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The hydrodynamics of an anisotropic superfluid with the symmetry of the A phase of 3He is 
discussed. The equations of nonlinear hydrodynamics formulated in the present paper do not 
reduce to the Hu-Saslov hydrodynamic equations, differing also from the Khalatnikov-Lebedev 
canonical equations by the assumption of a more general dependence of the spontaneous intrinsic 
orbital angular momentum on the density and the temperature. The gauge wheel effect is consid- 
ered on the basis of the formulated theory. It is shown that this effect disappears at T = 0 upon the 
elimination of the arbitrariness connected with the choice of the definition of the chemical poten- 
tial. It is impossible to obtain this result from the Hu-Saslov theory, since it is impossible to go 
over to the T%O,p, 4 limit in it: the equation for the superfluid velocity is incompatible with the 
equation for the momentum conservation law. The thermorotation effect, which is connected 
with the existence in an anisotropic superfluid of an intrinsic orbital angular momentum and the 
dependence of its magnitude on the temperature, is also considered. 

I. INTRODUCTION 

The hydrodynamics of the A phase of superfluid 3He, 
despite the large number of papers that have been published 
on it (see Refs. 1-12 and the papers cited therein), still re- 
mains a subject of discussions and debate. The difficulties 
encountered in the formulation of the hydrodynamic equa- 
tions are connected, on the one hand, with the serious discre- 
pancies among the results obtained in the computations of 
the A phase's spontaneous intrinsic orbital angular momen- 
tum,13-l9 which exists because the Cooper pairs in the A 
phase occur in a quantum state with a definite orbital angu- 
lar momentum oriented parallel to the unit orbital vector 1. 
On the other hand, the spontaneous intrinsic angular mo- 
mentum makes the liquid anisotropic, which gives rise to the 
problem of how to make the correct allowance for the angu- 
lar momentum conservation law, a problem which was en- 
countered in the theory of liquid crystals long before the 
discovery of the superfluid phases of 3He (Ref. 20). 

Two methods of approach can be used in formulating 
the hydrodynamic equations. The first method is purely 
phenomenological, and amounts to the search for that form 
of the equations which would correspond to the symmetry of 
the liquid, and satisfy the conservation laws. This approach 
turned out to be extremely fruitful for He I1 (Ref. 21). But in 
this method we cannot avoid arbitrariness, which is especial- 
ly important in the hydrodynamics of an anisotropic super- 
fluid. Thus, the nonlinear hydrodynamic equations formu- 
lated by Hu and Saslov3 and Pleiner and Brand1' are, despite 
the fairly large number of parameters, by no means the most 
general hydrodynamic equations satisfying the symmetry 
and conservation-law requirements. It is impossible to ob- 
tain from these equations the hydrodynamic equations ob- 
tained by Khalatnikov and Lebedev' with the aid of the ca- 
nonical formalism. According to Ref. 2, the arbitrariness in 
the formulation of the hydrodynamic equations results from 
the addition to the canonical equations of corrections neces- 
sary for the consideration of dissipation. Then there also 
appear reaction terms that do not contribute to the dissipa- 

tion, but alter the form of the hydrodynamic equations. The 
system of hydrodynamic equations proposed in the present 
paper also cannot be obtained from the equations of Hu and 
Saslov3 by any choice of the parameters of their theory, but 
coincides at T = 0 with the Khalatnikov-Lebedev canonical 
equations,' differing from them at T >  0 by a more general 
dependence of the intrinsic orbital angular momentum on 
the temperature and the pressure. We shall, for simplicity, 
limit ourselves to the exposition of a hydrodynamic theory 
that neglects dissipation, since the introduction of dissipa- 
tive terms into the hydrodynamic equations offers no diffi- 
culty and is noncontroversial. 

Another, more rigorous but correspondingly more 
complicated approach consists in the direct derivation of the 
hydrodynamic equations from the microscopic theory. For a 
Fermi liquid it might be expected that such a derivation 
would be carried out in two limiting cases. The first is the 
weak-coupling case, in which the BCS theory is applicable. 
The second is the strong-coupling case, in which two fer- 
mions form a molecule with dimension much smaller than 
the interparticle separation. Such a molecule can be consid- 
ered to be a point boson, and we arrive at the model of a 
slightly nonideal Bose gas whose particles possess nonzero 
spin and orbital angular momentum. Superfluid 3He corre- 
sponds to the first case, and is described by the BCS theory. 
But it is significantly more complicated to derive hydrodyn- 
amics from the weak-coupling theory than from the theory 
of the nonideal Bose gas because of the difficulties encoun- 
tered in the determination of the intrinsic angular momen- 
tum of the Cooper pairs. Therefore, lately, researchers, in 
analyzing the hydrodynamics of the A phase of 3He, have 
often turned to the theory of the point-boson Al- 
though the latter theory does not bear a direct relation to the 
A phase, it allows us to understand certain general character- 
istics of the hydrodynamics of an anisotropic superfluid, 
and, furthermore, in prospect, it can find application in fu- 
ture in the description of other anisotropic superfluids, e.g., 
molecular hydr~gen. '~ The derivation of hydrodynamics 
from the theory of point bosons with intrinsic angular mo- 
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mentum has not been published before," and in the present 
paper such a derivation is presented (Appendix A) for the 
simple T = 0 case on the basis of a modified Gross-PitaevskiY 
t h e ~ r ~ ' ~ . ' ~ ;  the difference between it and the original theory 
is that the wave function of the condensate bosons is not a 
scalar, but a three-dimensional vector, which reflects the 
possession of intrinsic angular momentum by the bosons. 

