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In the framework of the generalized Maxwell-Bloch equations we consider the propagation of 
polarized ultra-short optical pulses in a two-level medium with energy levels which are degener- 
ate with respect to the total angular momentum components. These equations allow a Lax repre- 
sentation only for the 1 4  and 4-4 transitions and can be completely integrated by the inverse 
scattering method. We find soliton solutions-the analogs of the 2n pulses and we study the result 
of their collisions, in particular, the change in the polarizations of the colliding solitons. 

INTRODUCTION 

The self-induced transparency (SIT) effect1 consists in 
the propagation of a powerful ultra-short pulse (USP) of 
light through a resonance medium without change of shape 
or energy losses. The group velocity of such a pulse (also 
called 277- or SIT-pulse) is less than the phase velocity of light 
in the medium and depends on the length of the 2n-pulse: the 
shorter the 2n-pulse, the higher its velocity.' When two 2n- 
pulses propagate in the medium with different lengths the 
case is possible when the second of them overtakes the first 
and a "collision" takes place from which the 277-pulses 
emerge without change in their shapes or velocities. This 
fundamental property of SIT pulses has been studied many 
times, both the~retically'-'~ and experiment ally."^'' From 
the mathematical point of view it is the consequence of the 
complete integrability of the Maxwell-Bloch equations 
which describe the SIT effect in two-level media with nonde- 
generate resonance levels.'-' The SIT pulses correspond to 
the single-soliton solutions of these equations and the "colli- 
sional" properties reflect the "decay" of two-soliton solu- 
tions into single-soliton ones (see, e.g., Ref. 7). 

In actual media degeneracy of the energy levels is natu- 
ral and this manifests itself in special features of the propaga- 
tion of polarized optical pulses in them. The effect of the 
degeneracy of the resonance levels on SIT has been consid- 
ered bef~re; ' , '~- '~ however, the polarization of the USP was 
always fixed and one was therefore not able to study polar- 
ization effects of SIT in all completeness. These effects mani- 
fest themselves especially clearly when the 277-pulses with 
different polarizations collide and that has up to the present 
time not been studied. One of the reasons for this situation is 
that there are no exact solutions of the Maxwell-Bloch equa- 
tions taking into account the degeneracy of the resonance 
levels. 

In the present paper we find a Lax representation and 
we use the inverse scattering method to prove the integrabi- 
lity of the Maxwell-Bloch equations, describing SIT in the 
case of arbitrary polarizations of the light pulses in reso- 
nance with the quantum transitions 

between levels which are degenerate with respect to the com- 

ponents of the indicated angular momenta j, and jb. We 
allowed for arbitrary inhomogeneous broadening of the 
spectral lines of the resonance transition and detuning from 
resonance. We give in the first two sections all necessary 
information about the inverse scattering method applicable 
to the present problem. In sections 3 and 4 we study in the 
same way the polarization features of the collisions of SIT 
pulses (solitons) in the case of transitions with a change of 
angular momentum 1-0 and 4-4. We establish that the 
nature of the collisions of USP depends on their polarization 
and on the kind of transition. In the case of the 1 4  transi- 
tions there occurs a rotation of the polarization vectors of 
the solitons which collide with different linear polarizations. 
The polarization of circularly polarized solitons is not 
changed. In the case of the &--ti transition there are no ellipti- 
cally polarized solitons at all. Differently linearly polarized 
solitons retain their initial polarization after collisions. 
However, a collision of a linearly polarized soliton with a 
circularly polarized soliton leads to the appearance of three 
circularly polarized solitons. In this way it turns out that 
only circularly polarized solitons are stable. 

All results obtained can be checked experimentally and 
can be in nonlinear spectroscopy. They are also of interest by 
themselves as in the case of the 1-0 transitions they are a 
new example of a completely integrable system of nonlinear 
evolution equations, and in the case of the 4-4 transition 
they give a new physical interpretation of two independent 
sets of equations of which the integrability is known. 

