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It is shown that a lumped system of two-level atoms interacting with a quantum electromagnetic 
field can be described by a one-dimensional fully integrable model in quantum field theory. The 
Bethe ansatz method is used to obtain rigorously many-particle eigenstates of the "atoms + field" 
system and these states can be used to solve the problem of spontaneous decay of an excited state 
in an atomic subsystem (Dicke superradiance problem). 

1. INTRODUCTION 

Much theoretical and experimental work has been done 
(for reviews see Refs. 2 and 3) on the cooperative spontane- 
ous emission of radiation predicted by Dicke.' 

In the original formulation of the problem it is assumed 
that all the atoms are concentrated in a volume of radius 
R 4 w ;  ', where w12 is the frequency of a transition in a two- 
level atom (Dicke model'-3). Subsequent experiments car- 
ried out on an extended medium with a small transverse size 
and of length I>w ; ' led MacGillivray and Feld4 to suggest a 
spatially one-dimensional model for the description of su- 
perradiance. The one-dimensional approach is justified by 
the characteristic feature of the observed cooperative effect 
which is a strong directionality along the axis of a sample. 
Therefore, in developing a theory of superradiance for an 
extended system of atoms it is sufficient to allow for the in- 
teraction of atoms with those photons whose wave vector is 
directed along the axis of a sample. 

Rupasov5 used the method of the quantum inverse scat- 
tering problem (for reviews see Ref. 6) to show that the one- 
dimensional model of MacGillivray and Feld is fully inte- 
grable. The present authors7 used the Bethe ansatz method8 
(for reviews see also Refs. 6 and 9) to obtain explicit expres- 
sions for the eigenstates in the MacGillivray-Feld model 
with discrete atoms which, firstly, made it possible to avoid 
certain mathematical inaccuracies associated with the quan- 
tization of a continuous spin field" and, secondly, to obtain 
general expressions describing the dynamics of spontaneous 
decay of excitations of the atomic subsystem. An analysis of 
these general expressions meets with a number of mathemat- 
ical difficulties, which are to a great extent common to all 
problems encountered in the theory of fully integrable sys- 
tems, which makes it difficult to provide a complete quanti- 
tative description of cooperative emission of radiation from 
an extended system. 

The one-dimensional nature of the model is a necessary 
condition for the application of the methods of the theory of 
fully integrable systems. Therefore, one might assume that 
the Dicke model (representing a lumped system of atoms) in 
which it is necessary to allow for the interaction of atoms 
with a three-dimensional electromagnetic field differs qual- 
itatively from the initially one-dimensional model of Mac- 

Gillivray and Feld (extended system of atoms). However, we 
shall show that the Dicke model is equivalent to a certain 
one-dimensional fully integrable model in field theory. We 
shall use the Bethe method to diagonalize the Dicke Hamil- 
tonian and to determine the state of the radiation field result- 
ing from spontaneous decay of an initial excitation of the 
atomic subsystem. 

The present treatment therefore achieves a certain uni- 
fication of the description of the cooperative radiation-emis- 
sion effects: the Dicke and MacGillivray-Feld models are 
described by similar fully integrable models of field theory. 
Since the Dicke model is characterized by a greater math- 
ematical "simplicity" due to the absence of the field propa- 
gation effects in a medium, it can be analyzed until a com- 
plete description is obtained of any observable physical 
system. 

The Bethe ansatz method has been used so far only in 
studies of equilibrium (thermodynamic) properties of fully 
integrable  system^.^.^.^ The present treatment is an example 
of the use of the Bethe method in solving the dynamic prob- 
lem of the time evolution of the initial state of a many-parti- 
cle system. 

2. DlCKE MODEL 

The Dicke model is considered subject to the following 
physical conditions1-3: 

1) it is assumed that all the atoms are concentrated in a 
volume of radius R gw , I;  

2) an atom is regarded as a two-level system with the 
ground state corresponding to the momentum J ,  = 0 and 
the excited state to the momentum J2 = 1 and to a specific 
projection of the momentum M, on the quantization axis of 
an atom (we shall consider the specific case when M, = 0); 

3) an allowance is made for the interaction of atoms only 
with photon states of frequency w lying near a resonance 
frequency w12, i.e., it is assumed that Iw - w121 <w,,. 