The phenomenological system of equations formulated 
in the present paper agrees with the Gross-Pitaevskii hydro- 
dynamic theory at T = 0 if the intrinsic angular momentum 
L figuring in the phenomenology as an arbitrary function of 
the densityp and entropy S tends, as T-0, to the maximum 
value (the saturation angular momentum) pfi/M (M is the 
boson mass). Notice that the Khalatnikov-Lebedev canoni- 
cal equations2 can be obtained from our system of equations 
if the equality L = pfi/M is satisfied at any temperature. Ac- 
cording to Khalatnikov and Lebedev, we can obtain hydro- 
dynamics with arbitrary L, like, incidentally, any other var- 
iant of hydrodynamic theory that is noncontradictory and 
satisfies the symmetry and conservation-law requirements, 
through an appropriate choice of reaction terms. 

The main purpose of the present paper is to consider 
effects peculiar to anisotropic superfluids, including the 
gauge-wheel effect, in particular, its magnitude at T-+O. 
This effect was first pointed out by Liu and C r o ~ s . ~  It is due 
to the term proportional to (lecurl v,) in the equation for the 
phase (the Josephson equation). It would appear that, when 
in the limit as T 4  the normal component also disappears, 
this effect should vanish, but the term (lecurl v,) in the Jo- 
sephson equation vanishes in this limit not for any manner of 
defining the chemical p~tent ia l ,~  and different authors have, 
depending on their choice of the chemical potential, arrived 
at different conclusions concerning the magnitude of the 
gauge-wheel e f f e ~ t . ~ " ~  The dependence of the magnitude of 
the effect on the choice of the chemical potential means that 
this effect cannot be estimated from equations containing 
the chemical potential, since it is not directly observable, and 
cannot be uniquely determined. Therefore, we preferred to 
eliminate the chemical potential from the Josephson equa- 
tion by expressing it with the aid of the Gibbs-Duhem rela- 
tion in terms of observable hydrodynamic variables, includ- 
ing pressure and temperature. As a result, it turned out that 
the term (1-curl v,) enters into the Josephson equation with a 
factor that tends to zero in their limit as T 4 ,  provided the 
angular momentum L in this limit tends to the saturation 
angular momentum pfi/M. Thus, the gauge-wheel effect 
vanishes at T = 0, which, as it seems to us, is necessary for 
any reasonable hydrodynamic theory. 

According to the Hu-Saslov t h e ~ r y , ~  the gauge-wheel 
effect does not vanish at T =  0, since the term (1-curl v,) 
remains in the Josephson equation after the elimindion of 
the chemical potential from this equation. The disagreement 
with our result here stems from the different definition of 
pressure. In this connection, in Appendix B we discuss the 
nontrivial-for anisotropic superfluids-question whether 
indeed the experimentally determined pressure should coin- 
cide with the pressure that enters into our hydrodynamic 
equations. Let us also note that it is impossible to obtain 

from the Hu-Saslov hydrodynamic theory hydrodynamics 
at T = 0 with a vanishing normal component, since for this 
case the Hu-Saslov equation for the superfluid velocity is not 
consistent with the equation for the momentum conserva- 
tion law. 

In the paper we consider another phenomenon charac- 
teristic of an anisotropic superfluid: the thermorotation ef- 
fect. It consists in the fact that temperature oscillations in a 
freely suspended vessel containing a superfluid should give 
rise to torsional oscillations of vessl. The magnitude of this 
effect, like that of the gauge wheel effect, depends on the 
value of the intrinsic orbital angular momentum. Estimates 
show that the thermorotation effect is entirely accessible to 
experimental observation. 

2. EQUILIBRIUM. THERMODYNAMIC RELATIONS 

Let us choose as the hydrodynamic variables determin- 
ing the state of the liquid the density p, the entropy S, the 
total flux j, the superfluid velocity v,, and the orbital vector 
1. To these let us also add the magnitude L of the intrinsic 
orbital angular momentum (the modulus of the intrinsic an- 
gular momentum vector L = L l), which, in hydrodynamics, 
is not an independent variable, being a function of the other 
variables; but we shall introduce the corresponding relation 
later. 

The expression for the change in the energy density (the 
Gibbs relation) has the following form: 

(1) 
We take into account the dependence of the energy on not 
only the eleven thermodynamic variables @, S, j, v,, and 
L = L l), but also their space derivatives, since this depen- 
dence can be important for a liquid with intrinsic angular 
moment~m. '~  Therefore, the factors in front of the differen- 
tials in the relation (1) are functional derivatives of the ener- 
gy: 

6E aE 
V n = = - -  

6v, dv, 

We have also retained in (1) divergence-type terms, which 
reduce to a surface energy (the sum over all the eleven ther- 
modynamic variables a,, where a = 1,2, . . . ,11). To allow 
for them in the case of the thermodynamic theory would, 
apparently, be exceeding the accuracy of the theory, and 
they can be discarded right away. But we shall, for reasons 
that will become clear after we have given the definition of 
pressure, retain them for the time being. 

