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Truncated equations describing the interaction of waves in an unstable medium are derived by a 
Hamiltonian formalism. It is shown in first-order perturbation theory that three pairs of waves 
with opposite wave vectors interact with each other; the instability correspondingly becomes 
explosive. The truncated equations are integrable by the method of the inverse problem. 

Truncated equations describing the nonlinear dynam- 
ics of waves in a continuous medium are usually derived by 
the following approach (see Ref. 2, for example). The initial 
equations are of the form D (w,k) f, = j, (f ), where the zeros 
of D (w,k) determine the linear spectrum, while j, ( f)  is the 
nonlinear current, expanded in powers off. Ifj, and f, are a 
set of narrow lines, one of which lies near a zero D (wo,k) = 0, 
then we can expand D (w,k ) near w,. If the analysis is restrict- 
ed to the first term of this expansion, the equations take the 
form (w - wo)D 6 f, = j,. This procedure is also used in the 
case of waves which are damped or which grow in the linear 
approximation, under the obvious condition ImwgRew. It is 
clear that an expansion ofD (w,k) is legitimate only if the line 
width Aw, which is inversely proportional to the scale time 
of the nonlinear interaction, satisfies the inequality Aw(f2, 
where the scale frequency f2 is determined by the linear dis- 
persion relation. For both stable and unstable waves the as- 
sumption f2 - 1 wol is usually adopted. 

There are, on the other hand, many media in which this 
latter condition does not hold. Let us assume that D (w) is a 
polynomial in w with real coefficients. If there exists a natu- 
ral mode with Imw, > 0, then there also exists a wave with 
Imw, < 0, so that we would have 0 - Imo,. The condition 
Aw(Imw, essentially strips the corresponding truncated 
equations of their meaning: Over a time much shorter than 
Aw-' the wave amplitudes grow markedly, and an expan- 
sion in powers of the field variables cannot be used. This 
situation is typical of media for which canonical variables 
can be introduced. 

In a stable conservative medium, the interaction of 
waves can also be described by a Hamiltonian formalism.' In 
this approach the decay conditions imposed on the frequen- 
cies and wave vectors of the interacting waves--conditions 
which are usually interpreted as momentum and energy con- 
servation laws-appear as the "small denominators" which 
are familiar in  mechanic^.^ In other words, under the decay 
conditions there is no canonical transformation of any sort 
which would make it possible to prune certain terms from 
the interaction Hamiltonian. 

Our purpose in the present paper is to systematically 
derive equations describing the wave interaction in an unsta- 
ble medium. We assume that the initial equations are Hamil- 
ton's equations and are written in terms of canonical varia- 
bles. 

We will see that in the case of an unstable medium the 

waves interact under the same decay conditions, but the fre- 
quencies which appear in these conditions are complex 
quantities. We derive truncated equations and analyze their 
solutions for the particular case of the interaction of three 
unstable wave modes and the generation of a stable second 
harmonic of an unstable mode. We conclude with a discus- 
sion of the applicability of this theory to processes in a mul- 
tistream plasma. 

1. CHOICE OF A QUADRATIC HAMlLTONlAN 

We assume that the medium is described by a pair of 
canonical variables p(x,t ) and q(x,t ) and by a Hamiltonian 
H (p,q). We expand the Hamiltonian in powers ofp and q: 
H = Ho + H, ... . In a spatially homogeneous medium the 
term of this expansion which is quadratic inp  and q is 

wherep, (t  ) andq, ( t  ) are the Fourier transforms ofp(x,t ) and 
q(x,t ), and A , ,  B ,  , and C, are functions which are deter- 
mined by the particular model adopted for the medium. It 
follows from the reality ofp(x),q(x), and Ho that 

P-k'pk*, - *  B-r=Br*, PI 
and that A ,  and C, are real function of k of even parity. 

It follows from Hamilton's equations 

dqkldt=6H/6p-k, dp,/dt=-6H/6q-k (3) 

for the Hamiltonian Ho that, in the linear approximation, we 
have 

pk(t), qk(t) mexp (At), A=i{Im Bk+ [Arck- (Re Bk)'ILh). 
The medium is stable with respect to the growth of small 
perturbations if A ,  C, > (ReB, )2, and this case has been 
studied thoroughly by Zakharov.' In the present paper we 
focus on the situation in which the opposite inequality can 
hold for some values of k; i.e., we assume that the medium is 
unstable with respect to the growth of certain modes. 

We know quite well that in the stability region we can 
transform (with a purely imaginary determinant) from the 
variablesp, ,q, to the complex amplitudes a, ,  with Hamil- 
tonian (1) taking the form 

Ha= jdkwkoakak', wkL1lllBk+[AkCk- (Re Bk)'Iih. (4) 

Again in the unstable region it is possible to transform to 
complex amplitudes, but Hamiltonian (1) takes a different 
form: 
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where now 

or=Im Br, yr= [ (Re Br) '-AkCk] I". (6)  
By virtue, of relations (2), the identities w, = - o - ,, 
yk = y -, hold for unstable excitations. Furthermore, we 
can assume yk 2 0  without any loss of generality. 