It should be noted that selection of a specific projection 
of the momentum M2 of an excited state of an atom in radi- 
ation emission problems is clearly a necessary condition for 
the validity of the two-level model of an atom. 

For our purpose it is convenient to retain the frame- 
work of the usual dipole (condition 1) resonance (condition 3) 
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approximation and expand the radiation field operators in 
terms of spherical harmonics.1° In this expansion the elec- 
tric-type photons are described by the operators c(o, j, m) 
which depend on three quantum numbers: the frequency w 
(or the modulus of the wave vector k = a ) ,  the momentum j, 
and the projection of the momentum m. The condition 1 
allows us to limit the treatment in the wl,R( 1 case to an 
allowance for the interaction of the atomic subsystem solely 
with the j = 1 harmonic of the field. The condition 2 fixes the 
second quantum number as m = 0. The Dicke model is 
therefore essentially one-dimensional. 

The Hamiltonian of the model is 

where x = h:, d2/3.rr; d is the dipole moment of the transi- 
tion; M is the number of atoms. The excitation number oper- 
ator 

-m .-I 

commutes with the Hamitonian so that we can subsequently 
drop the term w12N from Eq. ( la) and measure all the fre- 
quencies from the resonance value w,,. In view of the reso- 
nance approximation, we can take the interaction constant x 
out of the integrand when the frequency is w,, and to extend 
the lower limit of integration to - W .  The operator 
c(o)=c(w, j = 1, m = 0) and the spin operator s: (i = x, y, z; 
s, = 1/2) describe respectively the photons and two-level 
atoms and satisfy the commutation relationship 

[ c  ( a ) ,  C+ (v) ]=2n6 (o-v) , (34 

where 

Introducing the notation 

- m 
- - 

and rewriting Eqs. (la)-(3a) in terms of the operators ~ ( x )  and 
3, we find that 

- m, 

[ E  (x) , E+ ( y )  ] =8 (x-y) , [S', MI =ieiaSk. (3b) 

The vacuum state 10) of the model described by Eqs. 
(1)-(3) will be assumed to be a direct product 
10) = lo), e lo), of the vacuum field state 
lo), [E(x)IO), = 01 and of the ground state of the atomic sub- 
system(O), (S-lo), = 0 , S  lo), = ( - M/2)10), )inwhich 

all the atoms are at the lowest ground level. The state (0) is 
clearly the eigenstate of the model: N 10) = H 10) = 0. 

We can therefore see that the Dicke model is equivalent 
to the model of a one-dimensional Bose field with an un- 
bounded linear spectrum w = k ( - w < k < w ) interacting 
at the point x = 0 with an impurity characterized by a spin 
S = M /2 that is governed by the number of atoms forming 
the atomic subsystem. 

It should be noted that the reduction of the Dicke model 
to the one-dimensional form performed above differs from 
the corresponding procedure in the Kondo problemg by the 
fact that in the lowest order with respect to the parameter 
w ,,R ( 1 it is necessary to include the field harmonic with the 
momentum j = 1. 

Following Ref. 1, we shall consider the states of the 
atomic subsystem: 

Since the Hamiltonian of the model contains only the total 
spin operators S* = Zs?, it follows that the vectors ID, ) 
define a subspace of states of the atomic subsystem of dimen- 
sions M + 1 (Dicke subspace) close to the action of the Ha- 
miltonian. Consequently, if at the initial moment t = 0 the 
atomic subsystem is in one of the states of Eq. (4), then at any 
subsequent moment in time its state belongs to the Dicke 
subspace. 