Since the intrinsic orbital angular momentum L = L 1 is 
treated as a separate variable, the vortex current 4 curl L 
corresponding to it is not included in either the total current 
j or the superfluid current j,, = j - pv, defined in the coor- 
dinate system moving with the normal velocity v,. Let us 
also note that the vector 1 and the superfluid velocity v, are 
not entirely independent variables, since they are connected 
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by the Mermin-Ho  relation^.^^ These relations are a conse- 
quence of the fact that the phase of the order parameter is at 
the same time the angle of rotation about the vector 1. Since 
the three-dimensional rotation group is noncommutative, 
the phase @ is not globally defined: only small changes in it 
are well defined, and the operations of differentiation, as 
applied to it, do not commute. We have 

s,s,co-s,e,m=[s,i x s ,~ ] i .  (3) 

As a result, we obtain for the change in the superfluid veloc- 
ity v, = (fi/M)V@ when S , 4  and S,+V, the expression 

We can derive the relation between curl v, and the vector 1 in 
the same fashion: 

f i  
rot V, =-eijk[VZj XVlh]li. 

2M 
( 5 )  

Let us now derive an expression for the pressure P, 
which, in thermodynamics, is defined as the volume deriva- 
tive of the energy, the total mass, the entropy, the momen- 
tum, and the angular momentum contained in the volume 
remaining unchanged when the volume is changed, i.e., 

pV=const, SV=const, jV=const, ([rx j]+L) V=const, 

where V is the small liquid volume under consideration. 
Hence 

and for the pressure 

we obtain the expression 

P=pp+TS+v,,j+oLL-E. 

Differentiating (8), and using the relation (I), we obtain the 
Gibbs-Duhem relation 

dP=S dT+p dy+j dv,+L doL-j,, dv.-h dl-V, ( - " .a). 
9 Vjaa 

We could, if we remained within the scope of thermodynam- 
ics, discard the divergence-type terms both in the relation (1) 
and in (9). But P is not only a thermodynamic, but also a 
dynamical, quantity, which enters into the hydrodynamic 
equations (into the momentum-flux tensor). When it serves 
in this capacity, the divergence-type terms are important for 
it, and, in particular, these terms are important for the 
gauge-wheel effect under discussion in the present paper. We 
could discard the divergence-type terms in the relation (1) 
for the energy, but then, in order to retain them in the Gibbs- 
Duhem relation (9), we would have to postulate that thepres- 
sure entering into our hydrodynamic theory does not coin- 
cide with the thermodynamic pressure defined by the 
formula (8). 

In discussing the gauge-wheel effect, we gave much at- 
tention to the question which chemical potential is the true 
one, i.e., remains constant for the equilibrium The 

equilibrium state of the liquid is determined from the condi- 
tion for the minimum of the energy for given total mass, 
entropy, momentum, and angular momentum, i.e., from the 
condition for a minimum of the following functional: 

wherep,, To, v,, and 0 are Lagrangian multipliers. Varying 
this functional with respect to p, S, the phase 0, and the 
vector 1, and taking account of the Mermin-Ho relation (4), 
we obtain the conditions for equilibrium: 

p=po, T=To, v,,=vo+[QXrl, 
b 

oL=81, div j,,=O, h+ - [ (j,,V) 1 X 11 =LQ. 
(11) 

M 
Thus, the chemical potential introduced above indeed deter- 
mines the state of equilibrium. 

As has already been mentioned, in hydrodynamics, the 
angular momentum L is not an independent hydrodynamic 
variable, and equilibrium is fairly rapidly established with 
respect to it. Therefore, in accordance with (1 I), we should 
everywhere set the quantity w, equal to 

wL=81='l, (I rot v,). (12) 
From this we can determine the dependence of L on the 
remaining thermodynamic variables. We shall, for simpli- 
city, assume that the angular momentum L is a function of 
only p and S, i.e., that 

Eliminating dL from the relation (1) with the aid of (1 3), we 
obtain a new relation containing the following renormalized 
values of the chemical potential and the temperature: 

p=pf '/z (1 rot v,) dL/dp, 
T=T+ '1, (1 rot v,) dLldS. 

(14) 

But the conditions (1 1) for equilibrium contain renormalized 
p and Tvalues defined at constant L, and it is precisely these 
values that are therefore the true chemical potential and 
temperature. This is due to the fact that, having distin- 
guished the angular momentum L as an independent vari- 
able in our phenomenological scheme, we need an indepen- 
dent angular-momentum conservation law besides the 
momentum conservation law. To obtain the thermodynamic 
relation not containing dL, but at the same time containing 
the true p and T values, we must renormalize the total and 
superfluid currents by including the vortex current 4 rot L in 
them, i.e., in place of the currents j and j, we must introduce 
the currents 

g= j+'/z rot L, h= j,,+ll2 rot L. (15) 

For such a choice of the variables the angular momentum 
conservation law does not come out as an independent con- 
servation law, but is a direct consequence of the law of con- 
servation of momentum with density g. 