In several situations, e.g., in superconductivity theory, 
a quadratic Hamiltonian in the form in (5) is quite natural, 
but for our purposes in this paper it is more convenient to 
choose a different representation. It is not difficult to see that 
in the instability region we can make the canonical transfor- 
mation~,  ,qk -+ Pk ,Qk , with Hamiltonian (1) becoming 

The reality condition (2) again takes the form 
P-, =P,*,Q-, =Q:.Ifweset 

Pk=ak, Qk=-ia-k*, oro-Qk, 

then Hamiltonian (4) also takes the form in (7), but the condi- 
tion on the reality of p(x) and q(x) changes: 
Q T k  = i P k , P y k  = i Q k .  

Let us examine in more detail the structure of the linear 
unstable waves. From Hamiltonian (7) we find the equations 
of motion 

dPk/dt=-iQkPr, dQk/dt=-iQk8Qk. PI 
A solution of these equations corresponding to a plane wave 
with a wave vector q is 

Pk=nq exp (-iQ,t) 6 (k-q) +nq' exp (iQq*t) 6 (k+q) , 
(9) 

Qk=gq exp (-iQ,'t) 6 (k-q) -tiq* exp (iQ,t) 6 (k+q). 

where  IT^ and f q  are arbitrary constants. The wave energy is 
equal to the value of Hamiltonian (7) with solutions (9); i.e., 
E a Im(n-;fq6! Z). We wish to stress that although the moduli 
of the canonical variables vary over time (in this particular 
representation, IP I increases exponentially, while lQ 1 de- 
creases), the energy E does no depend on the time, as it should 
not in a conservative medium. 

From these rather trivial transformations falls an im- 
portant circumstance: In speaking of the interaction of enti- 
ties of some sort we usually mean that in the absence of the 
interaction the energy (and other integrals) of these entities 
remains constant. In the instability region, the pairs of waves 
in (9), characterized by the two complex amplitudes .rr, and 
gq ,play the role of these initial entities, while in the stability 
reglon the role is played by a single wave characterized by 
the amplitude a,. In the discussion below we will call the 
pairs of plane waves (or wave packets) of the type in (9) "un- 
stable modes." 

2. INTERACTION OF UNSTABLE MODES 

If the canonical variables are initially quite small, we 
can expand the Hamiltonian in powers of P and Q. This ex- 
pansion will of course be legitimate only up to a certain time, 
t < T. Nevertheless, we could have a situation in which the 
mode interaction time is shorter than T. In this case the in- 

teraction of the unstable modes can be treated by perturba- 
tion theory. 

In this section of the paper we restrict the discussion to 
the cubic term in the expansion of the Hamiltonian in powers 
of the canonical variables. As we have already mentioned, 
the quadratic term in the expansion can be written in the 
form in (7), regardless of the stability of the medium. The 
next term in the expansion is of the form 

The condition IrnH, = 0 imposes certain restrictions 
on the matrix elements V, U, S, and T. The well-known pro- 
cedure for putting a Hamiltonian in its simplest possible 
form is "classical perturbation theory," which can be out- 
lined as follows: We take the canonical transformation 

QkEQkl+fl (Q') p') Pk=Pk1+f2 (p', Q') 
and we attempt to choose functionals f ,,, such that the Ha- 
miltonian HI vanishes in terms of the new variables. As a 
result of calculations similar to those in Ref. 1, we find that, 
formally, the terms P and Q can be discarded everywhere 
except for those vectors k, for which the relations 

ki+kz+k,=O, Qr,+Qr,+Qr,=O (11) 
hold, and the terms PQ and QP2 remain nonvanishing on 
the surface 

These terms in Hamiltonian (lo) are important not only 
on surfaces (1 1) and (12) but also in neighborhoods of these 
surfaces of size A k 5 IPS I IdO,/dk I-', i.e., in neighbor- 
hoods in which the linear growth rates are small in compari- 
son with the reciprocal of the scale time for the nonlinear 
interaction. Accordingly, for the unstable modes to interact 
with each other it is sufficient that the matching conditions 
be satisfied for only the real parts of the frequencies and of 
the wave vectors. In the present paper, however, we restrict 
the discussion to the interaction of modes with wave vectors 
which lie precisely on resonant surface (1 2). 

