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The hodograph of the unit vector tangent to an arbitrary three-dimensional curve forms a curve 
on a sphere and can be "reprinted" on a plane by rolling the sphere. This "scarab transformation" 
is used to analyze several extremum problems of importance to the equilibrium of a plasma in a 
magnetic confinement system with a three-dimensional axis [B. A. Trubnikov and V. M. Glago- 
lev, Sov. J. Plasma Phys. 10, No. 2 (1984)], in the equilibrium of elastically deformed rods and 
fiber-optics cables, and in similar problems. 

1. In this paper we introduce an operation, which we 
call the "scarab transformation," for arbitrary three-dimen- 
sional curves. Although this is a purely geometric operation, 
its analysis results in the formulation of several extremum 
problems which may find application in certain branches of 
physics, e.g., in calculating the equilibrium of deformed elas- 
tic rods and fiber-optics cables, in calculating the plasma 
equilibrium in a magnetic confinement system,' and in 
smaller problems. 

The scarab transformation is defined by the following 
rules. For an arbitrary spatial curve r(s) we first write the 
Frenet equations 

Here the coordinates is the arc length along the curve, K is 
the curvature, x is the torsion, and T, n, and b are three unit 
vectors. If s is replaced by the new quasitime variable 
t = J Kds, the Frenet equations become1' 

where = x/K is the relative twisting, and the dot denotes a 
derivative with respect to t. This equation describes the mo- 
tion of the end of the vector T over a sphere of unit radius, 
171 = 1, which we call the "hodograph sphere"; we call the 
~ ( t  ) trajectory itself the "spherical track" of the original 
curve. We then imprint this projection on a plane by the 
scarab method. 

The scarab or dung beetle was held sacred in ancient 
Egypt since it constantly rolled with it a store of food in the 
form of a small ball, which was the symbol of the god Ra, 
worshipped by Egyptians. When a wet ball rolls over sand, 
the point of contact leaves tracks both on the ball itself (a 
spherical track consisting of the adhering grains of sand) and 
on the plane of the sand. Let us assume that there is no slip- 
page or forcible rotation of the ball either as it sits in one 
place or as it rolls. If, for example, a ball of unit radius is 
rolled along a plane circle of R ,, no forcible additional rota- 
tions will occur if the ball rolls along with the cone circum- 
scribed around it with vertex at the center of the plane circle. 
This circle is printed on the ball as a circle of radius 

For arbitrary trajectories this kinematic requirement must 
be satisfied for the instantaneous radii of curvature of the 
planar track (R,) and the spherical track (R,). It is this re- 
printing of hodograph (1.2) on the x,  y plane which we call 
the "scarab tran~formation."~' 

It can be seen from Eqs. (1.2) that the quasitime t is 
equal to the arc length of the hodograph, so that the normal 
(n) to the original curve is also the unit tangent T, for the 
trajectory of the hodograph. We denote by n, the normal to 
this trajectory, and we rewrite the second equation in (1.2) in 
a form analogous to that of the second equation in (1.1): 

where KO is the curvature of the hodograph arc. Comparison 
of Eqs. (1.4) and (1.2) reveals 

If we describe the plane track by the vector r, = exx + e,y, 
which also has arc length t, then the unit tangent vector to it 
will be T, = ex x + e,, y; again for this plane vector there must 
be an equation like (1.4): 

where n, is the normal to the plane track with curvature 
K, = 1/R, and radius of curvature R,, which is related to 
R, = (1 + w2)- ' I 2  by (1.3). We can thus find the plane curva- 
ture K, = w. Introducing e, = T, X n,, which is the binormal 
to the plane curve, and assuming n, = e, X T', we can rewrite 
(1.6) as 

It is useful to note that this equation for the plane track 
of an arbitrary three-dimensional curve which is found by 
the scarab method is formally the same as the equation 

R,=R,I ( l+RtZ)  '". (1.3) which describes the motion of an electron in a magnetic field 
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B = Be, with straight lines of force along the z axis, so that 
the relative torsion o = x/K serves as the cyclotron frequen- 
cy w,. Equation (1.2), the equation of a spherical track, 
would formally be the same as the equation of motion of the 
electron in the field of an ion if this ion had, in addition to its 
electric charge, a magnetic charge of the nature of a Dirac 
monopole. These magnetic analogies help us obtain a gra- 
phic representation of the plane and spherical tracks of the 
curve as the drift trajectories of an electron in a magnetic 
field. 