The transition from the currents j and j,, to the currents 
g and h is effected through the following formal transforma- 
tion of the form of the energy density: 

R ( g ,  . . . ) =E(g-'1, rot L, . . . ) +AE, 
(16) 

AE='lz rot L.v,-o (l)L, 
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where E (j, . . .) is the previous expression given for the ener- 
gy in terms of the current j and o(1) is the right-hand side of 
the Mermin-Ho relation (the formula (5)). The correction AE 
reduces to a surface energy, but it alters the form of the v,  
and 1 derivatives and tkeir gradients, as a result of which the 
functional derivative SE /Sv, gives the current A, and not the 
current j,, . The principal thermodynamic relation assumes 
the following form instead of the form (1): 

Let us give the relations between the old and the new deriva- 
tives of the energy for those cases in which e e y  differ from 
each other (the relation between A = SE /Sv, and j,, 
= SE /Sv, has already been given in (1 5)): 

f r  
$=h-1/2L rot v,+ - I1  x (rot LV)lI, 

2M 

6E/6L=oL-'/, (1 rot v,) =O. (18) 

The transition to the new currents also changes the 
expression for the pressure and the Gibbs-Duhem relation 

~=p~+TS+v ,g -Ef ' /~  div [v,L], (19) 

Thus, when we go over to the currents g and A, the differen- 
tial dL disappears from the thermodynamic relation for the 
change in the energy (the formula (17)); the relation then 
contains the true values of the chemical potential p and the 
temperature T. There appears in the formula (19) for the 
pressure and, consequently, in the Gibbs-Duhem relation 
(20) the term 4 div [ v ,  x L] , which does not arise in the case 
when, following Hu and S a ~ l o v , ~  we use the thermodynamic 
expresison for P in the new variables, including the currents 
g and A. This is precisely the term that leads to the situation 
in which the terms giving the gauge-wheel effect in the Jo- 
sephson equation from which the chemical potential has 
been eliminated have different magnitudes in the Hu-Saslov 
and our theories. In Appendix B we indicate the conditions 
under which the experimentally measured pressure should 
coincide with the quantity that we have introduced into the 
theory as pressure. In terms of the old variables, which treat 
the angular momentum L as an independent variable, our 
pressure coincides with the thermodynamic pressure, but 
after the elimination of L from the set of variables the pres- 
sure differs from the thermodynamic pressure by a quantity 
of the divergence type. 

The thermodynamic relations presented above are Ga- 
lilean-invariant. They also possess the correct transforma- 
tion properties for the transformation into the system of co- 
ordinates rotating with angular velocity 0. The energy E ' in 
the rotating coordinate system is connected with the energy 
E in the laboratory coordinate system by the following rela- 
tionZ6: 

where w = 0 X r .  The formulas (I), (8), and (9) preserve their 
form in the rotating coordinate system if we take into ac- 

count the fact that the functional derivatives of the energy in 
the two reference frames are connected by the following rela- 
tions: 

pf=p+v,w-wZ, hf=h-LP, o L ' = o L -  (Ql) . (22) 

When we go over to the currents that include the intrinsic- 
angular-momentum gene~ated v%rtex current, then the rela- 
tion between the energies E ' and Ein  the rotating and labora- 
tory coordinate systems 

E'=i?-wg-'1, div [wxL] (23) 

contains a divergence-type surface term that we cannot drop 
if we want the formula (19), which also contains a diver- 
gence-type term (the last term), to be valid in the rotating 
coordinate system as well. 

3. THE HYDRODYNAMIC EQUATIONS 

The system of hydrodynamic equations obeying all the 
conservation laws, and assuming the existence of an intrinsic 
angular momentum as an independent variable, can be writ- 
ten in the following form (the dissipation is neglected): 

div j=0, 
at 

as - + div Svn=O, 
d t  

The momentum flux tensor is given by the expression 

The Euler equation for the superfluid velocity 
v,  = ( f i /M)V@ is obtained through space differentiation of 
the equation (26) for the phase. In doing this we must take 
into account the noncommutativity of the operators of dif- 
ferentiation as applied to the phase (see the formula (4)): 

From Eqs. (27)-(30) we obtain the balance equations for the 
intrinsic orbital angular momentum L, the extrinsic orbital 
angular momentum r x j ,  and the total orbital angular mo- 
mentum r Xj  + L: 
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where the bs are the hydrodynamic vector variables 1, v,, 
and j (p = 1,2,3) and the a, are all the variables, including 
the set of vector components (a = 1,2, . . . ,11). The right- 
hand side of (34) is the total derivative of the energy with 
respect to the angle of rotation about the ith coordinate axis. 
It is clear that the invariance under such rotations is guaran- 
teed by the total-angular-momentum conservation law. 