1. GENERALIZED MAXWELL-BLOCH EQUATIONS AND 
THEIR LAX REPRESENTATION 

Let there propagate in the direction of the z-axis 
through a resonance medium, which is an ensemble of two- 
level atoms, a light pulse with an electric field strength of the 
form 

~ = 8  exp [ i ( k z - a t )  ]+c.c. 

The carrier frequency o = kc of the pulse (1) is close to the 
frequency o, = (Eb - Ea ) / f i  of the atomic transition j, +ja 
between the energy levels E, and Eb which are degenerate 
with respect to the components m andp of the total angular 
momenta j, and jb . 
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The evolution of the pulse (1) in the resonance approxi- The initial and boundary conditions for (1) have the 
mation is described by the generalized Maxwell-Bloch equa- form 
tions (see, e.g., Ref. 16) which in dimensionless form can be 
written as E I .r=-~=Rw(r--m=O, 

elc=O=&O ( z )  . [d+ d  z i ( q - A )  ] R , = I ~  e ,  (z J ~ ~ R , . , -  ~R,~J , , ? . ) .  
P m1 PI The point 5 = 0 corresponds to the point where the excited 

d  pulse with an initial profile described by the function ~ ~ ( 7 )  
- I?..-=i x ( & ~ I ~ ~ ~ R , , ~ ~ - E J ( . ~ I ~ ~ ~ ) ,  
d Z  enters the resonance medium. 

PP Equations (2) are a very complicated nonlinear set 
d which have so far not been studied for the case of arbitrary 

- R P , , ~ = i ~  ( ~ ~ J p m ~ ~ m p ~ - ~ ~ ~ ~ m l ~ ? m ) ~  
d T (2) angular momenta. It is, however, necessary to emphasize 

qm that even for the simplest resonance transitions 1-0 and 

In these equations the amplitude 2 of the light pulse (I), the 
density matrices p,, and p,,, characterizing the states of 
the atom in the upper and the lower resonance levels and also 
the optical coherence matrixp,, which describes the optical 
transitions between the resonance levels are connected with 
the quantities E, R,,. , R,,. , and R,, through the relations 

i-+i Eqs. (2) do not reduce to the SIT equations considered 
earlier1-l5 if only the polarization vector of the light pulse 

where 1 is independent of both T and 5, is not fixed. 
In order to apply the inverse scattering method to the 

solution of the set of Eqs. (2) it is necessary to write them in 
the form of a condition of compatibility of a set of linear 
equations 

here d is the induced dipole moment of the jb-+ja transi- d  
- Q=LQ, 

tion,17 31- 

where Nb and Na are the stationary populations of the upper which can be expressed by the matrix equation 
and lower resonance levels when there are no external fields, 
to = (3fi/212oId 1 2 ~ o ) " 2  is a constant with the dimensions of 
time, q = kvt,, f (q) = Tor- 'I2 exp[ - (vT,)~] is the Maxwell a2/a~=aAlat-+AE-ZA. (4) 

distribution for thez-component v of the velocity of the reso- 
nance atoms which have u as their most probable velocity, ~ e t  the matrices 2 and; (Lax pair) depend on the quantities 
To = l/kuto, E, E*, R,,, Rmp, RPp,, and R,,, in the following way: 

A= ( m - u o )  to, J m P  ( -  ( ja " ) -m Q P 
A = ( {z ( U f i m R w + U m J 3 m v )  + Ummr R m m .  

wm m ' 
We indicate by the index q the spherical components of the 
vector E (Ref. 17) and the angle brackets indicate averaging 
over the thermal motion of the resonance atoms: + r, ~ ~ 4 ~ ~ r } )  . (5) 

w ' 