2. Since the scarab transformation can be incorporated 
in a natural way in the general equations of three-dimension- 
al curves, we can use it to formulate several problems involv- 
ing the extremal properties of curves. One such problem, and 
apparently the most "fundamental" in this sense, is the fol- 
lowing scarab problem: A scarab keeps his ball at a certain 
point 0 (his antrum or house), but from time to time he must 
dry out the ball by turning it upside down, but he can do this 
only by rolling the ball without slippage. What is the shortest 
closed curve on a plane (Fig. 1) over which the scarab must 
roll his ball (of unit radius) to reposition the ball in the an- 
trum precisely upside down; i.e., the point which is initially 
the low point on the ball must end up as its upper pole. 

It is not difficult to see that a purely circular planar 
trajectory does not solve the problem. The simplest solution 
would be a equilateral triangle of side r a n d  total length 3r .  
There are other possiblilities. For example, we could take a 
trajectory consisting of three circular arcs of length To,,,o 
such that the first and third arcs are identical and join 
smoothly with the central arc T I .  Here we must take care to 
ensure that the spherical track has its beginning and end at 
opposite points-the poles of the sphere. This condition im- 
poses a certain relationship between the parameters of To 
and T,. If we then vary one of them, we can attempt to mini- 
mize the total length 2T0 + TI. A numerical calculation 
shows that this minimum length is 2.43839~. However, the 
shortest plane curve which we found in Ref. 1 is the line 
described by the following parametric equation on the inter- 
val - r /2  < 6 < 3712: 

where Fand E are the incomplete elliptic integrals of the first 
and second kinds which depend on the parameter 
k = 0.90891 which is the solution of the equation 
K (k ) = 2E (k ). The length of this shortest "scarab's loop" is 

FIG. 1. The minimal scarab's loop. 

where the parameter p = 0.606817 determines the func- 
tional dependence of the quasitime t = F/p on the angle 6. 
Here it is convenient to assume that the time t = 0 corre- 
sponds to the middle of the loop. We also note that we have 
x,,, z 2 k  /p = 2.99566. 

Curiously, the form of the extremal in (2.1) is precisely 
the same as that of a circular rod which has been bent to the 
point that its ends are very close together, resembling an 
archer's bow bent by a bowstring of zero length. As we know 
from mechanics, when we bend an elastic rod a torque 
M = EK, will arise in its cross section; this torque is propor- 
tional to the curvature K, =y"( l  + y'2)-3'2 of the plane 
curve y(x)-the axis of the rod. The constant factor is E = (1/ 
4)77Eu4, where E is the Young's modulus, and a is the radius 
of the rod. For the geometry in Fig. 1 the equilibrium equa- 
tion for a rod of length l can be written M = xf, where 
f = 4El -2K '(k ) is the tension in the bowstring. Setting 
I = T,, , we find that in our case the curvature of the plane 
track is K1 = w(x) = xp2, SO that the equation for the shor- 
test track (1.7) is 

and corresponds in terms of our magnetic analogy, (1.8), to 
the drift of an electron in a linearly nonuniform magnetic 
field, B, (x) = xB A .  This nonuniformity can be assumed the 
simplest. 

3. The most remarkable property of the scarab transfor- 
mation is that general equation (1.7) of a plane track is a 
linear equation, and if the function w(t ) is given this equation 
can easily be solved in quadratures: 

z= J sin a dt, y= cos a dt, a= 5 o dt. J (3.1) 

In contrast, this is not possible for the equation of a spherical 
track, Eq. (1.2), unless we resort to numerical methods. At 
the same time, it is clear from the construction of the scarab 
transformation that the two tracks are in a one-to-one corre- 
spondence, and if one of the tracks is known the other can 
always be constructed by rolling the sphere "scarab-fash- 
ion." This situation is similar in part to a situation in the 
theory of solitons, where nonlinear equations can be solved 
by the method of the inverse scattering problem only when 
they can be reduced to Lax pairs of linear equations; the 
condition for the compatibility of these equations is the 
original equation. Our equations, however, contain no par- 
tial derivatives. 

The meaning of general solution (3.1) for the plane track 
becomes clearer if we construct around the initial curve r(s) 
an orthogonal quasicylindrical Mercier coordinate system3 
p,O, s with the metric 

Herep and 0 are the polar radius and the polar angle in the 
s = const plane, which is perpendicular to our curve; here 
x = pcosi?, where the angle 9. is reckoned from the normal to 
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the center of curvature and is given by The minimum angle B,, is determined by 

B=R-a ( s )  , a= I x ds= o dt. 