The energy balance equation has the following form: 

where the energy flux is equal to 

The energy conservation law is fulfilled in those cases when 
the intrinsic and extrinsic angular momenta cannot be trans- 
formed into each other, i.e., when G = 0, or when equilibri- 
um is established between them, and the equality (12) is satis- 
fied. In the latter case the expression for G can be obtained 
from the consistency condition for the hydrodynamic equa- 
tions (24), (25), and (29) with the expression (13) for the differ- 
ential dL: 

After the dependence of the angular momentum L @,S ) onp 
and S has been specified, Eq. (29) ceases to be independent 
and can be dropped. If, following Khalatnikov and Lebe- 
dev,' we assume that L = (fi/M )p at any temperature, then 
our equations become identical to their equations; in that 
case G = 0, and Eq. (29) is identical to the equation of contin- 
uity (24). 

Let us now go over from the currents j and j,, to the 
currents g and A, which include the vortex current (see (15)). 
As a result, the equation (28) for 1, as well as the equation 
expressing the law of conservation of momentum, changes: 

1 + - 4 (Li (rot v,) ,-Li (rot v,) i). 

The relation between h and f~ is given in (18). 
We can now compare our system of hydrodynamic 

equations with Hu and Saslov's equations3 (see also Ref. 1 1). 
We can, ignoring the difference in notation and the fact that 
we make a more complete allowance for the gradient terms 
in the expression for the energy (Hu and Saslov took only the 
V1 dependence of the energy into consideration), obtain Hu 
and Saslov's equations by setting L = 0 in the expression (19) 
for the pressure, the Gibbs-Duhem relation (20), and the 
expression (40) for the momentum flux tensor, retaining, 
however, L in the equation (38) for 1 (the parameter /? in the 
Hu-Saslov equations in fiZ/M 'L ), and adding to the expres- 
sion for the momentum flux tensor terms proportional to the 
parameters y', $, and figuring in Hu and Saslov's expres- 
sion for the momentum flux tensor. These terms should go to 
zero in the limit as T 4  and p,-+O (see the following sec- 
tion). 

4. HYDRODYNAMICS AT T = 0. THE GAUGE-WHEEL EFFECT 

For the discussion of the hydrodynamics at T = 0, we 
shall need an explicit expression for the gradient energy, i.e., 
for that part of the free energy which depends on the gradi- 
ents of the hydrodynamic quantities, including v, = (fi/ 
M )V@, V1, as well as Vp and VS. It is a generalization of the 
kinetic energy of the isotropic superfluid. But here we shall 
assume that the terms containing the gradients Vp and V S  
can be collected into the VL-dependent term introduced into 
the expression for VE (see (16)). Then the gradient energy has 
the following form: 

EB='/,p,v.2-il,po (Iv,) 2+Cv, rot I-Co (lv.) (I rot 1) 

+El (Vl) +AE, (41) 

where E,(Vl) is the V1-dependent energy. The v, derivative of 
this energy gives in the laboratory system the superfluid cur- 
rent, which includes the vortex current 4 rot L: 

g.=dEB/dv.=p,v.-po (lv,) 1+C rot 1-C, (1 rot 1) 1+I/, rot L. 

(42) 

The current 4 rot L includes the currents Vp x 1 and VS x 1. 
Mermin and Muzikar," who introduced the term - Vp XI  
into the expression for the superfluid current of the A phase, 
also consider it to be part of the current 5 curl L. 

Let us now consider the passage to the limit T+O, as- 
suming that the normal excitations disappear in the process 
andp, 4. A Galilean-invariant self-consistent theory is ob- 
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tained in this limit when the following conditions are ful- 
filled: 

The limitation imposed by the conditions (43) on the magni- 
tude of the intrinsic angular momentum L stems from the 
fact that the gas of normal excitations, which is the reservior 
with which the superfluid component could exchange angu- 
lar momentum at T #O, disappears at T = 0. The role of 
such a reservior cannot be played by the extrinsic orbital 
angular momentum r xpv,, since the latter is not indepen- 
dent of the intrinsic angular momentum at T = 0 because of 
the connection, imposed by the Mermin-Ho relation ( 5 ) ,  
between curl v, and 1. Therefore, the angular momentum 
conservation law is obeyed only for a definite choice of the 
quantity L = (fi/M )p. 

The fulfillment of the conditions (43) does not lead to 
the elimination of the velocity v, from the hydrodynamic 
equations; this can be achieved only by redefining the chemi- 
cal potential, which is equal toSe/Sp (Refs. 6,8,9, and 27), as 
well as the quantity SE /S1. These functional derivatives were 
defined above for a given total current g and a given velocity 
v,, which cease to be independent variables because of the 
reduction in the number of degrees of freedom of the liquid 
at T = 0. Therefore, although the thus introduced deriva- 
tives of the energy are constants for the equilibrium state (Ho 
and Mermin accordingly called p the true chemical poten- 
tia16), we find it convenient to use for the specification of SE / 
Sp and SE /S 1 at T = 0 another procedure in which v, , the 
drift velocity of the nonexistent normal excitations, is eli- 
minated from the hydrodynamic equations. But in this case 
v, will appear in the conditions for equilibrium; but his 
should not be surprising, since here v, is a parameter charac- 
terizing the coordinate system in which equilibrium obtains. 

