. 

The contribution of the three-photon process consid- 
ered above to the correlation functiong (r,x,,x,) can be easily 
found if its contribution AF to the free energy of the system is 
known. AF can be related tog (r,x,,x,) in the following man- 
ner. We place the system in an auxiliary scalar weakly non- 
uniform field p(r) whose contribution to the Hamiltonian of 
the system we represent in the form 

where&) is the particle-number density operator. This field 
alters the system free energy, AF+AF(p ). The latter is con- 
nected with that part of the correlation function which is of 
interest to us by the known relation 

g (r, r') =-T { 6:;:;:!') }Q(r ,=o  . 

Under the conditions indicated above for r, x,, and x, 
the correlation between two such points is due only to long- 
range forces. We shall calculate their contribution to t& free 
energy by the method of Dzyaloshinskii and Pitaev~kii,~.' 
generalized somewhat to take into account in the correlation 
function the interaction of the liquid particles through the 
substrate. The character of the required generalization is al- 

ready clear enough from $2. 
We separate in the Hamiltonian of the system in the 

auxiliary field the short-range part Ho(p), transfer also H ' to 
it, and represent V,, in the form 

v,, =- J di (r) Ei (r) dr-'le J Qih (r) VkEi (r) dr, (26) 

where d, (r) and Q, (r) are the density operators of the dipole 
and quadrupole moments of the liquid. We calculate the 
contribution of V,, to the free energy, recognizing that the 
second term of (26) leads to the appearance of an irreducible 
triangle 

~ ? k l m  (x i ,  x2, X3) =- ' /6 (Tdt  (Xi) ~ ( X Z )  Q,, (X3) 
X= (r, T). (27) 

Just as in Ref. 4 the loop is the true Matsubara linear suscep- 
tibility of the medium (i.e., it determines the response to the 
mean field in the medium), Eq. (27), since it is averaged not 
over the total Hamiltonian of the system but only over its 
short-range part, is the true Matsubara quadrupole suscepti- 
bility of the liquid. 

The perturbation-theory series contains only approxi- 
mations of even order, and irreducible triangles appear first 
in VI approximation. In the reducible hexagon here we can 
separate loops, triangles, irreducible quadrangles, and an ir- 
reducible hexagon. From among the breakdowns into trian- 
gles we can select those that describe photon exchange via 
the substrate. The triangle (quadrupole polarizability) is 
considerably smaller than the loop (polarizability). The min- 
imum number of triangles in the diagram is two. Therefore 
we retain in each of the reducible polygons (multiples of 6) 
only two triangles, and unlink all the rest into loops. Trian- 
gles are encountered in the temperature Green's functions 
9 2  (X,,X2) in the medium in sums with loops, and can there- 
fore be neglected. The so selected diagram series will contain 
two triangles and three functions 29$(X,,X2) in the loop ap- 
proximation. The variation of this series is summable and 
can be represented in the form 

x V q j E  X , 5 dX= dr r d ~ .  (28) 
0 

Here both functions ?I and 9: depend on p, since the mo- 
ment operators are averaged over the state of the system with 
Hamiltonian Ho + H '. When substituting (28) in (25) we take 
it into account that variation of the Green's function yields a 
product of such functions and accelerates the decrease of the 
correlation function with increasing r, x,, and x,. To calcu- 
late the correlation function that decreases most slowly with 
distance we shall vary only the functions 7. As a result we get 

6qiklm (Xt, X z l  XS, (PI 
g(r, r') = ~ T ' J  dXl . . . { 69 (r) Q ( ~ ) = O  

987 Sov. Phys. JETP 60 (5), November 1984 G. I. Salistra 987 



Let us calculate the variational derivatives contained in (29). 
We introduce the notation 

qik~m(X,, ~ 2 ,  ~ 3 ,  q)=(fiiklrn(~i! ~ 2 ,  X3))Ho+Hr (30) 

and transform to the interaction representation in terms of 
the auxiliary field (24). We obtain 

Here S p(r,r) = p(r,r) - p, p is the average density, and 

p (r, T) =eTH0p (r) e-rHo. (32) 