If the k, are d-dimensional vectors, Eqs. (1 1) and (12) 
describe 2(d-1)-dimensional surfaces; i.e., the vectors k, are 
generally not collinear. Since in this representation of the 
quadratic Hamiltonian (7) we have yk >0, the relation holds 
only if all the y,, are zero, so that in the case of interest here 
the terms of the type P and Q in the interaction Hamilton- 
ian are inconsequential. As for (l2), we note that if all the y,, 
are greater than zero then the corresponding terms in the 
Hamiltonian H, describe the interaction of three unstable 
modes; if, on the other hand, we have yk2 = 0 or yk, = 0, 
then we are dealing with the interaction of two unstable 
modes and one stable one. These two cases correspond to 
different equations. 

3. TRUNCATED EQUATIONS 

We begin with the interaction of three unstable modes. 
For the Hamiltonian Ho + HI,  where Ho is given by (7), and 
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we have U = 0 and V = 0 in H ,  in (lo), while S and T are 
nonzero near surface (12), the equations of motion are 

The condition ImH, = 0 in this case yields 

From (13) we can easily find equations describing the inter- 
action of packets of unstable modes. We assume 
q1 = q2 + q,, Ln, = Ln2 + Ln,(Lni = a,) .  We seek a solution 

of Eqs. (13) in the form 
J 

pk= [n, (k-qi, t) exp (-Pit) +nlo (~k-09 t )  ~ X P  (iQi't) 1, 

Q.= [a, (k-qi, t) exp (-iiblit) +ai* (-k-q., t) erp (iC2.t) 1, 

where the functions .rri (k) and f i  (k) are assumed to be non- 
zero in a sufficiently small neighborhood of k = 0. If we now 
substitute (14) into (13), expand 0, around k = qi , ignoring 
the dependence of S and Ton k, and take the inverse Fourier 
transforms, we find truncated equations for packets of un- 
stable modes: 

where vi = dLni /dqi are complex group velocities, 

We wish to stress that in deriving (15) we have made no 
assumptions of any sort regarding the time dependence of .rri 
and fi  . We also note that, without any loss of generality, we 
can set S = T = 1; this can always be done by a scale trans- 
formation. 

In this paper we write solutions of Eqs. (15) which do 
not depend on the spatial coordinates. It is not difficult to see 
that system (15) with d/dx = 0 is a system of Hamilton's 
equations with the complex Hamiltonian 

h=niE2'E3'+tltn2n3 

and the Poisson brackets 

This system has two additional integrals of motion: 

Ia=niEia+ naga', (18) 

where a = 2,3. The conditions I, = const are evidently ana- 
logs of the Manley-Rowe relatiom2 A direct check shows 
that the integrals I, and h are in involution; i.e., their paired 
Poisson brackets vanish. Consequently, the system of Ham- 
ilton's equations (16), (17) is completely integrable., 

We transform to the new canonical momenta I,, I,, 
p = .rr,l :l: and coordinates @, = In6 ,*, q = 6 :/l :l :. In 
terms of these variables, Hamiltonian (16) becomes 

h=p+q (12-pq) (13-pq). (19) 
The trajectories of the system lie on the manifold r :  

h = h,, where h, is determined by the initial conditions. It 
follows from the form of Hamiltonian (19) that the manifold 
r is a hyperelliptic Riemann surface of the first kind; i.e., the 
surface r is homeomorphic to a torus.4 We known that in 
this case there exist doubly periodic functionsp(< ) andq(< )of 
a complex variable which perform a one-to-one mapping of 
the parallelogram of periods onto the r surface and thus 
satisfy the relation h ( p(< ), q(< )) = h,. Using formulas from 
the theory of elliptic  function^,^ we can easily find this map- 
ping explicitly: 

where p(< ) is the Weierstrass function with the invariants 

and go is determined by the equation 

From the equations of motion for p and q we now find an 
equation for < (t ): 

df (t)  /dt==I,-I,=const. (21) 

Equations (20) and (21) give us the solutions of system (15). 
Since the variable f is defined in a parallelogram with 

identical opposite sides, the trajectories of the system with 
Hamiltonian (19) wind around the torus T. Depending on 
the relation between the integrals I, and h,, these trajector- 
ies may be either closed or unclosed; if they are closed, there 
is a periodic exchange of energy between the interacting un- 
stable modes. 

As for the unclosed trajectories-this is the situation 
for most values ofIa and h,-we note that they fill the entire 
torusr;  i.e., a trajectory passes near any point of the surface. 
On r there exists a discrete set of points Li  near which these 
solutions are inapplicable; these points correspond to a situ- 
ation in which one of the quantities .rri or f i  becomes infinite. 
A trajectory can pass through one of the points Li  only if the 
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initial conditions are chosen in some special way. However, 
any unclosed trajectory sooner or later reaches the vicinity 
of any of the points L, , and in this sense the interaction of the 
unstable modes is of an explosive nature for nearly all values 
of I, and h,. The dependence of the explosion time on the 
initial conditions is extremely odd. 