Proceeding to discuss the gauge-wheel effect, we, in or- 
der to get rid of the arbitrariness connected with the choice 
of the chemical potential, eliminate the latter from the Euler 
equation (3 1) with the aid of the Gibbs-Duhem relation (20). 
In the linear theory for the homogeneous texture, i.e., for 
1 = const, we obtain 

The term - V(1.curl v, ), which is responsible for the gauge- 
wheel effect, is absent when L = (fi/M )p. Therefore, accord- 
ing to the conditions (43), this effect disappears at T = 0. 
This assertion presupposes that the pressure introduced by 
us in the phenomenological theory corresponds to the ex- 
perimentally measurable pressure. This presupposition is 
discussed in Appendix. B. The Hu-Saslov theory3 yields, 
after the elimination of the chemical potential from the 
Euler equation, Eq. (44) which L = 0. The difference is due 
to the absence in the corresponding equations obtained by 
Hu and Saslov of the last term with L in Eqs. (19) and (20). 

The total disappearance of the normal component at 
T = 0 leads to a situation in which the equation for the total 
current g (the momentum conservation law) ceases to be in- 
dependent, and should derive from the other hydrodynamic 

equations (for v,, p,  and 1). In our hydrodynamics this is 
realized because of the conditions (43). But in the hydrodyn- 
amics of Hu and Saslov such a consistency condition is not 
fulfilled even in the linear theory. From their equation for 
the total current at T = 0 in the case in which p, = 0 and 
1 = const, when g =pv,, we obtain in the linear theory the 
equation 

dv, 1 - +-{vP+~:~)[~ x dvnl+ (~ll(2)-yL')) [l X (1V) (1V)vn] 
d t  P 

([1 X V div v,] 
(3)- (3) 

- (1 0 "  I r, 
x([LxV (1V) (lv,)]-l(1V) (lrotv,)))=O. (45) 

This equation does not agree with the Euler equation in the 
same theory (Eq. (44) with T = 0 and L = 0) for any choice of 
the parameters yl; = y i ,  d, and y:. Notice that terms with 
these parameters can, for generality, be added to our hydro- 
dynamic theory, but for the condition, under discussion 
here, for consistency of the Euler equation and the momen- 
tum conservation law to be fulfilled, they should vanish at 
T=O. 

A number of microscopic calculations performed in the 
BCS theory for the A phase (but not all such calculations (see 
the discussion and comparison in Refs. 7 and 18)) indicate 
that the parameter C, in the expression (42) for the current 
does not, in contravention of the conditions (43), go to zero 
as T 4 .  Having accepted this result, we can no longer use 
our hydrodynamics to describe the A phase with arbitrary 1 
texture at T = 0. Perhaps for this purpose we need to genera- 
lize the theory further by introducing for the order param- 
eter an additional degree of freedom that will eliminate the 
limitations imposed by the conditions (43). Volovik and Min- 
eev7 followed another course, assuming that the normal 
component in the A phase with an inhomogeneous 1 texture 
does not disappear even at T = 0. Further discussion of this 
problem should involve a microscopic analysis, and is be- 
yond the scope of the present paper. Let us only note that the 
complete phenomenological theory should certainly de- 
scribe the case in which p, = 0 as well, since this case is 
realized in a liquid of Bose molecules. All the specific effects 
are considered by us for a homogeneous texture, i.e., for 
1 = const, and the question of the magnitude of the term - l(l.curl1) in the expression for the current has, in the pres- 
ent case, no effect on the results of the analysis. 

The gauge-wheel effect, which is determined by the last 
term in the left member of Eq. (44) consists in the following: 
the nonuniform rotation of the normal component (curl v, 
$0) gives rise to a force that acts on the superfluid compo- 
nent. According to Ho and Mermin,6 this effect can be ob- 
served if two rotating cylindrical vessels (or two such vessels 
executing axial oscillations with different amplitudes) are 
connected by a tube along their common axis. We can as- 
sume that the normal component in a vessel of sufficiently 
small height will, owing to the viscosity, be rigidly fixed to 
the vessel, so that the vessel will rotate as a rigid body, with 
the vector 1 everywhere parallel to the axis of the vessel. To 
observe the effect, we can confine ourselves to one vessel: its 
axial oscillations should lead to pressure and temperature 
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oscillations whose amplitudes will depend on the conditions 
at the walls. 