=I/x--xmJ4k2, 
We see that if point 1 lies in the s = const plane, and point 2 

(4.2) 

in the c lanes + ds = const, then the length IdrI will be mini- and forx,,, < 2k = 1.81782 for the center of the loop (t = 0) 
mized if dp =PI  - P2 = 0 and df2 = 01 - 0 2  = 0- In other we should assume &sin8 = - 1, while for x,,, > 2k, we 
words, the linep = const, 0 = const takes the shortest path have = 1 for t = 0. For x,,, < 2k, the angle q, on the 
from One S = COnSt plane to another, acquiring Step by Step a hodograph is determined by the integral 
length 

bL=-p cos B cos a dt-p sin B J sin a dt, J and the maximum angle y which we want is 

in which we see our plane tracks (3.1). 
As a graphic mechanical analog we could imagine an 

elastic rod-a long pencil-with a central "lead" which can- 
not be stretched and with an elastic cladding in the form of a 
(wooden) cylinder. In the undeformed state the wood fibers 
are straight, run parallel to the lead, and have the same 
length S. Upon twisting, the wood fibers become longer, but 
elastic forces tend to shorten them. If the rod is bent into the 
three-dimensional curve r(s), but if no twisting torques are 
applied along the axis, then the lateral fibers, tending to 
shorten, themselves turn in such a way as to conform to a 
family of "locally shortest" extremals p, 0 = const. The 
same property is exhibited by the magnetic lines of force 
around a solenoid curved in three dimensions.' 

We find a particularly interesting case when the plane 
trace is closed, and the integral increment in length in (3.3) is 
zero, so that the lengths L of all the lateral fibers are equal to 
the length of the central axis, S. As a result, the entire sheaf 
of elastic fibers is in an equilibrium state of such a nature that 
no bending moments must be applied to its ends. In contrast 
with an elastic rod, here we are allowing a free slippage of the 
fibers along each other. 

4. We turn now to the next "scarab problem." What 
should be the shape of a closed plane track if, for a total track 
length T, we need to maximize the angle y( <a), which is the 
angle between the initial vector ~ ( 0 )  and the final vector T(T) 
on the hodograph? 

For rolling along an equilateral triangle with a perim- 
eter T, for example, we find y = 2arcsin[sin3(T/6)]. Surpris- 
ingly, however, here again the optimal curve is the same 
scarab's loop as in (2.1), but with the new parameter 
x,,, = kT/K (k ) corresponding to the given length T. The 
equations of the spherical track described by the angles Band 
q, are thus 

COS ' ~ = C O S  omin COS E, 0 = 0 0  COS E, 
(4.1) 

where 

p=2K ( k ) I T ,  oo=2kp, K ( k )  =2E ( k ) .  

y=2k(l+I/v) '"[K ( k )  - ( l+vl / ' /kp)I I (k ,  v )  1, (4.4) 

where 17 is the complete elliptic integral of the third kind. 
Numerical values of y(T) for the entire interval 0 < y < n are 
listed in Table I. These values given the optimum solution of 
the scarab problem of the maximum turning of a sphere of 
unit radius when the sphere is rolled along a closed plane 
trajectory without slippage. The p, f2 = const curve drawn 
near the main three-dimensional axis r(s) forms with the axis 
a so-called surface curvature band,4 so that the scarab prob- 
lem solved above gives us the shortest path for a sheaf of such 
bands of identical length. Such problems must be solved, for 
example, in the optimization of the "Drakon" closed mag- 
netic confinement system for plasmas which was proposed in 
Refs. 1 and 5 and in which the lines ofp, f2 = const corre- 
spond to the lines of force of the magnetic field if it is uniform 
at the axis. 

5. In conclusion we examine the relationship between 
our scarab problem and the so-called Delaunay variational 
problem which was solved by weierstrass6 back in 1884 and 
which can be formulated as follows: We are to connect two 
spatial points r, and r2 by a curve of constant curvature 
KO = 1 in such a manner that the curve has unit vectors 
of specified direction at the points r,,, and in such a manner 
that the arc length of this curve is minimized. 

Although the Delaunay problem is not the same as our 
scarab problem, the two can be combined by posing an addi- 
tional question: For which value of the curvature KO = const 
does the Delaunay-Weierstrass curve have the closed plane 
track which could be obtained from a hodograph with a unit 
tangent vector +r by rolling in the scarab method? 