The auxiliary field is weakly nonuniform, i.e., the wave- 
lengths of its constitutent spatial harmonics are much larger 
than a, whereas the averaging in (31) is over a state in which 
the correlation radius is of the order of a. At such lengths, 
the auxiliary field can be regarded as uniform, and we should 
put k = 0 in the spatial Fo~r ie r  transformA of the density 
S p(k,r), and then S p(k,r)  = N - N, where N is the particle- 
number operator and N is the total number of particles. This 
leads to 

6qiklrn (XI, X2, X J ~  (P) 
o(r)=o 

We recognize that the points r and r' are located in the liquid 
and their distances from the surface exceed the radius of the 
short-range forces. For mean values over the state of the 
system with Hamiltonian H, the system is therefore homo- 
geneous and the tensor q,,, reduces to a scalar in accor- 
dance with (9). Neglecting finally the spatial correlations in 
regions of order a (all the irreducible polygons contract into 
a point, i.e., are regarded as local), we rewrite (33) in the form 

=- all (TI, '62, t) 
6 (r-r,) 6 (ri-r2) 

d P 

We substitute (34) in (29), expand q ( r  1 , ~ 2 , ~ 3 )  and 9: in 
Fourier series in the temporal variable, and change from 
summation over discrete frequencies to integration. As a re- 
sult we get 

The inhomogeneous parts of the temperature functions, 
which are contained in (39), take the form2 

A (io) 
Bxr(r,  r, 01 = 4e2 (im) 02x3 ' 

e, (io) -e2 (io) 
A (io) = 

ei (io) +ez (io) 

Here E ~ ( ~ o )  is the dielectric constant of the liquid. Just as in 
the case of the interaction between atoms, we introduce for 
the integrals in (35) the notation: 

l " aq(0,io) d 
f (.)=- J d o  

4n2 
- [ a & ,  r, 0 )  -I- 3akk(r, r, 0 )  I .  dp dx 

(37) 

Substitution of (36) in (35) and (37) leads to: 

A (io) dq (0, io) 
f (x) = - --- 

21 j a w m  a~ 64n2x4 (38) 

(39) 
( ~ ~ ( 0 )  is the static dielectric constant of the liquid). This result 
shows that the liquid has on its surface a thin layer in which 
long-range negative correlations exist. If the liquid becomes 
rarefied 

and comparison with (20) leads to the known asymptotic 
relation for the correlation function 

g ( r ,  xi, x2) =-T ( p - :; ): V2 ( r ,  x,, x2) . 

This enables us to interpret f (x) as the substrate-induced di- 
pole-moment density in the liquid, and interpret the func- 
tion by which - T(pdp /ap)$  in (39) is multiplied as the 
effective dipole-dipole interaction in the liquid at the sur- 
face. 

54. DISCUSSION OF RESULTS 

The basic relations (20), (23), and (39) are greatly simpli- 
fied if the gas or liquid absorption region is in the ultraviolet 
and the solid absorbs at significantly lower frequencies. In 
this case the dipole moment of the atom at the surface is 

where B is the static quadrupole polarizability of the atom 
and 
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h e  = d w ~  ( i w )  

is the measurable characteristic energy of the solid, which 
was introduced in Ref. 4. From (20) we get for the interaction 
energy of the atoms at the metal surface ( ~ ~ ( 0 ) -  co ) 

The correlation function of the liquid at the metal surface 
takes the form 

Here ~ ( 0 )  is the static quadrupole polarizability of the liquid, 
and 

OD 

h;= J d o  A ( i w ) .  (45) 

Thus, a phenomenon of universal origin and physical 
properties takes place in a nonpolar medium at the surface of 
a solid. The nonuniform fluctuating electromagnetic field of 
the substrate generates in a medium having a weak spatial 
dispersion (in a liquid one takes into account the quadrupole 
susceptibility of the atoms, and in a solid their quadrupole 
polarizability) a layer that is quasi-two-dimensional and di- 
pole ordered in a direction perpendicular to the substrate. 
The interaction and the correlation in this layer are long- 
range and decrease like I/?. The layer parameters (the di- 
pole moment and the dipole-dipole interaction constant) de- 
crease rapidly (like 1/x4 and 1/x8, respectively) with 
increasing distance from the surface, and it is this which 
makes the layer two-dimensional. The dependence of the in- 
teractions and of the correlations on the distances r and x, 
just as in other dispersion phenomena, has a universal char- 
acter that does not depend on the substrate and on the medi- 
um. These quantities are determined by two macroscopic 
parameters, the dielectric constant of the substrate and the 
quadmpole susceptibility of the medium. At large distances 
compared with a this Van der Waals mechanism determines 
the interactions at the surface, while at shorter distances it 
competes with other short-range forces. 