5. THE THERMOROTATION EFFECT 

In an anisotropic superfluid there should also occur an 
effect that is, in a sense, the inverse of the gauge-wheel effect: 
temperature or pressure oscillations in a freely suspended 
cylindrical vessel should give rise to axial oscillations of the 
vessel. We shall consider only temperature oscillations, and 
call the corresponding effect a thermorotation effect. Qual- 
itatively, it can be explained in the following manner. A 
change in temperature causes a change in the intrinsic orbi- 
tal angular momentum. Owing to the total-angular-momen- 
tum conservation law, the extrinsic orbital angular momen- 
tum, which is determined by the normal component, and the 
related angular momentum of the vessel should then change. 
Let the vessel have a sufficiently small height, so that the 
normal component is rigidly fixed to the vessel and 
1 = const, i.e., the intrinsic angular momentum varies only 
in absolute value. The torque acting on the system "vessel- 
+ normal component" is equal to 

Let us determine the temperature dependence ofL, using the 
expression L = (fi/M)p, obtained in Ref. 28. Let the tem- 
perature oscillations be in resonance with the torsional oscil- 
lations of the vessel, and let the moment of inertia of the 
vessel be small compared to that of the liquid dragged by the 
vessel. We have then for the amplitude of the angular oscilla- 
tions of the vessel that arise when the temperature-oscilla- 
tion amplitude is equal to AT the following estimate: 

For a vessel radius R - 1 cm, an oscillation frequency 0,- 1 
rad/sec, a torsiohal-oscillation damping constant 8 - 
and (AT/p)dp,/dT - lop2, we obtain the entirely observ- 
able value Aq- 

In the more general approach the torque that acts on the 
vessel when the temperature or another hydrodynamic 
quantity is varied should be determined with the use of the 
equation for the total current g. The torque K in (46) is the 
moment of a force equal to the time derivative of the vortex 
current 4 curl L, which is part of the total current g. General- 
ly speaking, any term of the type [Ap X 11 or [AS  X 11 in the 
expression for the current will make a contribution to the 
torque. The formula (46) is based on the assumption made in 
the preceding section that all such terms have been brought 
together in the vortex current, which, for 1 = const, is equal 
to 4 VL X1. 

6. CONCLUSION 

In the present paper we have presented a hydrodynamic 
theory for an anisotropic superfluid possessing the same 
symmetry as the A phase of 3He. We have considered the 
gauge-wheel and thermorotation effects, in which the an- 
isotropy of, and the existence of spontaneous intrinsic orbi- 

tal angular momentum in, the liquid manifest themselves. 
Particular attention has been given to the passage to the limit 
T-4, p, 4. In this limit, because of the disappearance of 
the normal excitations, the liquid has a smaller number of 
degrees of freedom, and the Euler equation for the velocity 
v, and the equation for the total current (the momentum 
conservation law) cease to be independent. Therefore, we 
must make sure the consistency condition for these equa- 
tions is fulfilled. Although the A phase does not exist at 
T = 0, the fulfillment of this condition (in the Hu-Saslov hy- 
drodynamics it is not fulfilled even in the linear theory) is 
important for the correct determination of the temperature 
dependence of the effects considered in the present paper. In 
particular, it follows from our phenomenological theory, as 
it does from Nagai's microscopic t h e ~ r y , ~  that the gauge- 
wheel effect disappears as T-tO. The investigated effects 
were considered in that simple geometry in which a homo- 
geneous texture 1 = const should exist. Therefore, the results 
of the analysis are not affected by the difficulty connected 
with the appearance in certain microscopic theories for the A 
phase of a term - l(l.curl1) in the current at T = 0. To over- 
come this difficulty, Volovik and Mineev7 introduced at 
T = 0 a finite normal mass connected with the inhomogene- 
ities of the 1 texture. It is clear that such a finite normal mass 
can, if necessary, be introduced into our theory as well. 

The thermorotation effect investigated in the present 
paper manifests itself in the appearance of a torque exerted 
by the liquid on the vessel when the temperature of the liquid 
is varied. A torque will also arise when the pressure or the 
magnetic field is varied. The estimation of the latter effect 
requires the introduction into the theory of spin degrees of 
freedom. In this paper we consider the spin-locked regime, 
in which the spin vector d remains all the time parallel to 1. 

In conclusion I wish to express my sincere gratitude to 
G. E. Volovik and V. P. Mineev for numerous fruitful dis- 
cussions. 

APPENDIX A 

The modified Gross-Pitaevskii theory 

We consider a slightly nonideal gas of point bosons 
whose internal structure has the same symmetry as the Coo- 
per pairs in 3He-A. Since fairly large temporal and spatial 
scales are considered in hydrodynamics, we shall assume the 
fulfillment of the conditions for a dipole-locked regime, 
when the spin vector d is not an independent variable, being 
parallel to the orbital vector 1 = A, xA,, where A, and A, are 
two unit vectors orthogonal to each other. Then the boson 
state is determined by a complex wave function 
J, = + iJ,,, where 41, and 41, are two real vectors, orthogo- 
nal to each other and equal in magnitude; in this case 
A, = J,,/lJ,,l and A2 = J,,/IJ,,I. 

In the Gross-Pitaevskii theory the boson creation and 
annihilation operators in the Hamiltonian for the slightly 
nonideal Bose gas are replaced by c numbers. As a result, the 
Hamiltonian becomes a nonlinear functional of the classical 
field of the complex vector J, (in Gross's23 and Pi tae~ski i ' s~~ 
papers the wave function is a scalar). Let us separate out the 
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gradient energy in this functional, and represent the latter in 
the following form: 

where the last term is a nonlinear functional of +* and + (but 
not of their gradients), whose specific form will not be need- 
ed by us below. The invariant Vi$?Vj t,hi, which is not includ- 
ed in (A. I), reduces, after integration by parts, to the second 
invariant. Therefore, the expression (A. 1) represents the gra- 
dient energy in a fairly general form. 