Finally, we emphasize that all these processes unfold 
against the background of exponential changes in the ampli- 
tudes P, and Q, ; i.e., the scale time for the explosion must be 
shorter than the reciprocal of the linear growth rate. 

4. SECOND-HARMONIC GENERATION 

We now consider the interaction of two unstable modes 
and one stable mode. For definiteness we assume yk2 = 0 we 
then find y,, = y,, from (12). For simplicity we also set 
k, = k, = q; there would be no difficulty in studying a more 
general case. We are thus studying the generation of a stable 
second harmonic of an unstable mode with a wave vector q. 
The corresponding truncated equations are found by a meth- 
od completely analogous to that used to derive Eqs. (15); 

The fundamental unstable mode here is described by the pair 
of amplitudes T,, 6, with the wave vector q, with the frequen- 
cy a, = w, + iy,, and with the complex group velocity v,; 
the stable second harmonic is described by the single ampli- 
tude a with the wave vector - 2q, the frequency - 2w,, and 
the group velocity v,. The Manley-Rowe relation expressing 
the conservation of energy and momentum takes the form 
T,{: + ila12 = i I  = const in this case. In addition to the 
quadratic part of the energy, the interaction energy is of 
course also conserved: Re (an-6 ) = const. 

It is not difficult to derive an explicit solution of Eqs. 
(22). In the most interesting case we have a = 0 at the initial 
time; i.e., the interaction energy is zero. Restricting the dis- 
cussion to this case, we find, with a /ax = 0, 

arg (a) =const, arg (a) +arg (nl) +arg (1,) =-n/2, 

I+cn(2lIl"t) 
sin $=sin $,, 

2dn(211j'~t) ' 

where dn, cn, and sn are the Jacobi elliptic functions of mo- 
dulus k = cos(qd2); $o = - argI; and IC, = arga + 2arg6,. 

Solutions (23) are explosive: All the amplitudes become 
infiniteat thetimet, = II I -'/'K (k ).If II I > yq , thenP, (t ) 
decreases at t&to. In particular, if $, = 0 then to = CU, and 
the instability is stopped completely by the pumping of ener- 
gy into the stable harmonic. The energy of the unstable mode 
in this notation is 

i.e., if $O = 0 the energy is determined exclusively by the real 
part of the frequency. Interestingly, damping of the second 
harmonic is not required for a dynamic stopping of the insta- 
bility in this case. 

5. CONCLUSION 

There is yet another way in which Eqs. (15) appear. In a 
stable medium we know that truncated equations describing 
three-wave processes can be written in the form7 

r J 1  Q t l  - - [ I ,  Qx l+ i [ [J ,  Q 1 ,  [ I ,  Q11=O, (24) 
where the anti-Hermitian matrix Q is constructed from the 
amplitudes of the interacting waves, and the elements of the 
real diagonal matrices I and J are related by algebraic rela- 
tions with the group velocities. If we discard the assumption 
that I and J are real-i.e., if we allow an amplification or 
absorption of the waves-then the reduction Q + = - Q is 
no longer compatible with Eq. (24). In this case we must 
abandon the condition that Q is anti-Hermitian, and we find 
that Eqs. (15) and (24) become identical, as can be shown 
easily by direct calculation. System (15) thus turns out to be 
integrable by the method of the inverse scattering problem. 
It can be shown that the same is true of system (22). 

In conclusion we consider a physical example to which 
these equations seem to apply: the two-stream instability of a 
plasma. If electrons are drifting (at a velocity greater than 
the thermal velocity) with respect to the ions in a plasma, 
then we know that an aperiodic Buneman instability can 
occur. This instability can be described in dissipationless 
two-fluid hydrodynamics, in which we can introduce ca- 
nonical  variable^.^ The scale times for the onset of this insta- 
bility are easy to estimate. If the deviation of the electron 
density from a uniform distribution is initially characterized 
by a parameter Sn, /no, then the nonlinear growth rate for 
the most unstable resonant mode has the behavior 
[ I  I 'I2 -aL (Sn, /no). The linear growth rate, in contrast, is 
given in order of magnitude by yq -aL (m/,~) ' /~(w, is the 
electron plasma frequency, and m/,u is the ratio of the elec- 
tron and ion masses). Accordingly, within the range of appli- 
cability of perturbation theory (Sn, /no& 1), these equations 
can be used to analyze the Buneman instability. 

We will also mention an example to which this theory 
does not apply. If a low-density electron beam penetrates a 
cold plasma, the medium will be unstable with respect to the 
excitation of plasma waves. In this case we would have 

1 I 1 'I2 - (Sn, /no)yq ( yq , and before the unstable modes 
which are excited have time to exchange energy the instabil- 
ity will be in the highly nonlinear regime, in which beam 
electrons are trapped in the wave field. 

I wish to thank V. E. Zakharov and A. A. Rukhadze for 
a useful discussion of these problems. 
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