It should be stressed that this is true only in the case 
when all the M atoms have the same transition frequency 
w,,. However, when the transition frequencies of different 
atoms are different (i.e., when an allowance is made for an 
inhomogeneous broadening of atomic transition lines), then 
for any initial condition the evolution of the atomic subsys- 
tem in time occurs in the complete space of states of dimen- 
sions 2M. The Bethe ansatz method makes it possible to solve 
the problem also in its general form when the broadening is 
inhomogeneous. We shall confine ourselves to an analysis of 
the Dicke problem in its standard formulation1-3 and we 
shall assume that there is no inhomogeneous broadening and 
that initially the atomic subsystem is in one of the Dicke 
states. The inhomogeneous broadening case will be dis- 
cussed in Sec. 6.  

3. DlAGONALlZATlON OF THE DlCKE HAMlLTONlAN 

The existence of an integral of motion N allows us to 
classify the eigenstates of the "atoms + field" system in re- 
spect of the number of quasiparticles (excitations), i.e., in 
respect of the eigenvalue of the operator N. It is convenient 
to consider first the model of Eqs. (1)-(3) specified in a finite 
interval - L /2(x<L /2 and then to substitute L+CC only 
in the final expressions. 

W e  shall seek the one-particle state )A ) (N \A)  = 1 )A ) )  
in the form 

Then, the Schriidinger equation H (A  ) = E (A ) reduces to 
the following system of equations: 
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The singularity of this system is typical of problems with a 
linear unrenormalized spectrum and a point-like interac- 
tion, and it can be removed by replacing the8 function with a 
regular function u(x) followed by going to the limit 
u(x)-&(x). From solutions of the system (6) we can separate a 
class which obeys the conditions f =0, A = 0, and Hc0 = 0. 
These solutions describe stationary (and nonradiative) excit- 
ed states of an ensemble of atoms, since the matrix element of 
thedipolemomentoperatord = d (S + + S -)betweenany of 
these states and the ground state is zero: 

From now on we shall be interested only in radiative states of 
the "field + atoms" system. The relevant solution of the sys- 
tem (6) is 

A-ixM12 f (A, x )  =0 (x<O) + 
h+ixM/2 (x>O), 

Using these expressions, we can rewrite Eq. (5) in a more 
compact form 

.L / t  

lh)= J dxeikf (I., x ) r+  (A, x )  1 O ) ,  
-L/2 

(8) 

where r+(A, x) = E+(x) + (t~''~//2 )S(x)S +. It follows from 
the expression for the wave function of a photon 

h-ixM/2 ii, 
9 ( x )  = ( O  I E ( x )  I h)=eikO (x<O) + e 0 ( x > 0 )  

h+ixM/2 
that the scattering of a photon by an impurity simply causes 
an abrupt change in the phase. The "rapidity" parameter A 
satisfies the equation 

which appears when $(x) is subjected to a periodic boundary 
condition $(x = - L /2) = $(x = L /2). Taking logarithms 
of Eq. (9), we obtain the relationship 

between the rapidity A and the quantum number of the sys- 
tem I = 0 ,  f 1, . . . . The states of Eq. (8) form an orthogonal 
basis 

in the one-particle sector of the space of states in the Dicke 
model and the norm of the sector 

is identical with the formal derivative aI/aA. Therefore, in 

the limit L-co we can transform summation in respect of 
the quantum number I to integration in respect of the rapid- 
ity A: 

Simple expressions in Eqs. (9)-(13) given here can ac- 
count for similar but more cumbersome formulas in the 
many-particle case. 

In the case of a many-particle eigenstate in the Dicke 
model 

which is parametrized by a set of rapidities {4,j  = 1, . . . , 
m; A, #A, for i # j ) ,  we can use the Bethe ansatz methods 

u a  

sign (xi-xi) 
-L/2 iCj 

I 
j- I 

where 

sign x={1 ,  x>O; 0 ,  x=0;-1,  x<O). 

In Eq. (1 5) the Bethe factor 

i x  
sign (xi -xi )  I 

reflects the appearance of the photon-photon correlations in 
the scattering of photons in the atomic subsystem. These 
correlations are responsible for the cooperative effects in the 
emission of photons from an excited system of atoms. It 
should be stressed here that correlations in the photon sub- 
system appear also when photons are scattered by one atom 
(M = 1) and are responsible for the cooperative effect ob- 
served in the resonance fluorescence of an atom in a strong 
field. 

