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A number of specific effects peculiar to the director-distribution inhomogeneity in nematic liquid 
crystals are discussed. These include: 1) the onset of hydrodynamic flow due to the temperature 
gradient, 2) the onset of a temperature drop in an inhomogeneous flow, and 3) additional deflec- 
tion of the director by the heat flow. An expression is obtained for the bulk rate of entropy 
generation, i.e., for the dissipation function divided by the temperature. Variation of this function 
permits a description of the foregoing effects and leads automatically to the Onsager relations 
between their constants. The constants are estimated and the possibility of experimentally record- 
ing the effects is discussed. 

1. INTRODUCTION 

Thermomechanical effects for cholesteric liquid crys- 
tals (CLC) were considered in Ref. 1 (see also the review by 
Stephen and Straley2). These effects are uniquely related to 
the chirality of the cholesterics, i.e., to the fact that they have 
no right-left symmetry. The thermomechanical effect in 
CLC was experimentally recorded in Refs. 3-5. Its gist is 
that application of a temperature gradient to a homeotropi- 
cally oriented cell deflects the director by Snzconst 
[nXV]T. Contributing to the pseudoscalar constant were 
the thermomechanical effect proper, as well as the tempera- 
ture dependence of the reciprocal pitch. The experiments 
were performed on a compensated CLC, i.e., on one in which 
q, vanished at a certain temperature. 

In typical cholesterics, the chiral parameter q,- lo4 
cm- ' is approximately lo3 times smaller than the reciprocal 
size of the molecule a-  ' - 10' cm- '. The reason is the rela- 
tively weak influence of the chiral terms on the intermolecu- 
lar interaction. Presumably, this is also the reason why the 
thermomechanical-effect constant, estimated experimental- 
ly in Ref. 5 atR - dyn/cm*deg, is lo3 times smaller than 
the natural estimate (see Sec. 3 below) R - (rl/i / T ) ' / ~ ,  where 
7j) .- 1 is the orientational viscosity, A - lo4 erg/cm*sec*deg is 
the thermal conductivity, and T z  300 K. 

We discuss in this paper a number of thermomechanical 
effects for non-chiral LC, namely for nematics. It follows 
from space-symmetry considerations that for nematics to be 
produced the unperturbed distribution of the director must 
be spatially nonuniform. 

In Sec. 2 are discussed some of the simplest thermome- 
chanical effects in NLC and their observable manifestations. 
Estimates are given in Sec. 3 for the constants of the corre- 
sponding effects and in Sec. 4 for the possible values of the 
parameters that are observable under various experimental 
conditions. Possible manifestations of thermomechanical ef- 
fects heretofore not discussed for cholesterics are briefly 
considered in Sec. 5. The Appendix contains the most gen- 
eral form of the rate of entropy production (i.e., the dissipa- 
tion function divided by the temperature). This expression 
enables us to write down all the relevant thermomechanical 
terms of the NLC dynamics equations. The Onsager equa- 

tions, which express the principle of symmetry of the kinetic 
coefficients, are automatically obtained by this approach. 

2. PHENOMENOLOGICAL EXPRESSIONS FOR SOME 
SIMPLEST THERMOMECHANICAL EFFECTS 

The invariance of the NLC dynamics equations to the 
rotation group does not prevent the existence of, e.g., the 
following corrections to the director rate of change &/at, to 
the stress tensor u:,, and to the het flow q,, : 

oikTM=E'ViT[n x r o t  nIk, (1) 

T-'q~"=~ll(d~Jdxi) [n x rot  n] k,  (2) 

Herep, is the orientational viscosity, auk /ax, is the velocity 
gradient in the flow, and n is the director unit vector, with n 
and - n equivalent. We recall that the stress tensor aZM in 
nematics need not be symmetric. All three constants (g ', 6 ", 
and "') have the dimension erg/cm deg. It is possible to set 
up for the corrections to &/at, uLM, and q,, many more 
phenomenological expressions that satisfy the space-invar- 
iance conditions and describe the thermomechanical effects 
of interest to us. We shall provide a complete list in the Ap- 
pendix, and discuss at present the experimental results that 
can ensue from the indicated terms. 