Using vector notation, we will first write the Weier- 
strass solution (which uses a complicated coordinate version 
of the equations). 

We describe the curve which we are seeking by r(p), 
wherep is some arbitrary parameter (e.g., the length along a 
straight line between the points 1 and 2). The arc length is 
then 

S= Ids- 5 st (p) dp ,  
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TABLE I. T and y as functions of O,,. 

where 

We introduce the vector w = r' X r" = bK$I3, where 
b = T X n; we can then write w2 = K ;sI6. Upon a variation 
r-tr + Sr, the condition of constant curvature means that 
we have 

emin, I deg 

where Sw = (Sr)' X r " + (r' X Sr)", so we can write 

80 
70 
60 
50 
40 
30 

Here we have introduced the temporary notation V = K ;sI5 
and also 

r, deg 

27,378 
41,845 
61,741 
89,095 
127,13 
181,28 

T 

0,4461 
0,8949 
1,3497 
1,8151 
2,2977 
2,8064 

a=V [z-n (s"/K,srZ) 1, f i=nVIK0sr. (5.4) 

0,0675 
0,6009 
2,2993 
4,9871 
9,8279 
16,997 

We should also note that we have 6s' = 7(Sr)', and the 
minimization of the arc, SS = SGsfdp = 0, under the addi- 
tional equation F = 0 implies the requirement 

wherex is an arbitrary function to be determined. The term 
with the second derivative, (Sr)", can be integrated by parts if 
we rewrite (5.5) as 

20 
10 
0 

-10 
-20 
-30 

since (Sr)' is arbitrary, the solution of the Delaunay problem 
is the equation Q = const, which can be rewritten as 

3,3538 
3,9573 
4,6420 
5,4452 
6,4251 
7,6783 

d 
Q= (1+2$) z + -($z) = (I+$) z+$n+ w$b=c,=const. 

dt 

(5.7) 
Here o = %/KO, and the combination $ = x V is treated as a 
function of the variable t = sKo which we introduced earlier. 
Taking the vector product of (5.7) and 7, we find 

Integrating, we find 

and also b*c,$ = c,.c,, where c, is a new constant vector. On 
the other hand, taking the scalar product of Eq. (5.7) and b, 
we find b-cl = o$ and thus 

Squaring (5.7), we find 

If we use (5.9) to express w in terms of $ and use the notation 

1 c 1 ,  h=cicz12, h ( t )  = ( I + $ )  1, 

we find the basic equation 

This equation was analyzed by Weierstrass, who solved it in 
elliptic functions. As we saw above, however, it is more gra- 
phic to replace the function A by the function w =%/KO, 
which serves as the magnetic field (more precisely, as the 
cyclotron frequency) in "magnetic equation" (1.7) for the 
plane track of the curve. We then find in place of (5.11) the 
equation 

which has real solutions only if 1 < 1. In particular, we could 
have a steady-state solution 15 = 0, with w = const being the 
root of the right side. This solution corresponds to an initial 
curve which is a helix with a plane track (1.7) in the form of 
the "Larmor circle" of an electron in a uniform magnetic 
field. A slight nonuniformity of the magnetic field will obvi- 
ously make plane track (1.7) similar to the drift displacement 
of a circle, and to solve our auxiliary problem with the re- 
quirement that the plane track be closed for the Delaunay- 
Weierstrass curve it is sufficient to take a single loop of the 
drift trajectory with one intersection point. 

For a general solution of Eq. (5.12) we replace t by the 
new variable a = Jwdt and rewrite (5.12) as 
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We find a particularly simple case if I = 8 = 0; in this case, 
Eq. (5.13) can be integrated in terms of elementary functions, 
and it yields 

o=[1+(1-4h2)" cos 2a] /2h ,  (5.14) 

from which we find the functional dependences 

o ( t )  =ab/ (a2-cos2 t )  ,- a ( t )  =arctg (ab-' tg t )  , (5.15) 

where 

a=2-'11[1+1/(1-4h2)"]'1*=const, b= (a2-1)". 

We can thus find a closed plane track of a given Delaunay- 
Weierstrass curve for the interval - ?r < t < T, 

x=a (arc cos ( - l la )  -arc cos (a-I cos t )  ) , 

y= b Arsh (b-' sin t )  , (5.16) 

but this is not the shortest scarab's loop. 
It can be hoped that the scarab transformation intro- 

duced here will also prove useful in other problems because 

of the simplicity of the "magnetic equation" for a plane 
track, (1.7). 
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