Two-dimensional dipole ordering in a liquid on a sur- 
face can manifest itself in various phenomena, such as phys- 
ical adsorption, the phase state of a thin film and phase tran- 
sitions on the surface, the ferroelectric and magnetic 
properties of thin films, the dielectric constant of the film, 
the addition of polarization fluctuations to the density fluc- 
tuations and the ensuing new details in the light and neutron 
scattering spectra, the onset of new branches in the collec- 
tive-excitation spectra in liquid films in view of the appear- 
ance of a low-symmetry phase in the liquid at the surface, 
and others. It is also important that the dynamic properties 
of systems with I/? potentials are similar in many respects 
to the properties of two-dimensional Coulomb systems hav- 
ing close values of the dimensionless ratio r of the average 
potential energy per particle to the average kinetic energy. 
At Ts 1, furthermore, the atoms can become ordered on the 

surface into a two-dimensional lattice via the considered in- 
teratomic-interaction mechanism. 

Naturally, implementation of these possibilities de- 
pends on the order of magnitude of the induced dipole mo- 
ment and on the temperature range in which the long-range 
properties of V, and the dipole ordering are effective. 

For a numerical estimate of the quantities (41) and (43) 
above we must know two parameters, G from (42) and the 
quadmpole polarizability p of the atoms. The first of them is 
known9 well enough for metal surfaces, G=: lo-'' (all the 
quantities here and below are in cgs units). Less is known 
concerningp. It can be determined by measuring the anisot- 
ropy of the refractive index in a nonuniform electric field 
and, by way of example, p=: - 0.3 . for the nonpolar 
CH,  molecule^.'^ Calculations for the hydrogen atom lead 
to /3 = lop3' (Ref. 10). For the He atom we have estimated 
/3=: - Just as in the case of a related phenomenon, 
the dipole moment induced by interatomic intera~tion,~-' it 
can be assumed that for a number of atoms and molecules 
such as Ar, Kr, Xe, and CCl,, whose polarizability increases 
and exceeds in the case of CCl, the polarizability of He by 
two orders, the value of fl will also increase and reach 
5 . These estimates of G a n d f l  yield for an H atom at 
a metallic wall (x - an estimated value of the order of 1 
Debye, i.e., a value typical of polar molecules. In this case 
the interaction between the hydrogen atoms at the wall, for 
distances exceeding several atomic dimensions, lies in the 
temperature interval 10-100 K, i.e., it reaches values typical 
of Coulomb systems. 

We turn now to a 4He film on a metal surface. In this 
casex > 1.8 , lop8 and (d ,  ), despite the small polarizability 
of the He atom, is quite noticeable, ~ 0 . 0 5  D. When the dis- 
tances between the atoms exceed their sizes (2.6 the 
dipole-dipole interaction lands in the temperature interval 
0.1-1 K, i.e., the obtained long-range action will be effective 
enough at experimentally attainable temperatures. Wigner 
crystallization temperatures r> 1 are also attainable here. 

It is useful to compare the interatomic interaction in a 
surface layer with the attraction, caused by the same Van der 
Waals forces, of an atom to a 

(a is the polarizability of the atom). For liquid helium on a 
metallic surface this attraction exceeds V2 by two orders. For 
atoms with larger polarizability, V2 can reach values exceed- 
ing V,. In these cases the dispersion forces considered suffice 
to explain the atomic smoothness of the surfaces and the 
possibility of formation of incommensurate phases on them. 

The author thanks A. F. Andreev for a helpful discus- 
sion of the results. 
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