The equations of motion are the Hamilton equations for 
the canonically conjugate fields +* and +: 

or for the pair of real fields 4, and +,: 

where the functional derivatives are defined in the usual 
manner, i.e., 

6H dH 3 H 
-=--vj (-1. 
6 9  a$ 
The equations of motion can also be obtained in the 

Lagrangian formalism from the Lagrangian with density 

Using the Noether theorem, we can obtain the laws of 
conservation of mass, energy, momentum, and angular mo- 
mentum, which follow from the invariance of theory under 
gauge transformation, translations in time and in space, and 
three-dimensional rotations. 

The mass conservation law: 

a~ M - + div j,=O, p = ($,'+$,2), 
d t 

The energy conservation law: 

The momentum conservation law: 

The conservation law for the total angular momentum, 
which consists of the intrinsic angular momentum 
L = @I, x $2 and the extrinsic orbital angular momentum 
r0Jp : 

We see that in the general case the mass flux j, does not 
coincide with the momentum density j,. They coincide if 
K, = 0 and K, = 1 in the Hamiltonian (A. 1). It is only in this 
case that the theory is Galilean invariant; the momentum 
flux tensor 1% (see (A.7)) is then symmetric, and the intrinsic 
and extrinsic angular momenta are conserved separately. 

Let us introduce in place of the vector fields $, and $, 
the densityp (see (A.5)), the vector 1, and the variation of the 
phase @: 

Then for @ and 1 we obtain the equations 

If the conditions (K, = 0 and K, = 1) for Galilean invariance 
are fulfilled, then these equations, together with the contin- 
uity equation (A.5), constitute a closed system of equations 
that is equivalent to the system, discussed in Sec. 4, of hydro- 
dynamic equations for T = 0.  Here it should be borne in 
mind that the functional derivative S H  /Sp is defined at fixed 
values of v, and 1 and for the case when the current 
j, = j - pv, = 0, and therefore differs from the true chemi- 
cal potential p, which is defined for fixed values of v,, 1, L, 
and the current j (see Sec. 4). 

APPENDIX B 

Force acting on the surface bounding an anisotropic 
superfluid 

Let us consider the momentum balance for an element 
of volume ASAz including a section of the bounding surface 
(this can be the boundary with a diaphragm pressure gauge) 
with area AS. The z axis is oriented along the outward nor- 
mal to the surface of the liquid. The balance equation has the 
form 

where the integration is performed over the volume ASAz. 
Further, we consider the limit A S 4 ,  Az-+O, where Az be- 
comes small compared to the hydrodynamic scales, but re- 
mains fairly large compared to the thickness of the layer in 
which the surface currents connected with the existence of 
the intrinsic angular momentum occur. We obtain 

Here a, I - is the momentum flux from the liquid to the 
boundary surface, while = uiz I + is the momentum flux 
from the wall, and is equal to the densityA of the force exert- 
ed by the wall. Standing in the curly brackets in (B.2) is the 
contribution from the surface-current-related terms, which 
are singular at the surface. Here 

are the surface-current density and the surface-momentum 
flux tensor, and the gradient vector VS has components only 
in the plane of the boundary. 
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We assume that the intrinsic angular momentum exists 
only in the liquid, and that, in the material of the wall, the 
current g, and the momentum flux uU, which include the 
contributions from the intrinsic angular momentum, coin- 
cide with the current j, and the momentum flux II,, which 
do not include these contributions. Therefore, we can repeat 
the arguments that led us to (B.2), considering the balance 
equation for the momentum with density j, and not g. As a 
result, instead of (B.2), we obtain 

where the surface current j, and the surface momentum flux 
l7; are obtained from j and IT,, using the same procedure as 
before. We can obtain Eq. (B.3) from (B.2) if we take into 
account the fact that the intrinsic angular momentum L has 
its own balance equation (32), according to which the contri- 
butions from L to 8 and II; cancel each other out. 

The transition from the current g to the current j does 
not, generally speaking, eliminate the singular surface 
terms, which can arise from the terms with z derivatives in 
the expressions for j and 17,. They give the quantity standing 
in the curly brackets in (B.3). In linear hydrodynamics only 
the last term in the expression for IIU can become singular 
(see (30) and (37)). But it is antisymmetric, and does not make 
any contribution ot the forcef,, which can be measured dur- 
ing the determination of the pressure. The curl 1-related sur- 
face singularities in the current j can be eliminated if the 
boundary condition, adopted in the hydrodynamics of the A 
phase, that stipulates the perpendicularity of the vector 1 to 
the surface of the wall is fulfilled. A surface current could 
arise from the terms of the type V p  X 1 and V S  X 1 in the cur- 
rent j. But everywhere in this paper we assume that such 
terms appear only as part of the vortex current 4 curl L, and 
therefore they occur only in the current g, and not in j. In this 
case the quantity standing in the curly brackets in (B.3) van- 

ishes, and we can further verify that, in the linear theory, the 
magnitudef, of the force density normal to the surface coin- 
cides with the pressure P. 
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