The rapidities (4 j satisfy the following system of tran- 
scendental Bethe equations: 

which appears when the wave function of photons is subject- 
ed to periodic boundary conditions 

and the energy of the state described by Eq. (15) is given by 
the simple expression 

m 

~=z4. 
j- i 

Taking logarithms of the Bethe equations, we obtain the 
relationship 
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between the rapidity (A, ) and the quantum numbers of the 
system4 = 0, + 1, . . . . Following Ref. 5, we can show that 
the commutation relationships for the matrix elements of the 
monodromy of the Dicke model are identical with those for 
the quantum nonlinear Schrodinger equation model.6 Con- 
sequently, we can calculate the norm of the Bethe vectors 
using the results obtained by Korepin." According to Kore- 
pin, the norm of the Bethe vector with the set of rapidities 
(A, ) is given by the expression 

where D(I ,  . . . Im)/D(/2, . . .Am)  is the Jacobian of the 
transformations of Eq. (17). 

In the absence of atoms (M = O), the operators 

No = dxe+ ( x )  e  ( x )  , &=-i j o h +  ( x )  d=e (r)  (1 9) 

describe a free radiation field and the Bethe states of Eq. (1 5) 
reduce to 

z p  ix ... ~ ) o =  J, h i . . . d ~ m I I [ l + G  sign ( x i - ~ j ) ]  
-L/Z t t i  

A Bethe state described by Eq. (20) is an eigenstate for the 
free-field operators 

j-i 

which can easily be shown by recalling that, for example, the 
operators No and Ho are identical with the particle number 
and momentum operators in the nonlinear Schrodinger 
equation model. We in fact obtain 

and also relationships analogous to the expressions (17) and 
(18). 

This somewhat unusual method of describing a free 
field will be used, in addition to the conventional method of 
an expansion of the states of the field in terms of free pho- 
tons, to solve the Dicke problem. 

We shall now classify the m-particle eigenstates (15) of 
the Dicke model in the'limit L+m. Bethe8 demonstrated 
that in general the solutions of a system of transcendental 
equations of the (16) type lie in a complex plane and are 
grouped in "strings" 

where m, (1 <m, <m) is the number of rapidities A f forming 
a string with the number I, and A, is the total real part. We 
shall call m, the length andAl the carrier rapidity of a string 

0 

FIG. 1. 

I. The total number of strings of an m-particle Bethe vector n 
(I = 1, . . . , n) can vary from 1 to m and we obviously have 
Bm, = m. By way of illustration, Figs. la-le show all possi- 
ble sets of strings (configurations) of a four-particle Bethe 
vector. 

A system of m Bethe equations can be rewritten in such 
a way that it contains only n equations for the carrier rapidi- 
ties (A, ) .  Then, as is known from Refs. 6,9, and 12-14, the 
remaining (m-n) equations are satisfied with an accuracy to 
exponentially small terms of the order of exp( - 7tL ). We 
shall not give here the equations for (A, ) , because their ex- 
act form is important only in studies of thermodynamic 
properties of the model. In our case, the only important fact 
is that, in the limit L-t w , the carrier rapidities (A, ) assume 
independent values throughout the real axis and the norm of 
the Bethe vector (A, . . . An ) is still described in terms of the 
Jacobian of transformations from the quantum numbers 
(I, ) to the carrier rapidities (A, ) : 

Classification of the Bethe states of a free radiation field 
(20) does not require separate consideration because it is ful- 
ly identical with the above classification of the Bethe states 
in the Dicke model. It must be stressed that in the limit 
L+m any solution of the system of equations (16) with an 
arbitrary set of strings characterized by carrier rapidities 
(A, ) corresponds to a solution of the system (22) with the 
same set of strings and carrier rapidities. 