Consider an NLC cell having the so-called hybrid ori- 
entation (Fig. 1). We direct the normal to the cell walls along 
the z axis and assume that the boundary condition on the 
wall specifies a hometropic orientation n(z = 0) = e, at z = 0 
and a planar orientation n(z = L ) = ex at z = L, where L is 

FIG. 1. Hybrid cell with NLC: at z = 0 the boundary condition is homeo- 
tropic (n = e, ) and at z = L it is planar (n = e, ). 
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the cell thickness. Let the external heat sources maintain a 
temperature T = To at the section z = 0 and a temperature 
T = To + A Tin the sectionz = L. The temperature gradient 
dT/dz- A T/L leads then, accordingtoEq. (I), to tangential 
stresses a:F--g 'A T/L '. The result is liquid flow in the x 
direction. The stationary velocity u in this flow can be rough- 
ly estimated by equating the thermomechanical and Navier- 
Stokes contributions to uik Assuming for the latter 
u& zqu/L, where r ]  is the viscosity, we obtain 

uzE'ATILq. (4) 

Introducing a specific liquid flow Q = vL with dimension 
cm2/sec, we obtain for it from (4) the estimate 

In another possible experiment, external mechanical 
sources produce in an identical hybrid cell a nonuniform 
flow v = ex v(z). This can be Poiseuille flow if the walls are 
immobile or Couette flow if one wall moves relative to the 
other in the x direction. A z component of the heat flow 
q, z T& "v/L can then appear, according to (2). This flow 
produces a temperature difference A TI = T (L ) - T (0) 
between the walls. A stationaiy value ofA TI can be obtained 
by equating the obtained quantity qz to the counterflow 
Ad T,/L due to the thermal conductivity of the medium. As 
a result we get the estimate 

To discuss the observed consequences of expression (3), 
we consider a planar twist-cell with a nematic (Fig. 2!, in 
which the unperturbed distribution of the director is of the 
form 

n ( z )  =ex cos 0 ( z )  +e, sin 8 ( z )  , 
0 (2) =nz/2L. 

We assume that a temperature gradient A T/X is applied in 
the x direction, so that T (x) = To + xA T/X. It is easy to 
verify that even if account is taken of the dependence of the 
Frank constants K,, K2, and K, on the coordinatex (via their 
temperature dependence) a structure of the form (7) remains 
an exact solution of the usual equilibrium equations for a 
nematic. Inclusion of the term (3)  produces a director deflec- 
tion due exclusively to the thermomechanical effect. To esti- 
mate this deflection we can equate the force (3)  to the elastic 
Frank force due to the additional deformation of the direc- 
tor. We can write also exact equilibrium relations. At 

FIG. 2. Twist cell with NLC: planar orientation of the director is specified 
on both walls, with n(z = 0) = ex and n(z = L ) = e,. 

K, -- K2 z K ,  we have in the stationary case an/dt = 0 and 

whence 

The maximum value of the expression in the parentheses in 
(9) is 0.21 and is reached at zz0.56L. 

3. ESTIMATE OF THE CONSTANTS OF THE 
THERMOMECHANICAL EFFECTS 

We consider some system described by two generalized 
velocities x and y. The most general form of the dissipative 
function that describes the relaxation of x and y in the linear 
approximation is 

R='/, (ai2+2bky+ c i z )  . (10) 

It is easy to verify that the standard condition that the dissi- 
pative function not be negative yields a > 0 and c > 0. In addi- 
tion, rewriting R of Eq. (10) in the form 

R= (iI '~+bzj / l")  '+ (ac-bZ) zjZ/a, 

we find that the requirement that R not be negative imposes 
one more condition: 

b=p(ac)'", ( p ( < l .  (11) 

In the absence of a coupling between the relaxations of x and 
y, the dimensionless parameterp = 0. If, however, there are 
no special reasons for the coupling between these relaxation 
processes to be small, we have generally speaking ( p ( -  1, 
and then the exact inequality Ip 1 < 1 must hold. 

Similar relations lead to the inequalities that are satis- 
fied by the Leslie constants in nematodynamics problems 
(see Refs. 2,6, and 7). Namely, we choose the following gen- 
eralized velocities of the nematic: 

N=dnldt+'lz [n  X rot v] , Do=ninidij, 

Di=dijn,-niDo, Dij=d,j-'/z(3ninj-6ij) Do-&Dj-njD,. 
(12) 

Here 

dij= ( ' I 2 )  ( a u ~ / d x j + d ~ , / d x i )  

is the velocity-gradient tensor; we assume the nematic to be 
incompressible, so that d, = Tr d = 0. The form (12) corre- 
sponds to an expansion, in irreducible representation of a 
one-parameter group, of rotation about an axis that coin- 
cides with the preferred direction n (cf. Ref. 8). The quantity 
Do is the scalar of this group, while N and D are two indepen- 
dent two-dimensional (N n = 0 and D n = 0) vectors of 
this group, while DU is a zero-trace tensor in a plane perpen- 
dicular to n. The most general dissipative function, which is 
bilinear in the indicated "velocities" and invariant to rota- 
tions about the n axis, is 