Strictly speaking, the Bethe vectors in the Dicke model 
do not form a complete set. This can easily be shown by 
noting that the state (15) is projected only on the Dicke sub- 
space of the complete space of states in the atomic subsys- 
tem. Therefore, in the absence of an inhomogeneous broad- 
ening the Bethe vectors form a complete set only in the 
subspace of states of the "atoms + field" system, which is a 
direct product of the Dicke subspace and the complete space 
of the states of the radiation field. This circumstance togeth- 
er with an allowance for the closed nature of the Dicke sub- 
space relative to the Hamiltonian of the model is sufficient 
for investigating the time evolution of the system which is 
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initially (at t = 0) in one of the Dicke states. We can show (see 
Conclusions) that the problem of time evolution of an arbi- 
trary initial state of the atomic subsystem reduces formally 
to the problem of evolution in the Dicke subspace considered 
below. 

4. QUANTUM CAUCHY PROBLEM. FINAL STATE OF THE 
RADIATION FIELD 

We shall assume that initially (at t = 0) the atomic sub- 
system is in one of the Dicke states and the field in the vacu- 
um state, i.e., the state of the system, is 

The state (25) is an eigenstate of the integral of motion N 
(N lin) = m [in)) so that it can be represented by a superposi- 
tion of m-particle Bethe spectra 

where the summation is carried out over all possible solu- 
tions of the Bethe equations (16), i.e., over all sets of the 
quantum numbers { 1;. 1. 

The time evolution of the initial state 
YL (t ) = exp( - iHt )[in) subject to Eq. (14) can be represent- 
ed by 

(27) 
In the limit L+ w , the state (27) becomes 

where the summation is carried out over all the possible con- 
figurations of m-particle Bethe vectors; E = Bm,A,. 

In the derivation of Eqs. (28a) and (28b) we have gone 
over from summation over quantum numbers to integration 
of rapidities and summation over configurations. We have 
used Eq. (24) and have reduced the Jacobian of the transfor- 
mation [see Eq. (1 3)]. 

The expressions (28a) and (28b) determine completely 
the state of the "atoms + field" system at any moment in 

time t)O and, consequently, they give a solution of the quan- 
tum Cauchy problem for a given initial state (25). The phys- 
ical formulation of the problem of decay involves determina- 
tion of the characteristics of the radiation field, i.e., it 
reduces to a study of the asymptotic behavior of the expres- 
sion (28a) in the limit t--t W ,  when the excitation of the atom- 
ic subsystem is converted completely to the excitation of the 
field. 

We can easily see that in the limit t+ w the contribution 
of the atomic variables to the state Y (t ) decays exponentially 
and the state reduces to 

Y ( t )  -+ @ ( t )  =e-'Ho' I out), (294 
112 

dA,. . .dA, I out)= J 
(23t)" 

A ({A,}) I I f ,  O+) I & . .  .An).. 

The expressions (29a) and (29b) describe the final state 
of the free radiation field formed as a result of spontaneous 
decay of the initial excited state of the atomic subsystem and, 
consequently, they solve the Dicke problem in the basis of 
the Bethe functions of the free radiation field. 

The final state of the radiation field considered in the 
basis of the Bethe vectors is a sum over all possible configura- 
tions and, therefore, the radiation corresponding to a certain 
set of strings should be regarded as decay of the excitation of 
an ensemble of atoms in a certain channel. 

The probability of emission from n strings of lengths m, 
(I = 1, . . . , n)is given by the expression 

Thus, for example, the probability of decay accompanied by 
the emission of the longest (mth) string is 

m M! (2m-I)! 
W (m - tu string) = - 

2m-1 m! (Mi- m-1) ! 
(31) 

The number of possible decay channels rises very rapid- 
ly on increase in the number m. Nevertheless, the probability 
of decay of a completely excited atomic subsystem (m = M )  
in a channel representing the emission of the M th string is 
finite and dominant [W(Mth string) 2 1/21 in the limit 
M+w . On the other hand, the probability of emission of M 
single-particle strings is exponentially small: 

W[(m - 1) - tu string] 

In the opposite limiting case of a weakly excited subsys- 
tem (m(M) the emission of one-particle strings predomi- 
nates. According to Eq. (32), the probability of decay in such 
a channel tends to unity and the probability of decay in the 
other channels consequently tends to zero when M+w. 