In connection with all the foregoing it is obvious that the 
coefficients from (13) satisfy the inequalities 
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The standard symbols ai for the Leslie coefficients are con- 
nected with our coefficients pi by the relations 

Variation of R of Eq. ( 13) with respect to av, /axk yields the 
viscous stress tensor atki ,  and variation of the same function 
with respect to N yields the "force" that reorients the direc- 
tor (see the Appendix). Equations (15) together with the con- 
ditions (14) were first obtained by Leslie9 by a noticeably 
more complicated method (see also Refs. 2 and 6). 

Substitution of the numerical values shows that 
p,,z0.7 for the nematic MBBA. We wish to illustrate once 
more by means of this example the statement that the coeffi- 
cient Ip I turns out to be of the order of unity in the absence of 
special factors that make the coupling weak. 

We know that heat flow through heat conduction can be 
obtained by varying the entropy production rate s [erg/ 
cm3 sec deg] = 2R /T  over the temperature gradient: 

In particular, the standard equation of thermal conductivity 
in a nematic is obtained by taking R in the form 

R='/,T-'[A,, ((nV) T)'+A,(VT-n(nV) T)'], (17) 

where A II > 0 and A,  > 0 are respectively the longitudinal 
and transverse components of the thermal conductivity ten- 
sor. 

The thermomechanical effect in cholestrics is described 
by to terms in R: 

R :kc=-h.'~[n XVIT-hl'D[n xv IT. (18) 

The constants A ' and A " have the dimensionality dyn/ 
cm deg. Combining (1 3), (17), and (1 8) and recognizing that 

(VT-n(nV) T)'= ([nX V] T) ', 

we can obtain from the non-negativity condition inequalities 
in the form 

where p,, is defined in (14), 

pf=h'( pA,/T) -I", p"=hN (P2A,/T) -'" 

Experiment yields for the parameters Jp'J and Jp" 1 estimates 
of the order of lop3. As already noted in the Introduction, 
there are special grounds for this result-smallness of the 
chiral contributions to the interaction between the mole- 
cules. 

Our sought thermomechanical effects in nematics are 
given by R terms of the following approximate form: 

R T M ~ E  (VT) ( v ~ ) N +  ~ ( v T )  (Vn) (avldr). (20) 

We purposely do not specify here the tensor structure of the 

expressions in (20), relegating the details to the Appendix. 
The constants 5 and 5 in (20) have dimensionality erg/ 
cm . deg and, apart from a change in the tensor notation, 
have the same meaning as the constants5 ', 5 ", and { " intro- 
duced in Eqs. (1)-(3). 

The term of type (20) in the dissipative function can be 
regarded as a cross term with respect to two "generalized 
velocities" VT and (dn/dt)Vn or VT and (dv/dr)Vn. The 
square of the second of these "velocities" should have en- 
tered the dissipative function in the form 

The coefficient p has the dimension P . cm2. Since (22) con- 
tains two more differentiations with respect to the spatial 
coordinates than the expression (1 3) for R, it can be assumed 
that the corresponding estimate ofp contains two extra pow- 
ers of the molecular dimension a compared with the viscos- 
ity constants fl from (13): p --a2. 

The hypothesis we wish to advance concerning the ther- 
momechanical-effect constants is that the dimensionless pa- 
rameters p corresponding to them have no special small 
quantity, Ip I - 1. This yields the estimate 6- ( pA /T)'I2 or 

where account is taken of the fact that the constantsp are of 
the order of the viscosity coefficients 7. 

4. NUMERICAL ESTIMATES OF THE THERMOMECHANICAL 
EFFECTS IN NLC 

We use in the estimates the coefficient values 7 - 1 P for 
the viscosity and A - lo4 erg/cm sec deg for the thermal 
conductivity; we assume a temperature T- 300 K and a mol- 
ecule size a-  loW7 cm. We then obtain from (23) 5 - lop6 
erg/cm deg. 