Therefore, the distribution of the probabilities of decay 
in various channels depends strongly on the degree of initial 
excitation of the atomic subsystem. These results can be giv- 
en a natural physical explanation. The nonlinearity of the 
"atoms + field" system is due to the finite nature of the spec- 
trum of excitations in the atomic subsystem ( - M / 2 < S  M / 
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2). Therefore, the correlation effects appear most strongly 
for a completely inverted initial state. In the opposite case of 
a weak excitation the system "does not know" about the 
finite nature of its spectrum and its behavior hardly differs 
from the behavior of a system with an unbounded equidis- 
tant spectrum, i.e., from the behavior of a harmonic oscilla- 
tor. 

The wave function of photons in the Bethe state with 
rapidities collected in the mth string is 

The function (33) describes the momentum of a photon with 
its center of gravity X = (l/m)2xj moving in accordance 
with the wave vector K = mA. The pulse duration 
T,, =(xm)-' is inversely proportional to the number of pho- 
tons m. 

A study of the "out" state shows that in the case of a 
lumped system under discussion, the decay in any channel 
occurs in a time O(t 5 (xm)-', so that experimental identifi- 
cation of a specific channel requires determination of higher- 
order correlation functions. The physical quantities mea- 
sured in conventional experiments are governed by the sum 
over all possible configurations of the Bethe vectors. 

The problem of calculation of the physically observable 
quantities is very complex because of the enormous number 
of configurations if m is large. However, it is found that a 
superposition of the Bethe vectors which distinguishes the 
"out" states of the radiation field (29b) is characterized by a 
latent simplicity due to an interesting mathematical proper- 
ty, which we shall demonstrate by considering the decay of a 
doubly excited (m = 2) atomic subsystem. In this case, we 
have 

Here, the first integral corresponds to the contribution of the 
second string, whereas the second term represents the con- 
tributions of two one-particle strings. The first integral is 
governed by the contribution from two poles 
A '') = - ix(M - 1)/2 and A '2' = - ix(M + 1)/2 (Fig. 2). 
Simple calculations show that the contribution of the pole 

.A '2' cancels out exactly the second integral in Eq. (34) and, 
therefore, the state @ (t ) is given by the following simple ex- 
pressions 

OI 

@ ( t )  = 5 dx1 dx2$ ( x i ,  x2;  t )  E+ ( x i )  E+ (4 1 O), (354 
- rn 

FIG. 2. 

We can easily show that if m = 3, the state @ (t ) can be 
calculated similarly: it is still found by calculating the resi- 
due at the pole A "' = - ix(M - 2)/2 of the configuration 
nearest to the real axis when all three velocities are collected 
in the third string. 

We shall apply this rule to an arbitrary m, although 
unfortunately, we cannot provide a rigorous mathematical 
proof. If we consider in Eq. (28) the configuration with the 
mth string and if we calculate the integral with respect to the 
carrier rapidity including only the pole A'" 
= - ix(M - m + 1)/2 nearest to the real axis, we obtain 

OD m 

m ( t )  = 5 d x ,  . . . dz,$ ( { x i )  ; t )  TI E+ ( x i )  1 O), (36a) 
- m j = i  

This state is automatically normalized 
(@(t ) l@ ( t ) )  = (inlin) = 1, which provides an additional 
proof of the validity of the above procedure of summing over 
the Bethe vector configurations. One should point out that 
the application of this summation rule to the right-hand side 
of the expansion of the "in" state in terms of the Bethe vec- 
tors (26a) gives the correct initial expression (25). Therefore, 
the above property exhibited already by the initial superposi- 
tion of the Bethe states is retained also during the time evolu- 
tion of the system. 

Equations (36a) and (36b) describe completely the final 
state of the field in the usual basis of free photons and, there- 
fore, they solve explicitly the problem of Dicke superra- 
diance for a lumped system of two-level atoms. 

The wave function of the emitted photons $((xi j; t )  
describes a pulse of duration T, z(xm)-' ,  with the center of 
gravity X = ( l /m)2xj  distributed over an interval 
A z [xm(M - m +.I)]-'. In the case of a weakly excited ini- 
tial state of the atomic subsystem (m(M), we find that the 
corresponding ratio is rp /A -M> 1 and, therefore, we can 
observe experimentally only the exponential tail of the fall of 
the radiation intensity, exactly as in the case of conventional 
spontaneous emission from a system of m independent 
atoms. In the opposite limiting case of a strongly excited 
atomic subsystem (m 5 M )  the ratio is T, /A - 1 and a bell- 
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shaped time dependence of the radiation intensity can be 
detected. 

5. CALCULATION OF PHYSICAL QUANTITIES 

The expressions (36) allow us to calculate any physical 
characteristic of a radiation field. For example, the radiation 
intensity at a distance r from a system of atoms is described 
by the correlation function 

The process of calculation on the basis of Eqs. (36) and (37) 
reduces to (m-1)-fold integration with respect to the coordi- 
nates of all the photons, except one. After integration, the 
expression for I (r,t ) can be written in the form of a finite sum 
of elementary functions. We shall not follow this procedure, 
because it gives results obtained earlier from the equation for 
the density matrixp, of the atomic subsystem (see Ref. 3 and 
the literature cited there). 

We recall that in the derivation of the closed equation 
for the density matrixp, we need to use not only the physical 
conditions (1)-(3) governing the Dicke model, but also addi- 
tional approximations. In the cited papers these approxima- 
tions are the factorization of the total density matrix of the 
"atoms + field" system pA + , (Born approximation) 

QA+F ( t )  =<pa ( t )  @ IO)FF(OI (38) 

and the assumption that the atom-photon correlations dis- 
appear in a time considerably shorter than the characteristic 
time of a change in the state of the atomic subsystem (Mar- 
kov approximation). It should also be stressed that the use of 
only the vacuum term of the density matrix of the photon 
subsystem in Eq. (38) implies neglect of the contribution of 
the induced radiation emission processes. 

A rigorous solution of the problem shows that none of 
the approximations mentioned above applies to the exact 
form of the total matrixp, + , (t ): it cannot be factorized and 
the time scales of changes are the same for all the correlation 
functions of the "atoms + field" system. Nevertheless, if we 
take the trace of the photon variables in the exact density 
matrixp, + ,, we obtain an expression for the density matrix 
of the atomic subsystemp, = Tr, p, + ,, which satisfies the 
equation obtained using the Born-Markov approximation. 
Clearly, this can be explained by the extremely simple nature 
of the time evolution of the atomic subsystem, which can be 
described qualitatively as discontinuities in a ladder of lev- 
e l ~ . ' - ~  This is supported by a calculation of the spectral den- 
sity of the radiation 

r3 + C.C., 
k S I  j=k 

ia+ (rj+rj-*) 12 

which corresponds to a system of coupled transitions in the 
atomic system with the width of the j-th level described by 
rj = x, (M - j + I), identical with the width calculated by 
Dicke' in the second order of perturbation theory. 

6. INHOMOGENEOUS BROADENING 

We shall consider now a more common physical situa- 
tion, namely the case of an inhomogeneous broadening of a 
transition line of a system of atoms. The Hamiltonian of the 
"atoms +fieldv system differs from Eq. (la) by an addi- 
tional term 

Y  AH=^ A ~ ( s ~ ~ + ~ / ~ ) ,  
a-i 

(40) 

where A, = w, - w12 is the detuning of the transition fre- 
quency from the average value 

In accordance with the usual physical conditions, we shall 
assume that [A, I (w,,, which ensures the validity of the res- 
onance approximation. 

The procedure for determining the many-particle ei- 
genstates of the system is similar to that described above. 
The one-particle state [A ) is determined by the equations 

In the case when all the values ofA, are different, the system 
(41) has no degenerate nonradiation solutions. The only so- 
lution is 

k (A) -ixM/2 
f(h, X) =e ( x ~ o )  + 0 (x=-O), k (A) +ixM/2 ,,- (42) 

X "  
f (A, 0) ='Mf (A, Of) +f (h, 0-1 I ,  & = - h- A, f (A, O), 

wherek -'(A ) = (l/M)Z[l/(R - Aa)].UsingEq.(42),wecan 
represent the state [A ) in the form of Eq. (8), when now we 
have 

1 
r+ (h, x) =E+ (x) +XLh8 (I) Z-S,,+. 