For the hybrid cell of Sec. 2, with a wall-temperature 
difference AT- 10 K, we obtain from (4) and (5) at a thick- 
ness L- loW3 cm a flow Q- lo-' cm2/sec at a velocity 
u, - loW2 cm/sec. In this case v a L -' and Q is independent 
of L. In our opinion such a flow and its velocity are easy to 
detect in experiment. One can therefore hope to observe the 
discussed thermomechanical effect even if the constant { is 
smaller by a factor 10'-lo3 than the foregoing estimate. 

Assume that Couette flow with a velocity difference 
v -0.1 cm/sec is produced in the same hybrid cell by relative 
displacement of the walls. It is convenient here to use a thin- 
ner cell, L - cm. According to (6), the thermomechani- 
cal effect should produce then a temperature jump 
AT-0.3 K. This figure can quite reasonably expect- 
ed to be observable in experiment. We note that we have 
taken the velocity v to be such that at the given cell thickness 
no orientational instability sets in as yet in the Couette flow 
in the nematic (see Ref. 10). Simple estimates show also that 
the temperature rise of the medium owing to energy dissipa- 
tion in the viscous flow is, at the indicated parameter values, 
smaller by a factor 10'-lo3 than the temperature drop to the 
thermomechanical effect of interest to us. 

Finally, for the nematic twist cell discussed in Sec. 2 we 
have a temperature AT=: 10 K in the plane of the cell over a 
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length X=. 10L. Equation (9) yields then a director deflection 
angle n, -0.1 rad. Since n, is independent of the cell thick- 
ness L at a fixed L /X, we can put L 2 10W2 cm. At such a 
thickness it is not difficult to measure the indicated deflec- 
tion by optical methods. 

We have considered above phenomena that appear al- 
ready in first-order perturbation theory in the thermome- 
chanical-effect constants 6. By the same token, the corre- 
sponding processes have a thresholdless dependence on the 
external action. The situation here is analogous to the Frie- 
dercksz effect in an oblique (relative to the director) field. On 
the other hand, threshold Friedericksz transitions are also 
known to be of great interest. Threshold phenomena due to 
the thermomechanical terms in the dynamic equations of 
nematics are similarly possible. We shall not discuss these 
threshold effects here. 

We have considered above bulk effects in a liquid crys- 
tal, in which case the terms of interest to us contain an extra 
power of the molecular small parameter a. On the other 
hand, there is every reason for assuming that in the case of a 
layer of thickness a the usual hydrodynamic equations no 
longer hold near the interface of the liquid and the solid. In 
other words, one can expect corrections of first order in the 
parameter a to be added to the usual boundary conditions for 
the hydrodynamic variables (cf. the thermomechanical ef- 
fect in gases"). We do not consider such "surface" contribu- 
tions here. In addition, the quantities in the dynamic equa- 
tions, such as entropy and pressure, should contain 
additional (relative to the equilibrium values) terms starting 
with second order in the velocity and temperature gradients. 
We disregarded these additional terms, too. 

5. THERMOMECHANICAL EFFECTS IN CHOLESTERICS 

Variation of the sum of (1 3), (1 7), and (1 8) yields expres- 
sions for the viscous-stress tensor, for the heat flow, and for 
the director-deflecting force. We write down here the terms 
corresponding to the thermomechanical effects in CLC: 

(hf+h") n,[n X V ]  {T+'/, (Af-A") ni [n x V ]  ,T, (23) 

q T M = - T h l [ n X N ] - T h n [ n x D 1 ,  (24) 

p,anlat=-hf[n X V ]  T .  (25) 

By the same token, different thermomechanical effects 
in cholesterics turn out to be connected with one another by 
the Onsager symmetry  relation^.'^,^ In our treatment these 
relations are obtained extremely easily, namely, by merely 
varying a single dissipative function. We note that a factor, 
the absolute temperature, was left out of the expression cor- 
responding to our (25) in the splendid review2. 

The thermomechanical deflection of the director, due 
according to (25) to the temperature gradient, was observed 
experimentally in Refs. 3-5. The quantity measured there 
was proportional to 1 ' + K2dqo/dT, where K2 is a Frank 
constant and q, = 2n-/h is the wave vector of the equilibrium 
cholesteric spiral. In this section we discuss possible mea- 
surements of the quantity 1 ' -1 ". 