A-Aa (43) 
a= 1 

The many-particle eigenstates of the system still have the 
form given by Eq. (15), where the quantities f (A, x )  and 
r+(R, x )  are given by Eqs. (42) and (43). The classification of 
the Bethe states does not differ from that described above. 

The basis of the Bethe states obtained here can be used 
to describe the time evolution of an arbitrary initial state of 
the atomic subsystem. We shall give here the results for a 
simple special case of a system of two atoms (M = 2), which 
is of some intrinsic interest and which makes it possible to 
grasp the behavior of a polyatomic system if we use the re- 
sults obtained above. 

1) We shall assume that at t = 0 a system of two atoms is 
singly excited: 

In the final state (t-tco) the phonon wave function is 
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where 

q*= [-ix* ( A 2 - x 2 )  '"1 / 2 ,  Im ( A 2 - x Z )  '"20. 

If the detuning is sufficiently large (A > x), the intensity 
of the radiation generally exhibits oscillations of frequency A 
with a decrement x .  

2) In the case when t = 0, both atoms are excited 
(tin) = s;s: 10)) and the final state of the radiation field is 
described by the expression 

xAZ 
cD ( t )  = - 7 [ d x ,  dxz8 ( z ,<xz< t )  

The time dependence of the radiation intensity is 

1 
+ e-2in-<t-xl+ -3e-2in+<t-=) I}. 

'l- 
(47) 

It is clear from this formula that in the case of a small inho- 
mogeneous width (A < x)  the fall of the intensity is exponen- 
tial, whereas for A > x the decay is accompanied by oscilla- 
tions of frequency (A - x2)'I2. We cannot exclude the 
possibility that the experimentally observed jagged form of 
the intensity of cooperative is associated with a 
fairly strong inhomogeneous broadening in the system. 

7. CONCLUSIONS 

We obtained an exact solution of the Dicke model in its 
standard formulation. The approach employed is essentially 
a generalization of the Wigner-Weisskopf theory15.10 to the 
case of an arbitrary number of atoms. Naturally, we must 
bear in mind that the Dicke model allows only for a reso- 
nance interaction of photons with two-level atoms and it 
does not describe, for example, the dipole-dipole interaction 
due to virtual nonresonance photons. The problem of the 
influence of the dipole-dipole interaction on the cooperative 
emission has been discussed frequently in the literat~re."~ 
An allowance for this interaction disturbs the complete inte- 
grability of the model; its influence can be investigated, in 
principle, by the methods of perturbation theory using the 
exact Bethe states of the Dicke Harniltonian obtained by us. 

We shall conclude by noting that the decay of the initial 
excited state (4) of the atomic subsystem, belonging to the 

Dicke subspace, is considered here. V. Ya. Chernyak drew 
our attention to the fact that the above solution of this spe- 
cial Cauchy quantum problem in fact provides a complete 
description of the evolution of an arbitrary initial excited 
state of the atomic subsystem. An arbitrary state of a system 
of two-level atoms can indeed be expanded in terms of irre- 
ducible representations of the SU (2) group corresponding to 
specific values of the "spin." The evolution of a state corre- 
sponding to a specific spin S is identical with the evolution- 
described above--of a Dicke state with an effective number 
of atoms Me, = 2s. 

The authors are grateful to V. M. Agrapovich, P. B. 
Wiegmann, V. E. Zhakharov, I. B. Levinson, E. I. Rashba, 
and V. A. Fateev for their interest and valuable advice. 

Note added in proof (October 3, 1984) 
One of the authors (V. I. Yu.) has now proved the valid- 

ity of the summation rule used above (Sec. 4). It is a conse- 
quence of a representation of an arbitrary physical state as a 
superposition of generalized Bethe vectors of a given config- 
uration of strings (without summation over the configura- 
tions!). 

"we take this opportunity to thank L. D. Faddeev and E. K. Sklyanin for 
pointing this out to us. 
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