Consider a cholesteric cell whose two walls, z = 0 and 
z = L, maintain a homeotropic orientation (Fig. 3). At 

FIG. 3. Homeotropically oriented cholesteric liquid crystal with compen- 
sated pitch. 

qJ.(n-K,/K2, the orientation is then known to be homeotro- 
pic in the entire volume of the cell. Assume that the choles- 
teric is bounded not only by walls z = 0 and z = L, but also 
by wallsx = 0 andx = X that maintain the same orientation. 
We specify the following temperature profile on these walls: 

T ( x ,  z=O) =T  (x=O, z )  =To, T ( x ,  z==L) =T,+AT ( x / X ) ,  

T ( x = X ,  z )  = T o + A T ( z / L ) .  (26) 

The stationary solution of the heat-conduction equation 
yields then the temperature profile in the bulk: 

T ( x ,  z )  =To+AT ( x / X )  ( z / L )  . (27) 

The presence of a temperature gradient leads according to 
(23) to the onset of shear stresses uzM. Moreover, the force 
f TM = d u ~ ~ / a x k  [dyn/cm2] acting on a unit volume is like- 
wise different from zero at the temperature profile (27) 

fyTM=1/2 (A1-A") ATILX.  (28) 

Under the action of this force, the liquid begins to flow in the 
direction of the y axis. To determine the stationary flux, 
expression (28) must be equated to the viscous-friction 
forces: 

d o , , ' / ~ z = 1 1 ~ d ~ u , / d z ~ ,  

whence 

where r], = (a, + a, - a2)/2 is the Miesowicz viscosity co- 
efficient. The total liquid flow W [cmp3 . sec-'1 is equal to 

Assuming by way of estimate AT = 10 K, L /X-O.1,77,- 1 
poise and 1 " - 1 '- erg/cm2 . deg, we get u,, - 10W4 
cm/sec and for L - lop2 we obtain W- 0.5 lop7 cm3/sec. 
In our opinion such flow velocities and rates are experimen- 
tally observable. 

Another possibility is to orient the cholesteric homeo- 
tropically along the radius in a thin gap between two cylin- 
ders of radii R, and R, + L. We choose the x axis in the 
direction of the cylinder axis and specify a temperature gra- 
dient dT/dx = AT/X. Then the shear stresses of type (23) 
lead to the appearance of a torque M [dyn cm] with which 
one cylinder acts on the other: 

M=2xR,2oJ-nRO2 (A"-h' ) AT.  (3 1) 

If one of the cylinders is free, Couette flow corresponding to 
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a linear velocity of the relative displacement of the walls 
should set in: 

AtL/X= 0.1 andAT-10KwegetAu-0.5 10-3cm/sec. 
We discuss now the case when external forces produce 

Couette flow in a cell of the type shown in Fig. 3 with a 
homeotropically oriented cholesteric, or between the cylin- 
ders considered above (the flow is in the direction of they 
axis for the cell and around the axis for the cylinder). The 
thermomechanical term (24) causes then heat flow. If the 
walls are thermally insulated, the stationary value of the 
temperature gradient is 

Assuming u-0.1 cm/sec and X-lOL, we obtain 
AT = XdT/dx - lop4, which in our opinion is observable in 
experiment. 

6. CONCLUSION 

Our analysis and numerical estimates raise the hope of 
observing the predicted thermomechanical effects in liquid 
crystals. Investigation of these effects should, in our opinion, 
yield new important information on the molecular dynamics 
of the mesophase of liquid crystals. Besides the effects con- 
sidered in this paper and connected with temperature gradi- 
ents, a large number of diffusion-mechanical effects con- 
nected with density gradients of some component or of some 
impurity should occur in liquid crystals. 

The authors are deeply grateful to E. I. Katz, M. A. 
Osipov, S. A. Pikin, L. P. Pitaevski:, and Yu. S. Chilingaryan 
for valuable discussions. 

APPENDIX 

Forms of the tensor structures for kinetic flows and for the 
dissipation function 

To write down in the dissipative function all the terms 
of type (20) which cause thermomechanical effects in de- 
formed liquid crystals, we expand the gradients of the tem- 
perature and of the director n in the irreducible representa- 
tion of a one-parameter group of rotation about the n axis: 

A=VT-n(nV) T ,  A,= ( n V )  T ,  (A.1) 

P= (n r o t  n)  , Mo=div nEmkk, Mi=miknk, 

Mih=mUI-'I2 (aiA-nink) MO- niMk-nkNi. 
(A.2) 

Here mi, is the symmetric tensor of the director gradient: 

m,-'12 (anilaxk+an~axi). (A.3) 

Pis  a pseudoscalar, M, and A, are scalars, and A and M are 
vectors perpendicular to the director: (A . n) = (M . n) = 0; 
Mi, is a zero-trace symmetric tensor, all the components of 
which lie in a plane transverse to the director: Mi, = 0, 
Mi, = M,, , Mi, n, = 0. The quantities N, Do, D and Dg , 
which describe the rates of change of the director and the 
flow-velocity gradients, were introduced by Eq. (12) of Sec. 

3. Let us show how these quantities behave under the substi- 
tution n+ - n. The quantities Do, Dg , A, P, and M are even 
with respect to these substitutions, while N, D, A,, M,, and 
Mu are odd. 

The most general form of the dissipation function, in 
which the velocity, the temperature gradient, and the direc- 
tor gradient are all of the same degree, and which satisfies 
the conditions of invariance to rotations about the n axis and 
simultaneously to the substitution n--t - n, is 

Rm=Ei (NA) Mo+E2n[NA I P+ E3NiAkMih 
+ E l  (NM)Ao+E5(DA)Mo+E,n[D X AIP 
+flDiAjMij+Eg (DM) Ao+ Es (AM)Do 
+EioDOAoMo+Et1AiMP,j+EtzAoDi@ji. (A.4) 

If we are dealing with a cholesteric, all the constants f ,  - f  ,, 
are the same for right- and left-hand forms. In other words, 
the constants f ,  and g,, are scalars and not pseudoscalars. 
Variation of (A.4) with respect to the variables dui/dxk 
yields an expression for that part of the viscous-stress tensor 
which is due to the thermomechanical effect: 

akiTM='I4 (2E,-E3+2E5--El) niVhT div n 
-'I4 (25,-fs-2g5+&) nhViT div n 
-'I2 ( E z + E a )  (n r o t  n )  

n, [n  X V ]  kT+ ' I z  ( E z - E e )  ( n  r o t  n )  nh[n X V ]  iT 
+'/2 ( g 3 f f l )  nimkjVjT-'/z ( E s - b )  nkmijVjT 

-' / z  ( E S - E ~ + ~ ~ - ~ E + E ~ ~ + ~ E ~ Z )  nimkjnj(nV) T 
+'I2 (fs-t~-f7+f~-t11-2f12) nhmijnj(nv) T 
+'I2 ( - 2 f ~ + f ~ + 2 f i O + f ~ z )  nink div n ( n V )  T 

+'I2 (-2f.r+2Ee+fit) ninknjmjpVpT 
+'lzEiinj(mjkViT+mjiVkT) +t,ZmAi(nV) T.  (A.5) 

The vector of the heat flow due to the thermomechanical 
effect is given by 

.'" = 6Rm 
='/2(2ft-E3) Nl div n+E2 ( n  r o t  n)  

' 6 (dT/dx i )  
X [nNli+EsmikNh- ( f  s - E 4 )  niNjnkm~+'/2 (2E5-E,) dijnj div n 
-'/2 ( 2 E 5 - ~ l - 2 ~ 1 0 - ~ 1 2 )  ninjnhdj, div n - f ,  ( n  r o t  n )  eijknknpdpj 
Elrnikdkjnj+El1dtkmMnj+flznidMmj~ 

+'/a (-27&+ 2f9+fit)  mijnjnknpdkP 
- (5 , - f8+ 2~12) ninpdpjmjknk. ( A 4  

Finally, the contribution of the thermomechanical effect to 
the "force" acting on the director is 

1 
=- 

2 
(2E,-E3) ViT div n-E2 ( n  r o t  n )  [ n  XV ] iT 

The exceedingly complicated form of expressions (A.4)- 
(A.7) notwithstanding, when simple specific problems are 
considered a large number of terms of one type or another 
drop out and the results turn out in general to be quite com- 
pact. The nematodynamics equations with allowance for all 
the considered effects are 
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6R d -- 6R 
nji [a(aniiat)  a s  s(a2ii ,ar at) 

where 17,i = Sji - njni is the operator of projection on a 
plane perpendicular to the local value of the vector n(r, t ). 
Here F [erg/cm3] is the free-energy density in its usual Frank 
form. The equations for the velocity v(r, t ) of the liquid are of 
the form 

wherep is the density andp(r, t ) is the pressure determined 
from the same system (A.9) and from the boundary condi- 
tions. Finally the thermal-conductivity equation takes in 
this approximation the form 

PC,= (aT/dt+vVT) -div q=U, (A. 10) 

where U [erg/cm3 sec] is the density of the energy release 
due to extraneous forces, and c, is the specific heat at con- 
stant pressure. 
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