DD 

( R u m )  = 1 f ( q ) R f i r n  dq .  where X, Yq , Zq , Up,, U,,. , and U,,, are square matrices of 
-* order 2(ja + jb + 1). In this case Q is a 2(i, + jb + 1) compo- 

nent column vector. Substituting (5) into (4) and using (2) to 
We have omitted in Eqs. (2) the relaxation terms as we eliminate the derivatives with respect to T and f we can2nd a 

consider here only USP the lengths of which are much ~t of algebraic equations for the matrices occurring in L and 
smaller than all characteristic relaxation times in the medi- A from (5). This set turns out, however, to be soluble only for 
um. the cases ja =jb = t ;  ja = 1, jb = O  and ja =0,  jb = 1. In 
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that case 

We have written down here only the nonvanishing matrix 
elements. The indices b (b ') and a(a') vary, respectively, with- 
in the limits - jb ( b ~ ' ,  and - ja (aq;  while R is an arbi- 
trary parameter. 

The original set (2) of Maxwell-Bloch equations can 
thus for the indicated cases of ja and jb be solved by the 
inverse scattering method with the spectral problem (3a) 
while the evolution of the scattering data is determined by 
Eqs. (3b). It is important that the polarizations of the solitons 
may be arbitrary and this makes it possible to study the SIT 
polarization effects. Even in the very particular cases these 
effects turn out to be nontrivial. 

2. NECESSARY INFORMATION ABOUT THE INVERSE 
SCATTERING METHOD 

We choose the quantization axis along the direction of 
propagation of the light wave (the 6-axis). As the electromag- 
netic waves considered are transverse the interaction with a 
quantum system with such waves is accompanied by transi- 
tions with a change in the angular momentum component by 
f 1 .  This enables us to simplify the Lax operators (5) and (6) 

for each of the h+J and 1-0 transitions. 
We consider first the transition jb = b j a  = 1 (one 

considers the transition jb = l+ja = 0 similarly) and intro- 
duce the notation 

In that case it follows from (5) that 

where in Eqs. (3) with the matrices2 and2  in the form (7) the 
vector Q has three components. 

The spectral problem (3a) with 2 in the form (7a) was 
studied in detail in Ref. 18 where the self-focusing of a polar- 
ized light beam in a Kerr medium was considered. For the 
following analysis of the SIT effect considered here it is nec- 
essary to give some information about the direct and the 
inverse scattering problem. l8 

The Jost functions for the spectral problem (3a) and (7a) 
4 ' i )  (r,{ ) and !P") (r,{ ) (i = 1 to 3) are determined as the funda- 
mental solutions of (3a) for real R = { with the following 
asymptotic behavior 

c ~ ( * ) + ~ c l ) ~ - i t - ,  ( p ( ~ ) , ~ ( z ) ~ i e . ,  mcs)+g(3)ei~7, T+-= 

y (l)+g( i )e- iE~,  y ( z ) , g ( z ) e i E r  y ( s ) + g ( S ) e i E l  , Z'w. 

The quantities @(k' ,  !P(k ' , andg(k ) are three-component col- 
umn vectors and g(k) has an ith component gik) equal to Ski. 
The scattering matrix So is given in the basis of the Jost 
functions by 

The eigenvalues of the spectral problem (3a) are found as the 
solutions of the equation S, ,(A ) = 0. If the e * decrease suffi- 
ciently rapidly as Irl-~ thenS, ,(A ), @ "', P'", and !P'3' can 
be analytically continued in the upper half-plane of the com- 
plex A-variable, and @ '", @ '3', and Y "' in the lower R-half- 
plane. 

Letil, bethezeroesofS,,,i.e.,S,,(R,)=O,n = 1 , .  . . , 
N (Im A, > 0); then 

The scattering data (A, ) , So (6 ), C yi, and C ';;) are suffi- 
cient & determine the "potentials" e,  of the operator a /  
a7 - L (R;e+,e-). The solution of the inverse scattering 
problem is formulated on the basis of singular integral equa- 
tions.I8 We shall use here the alternative approach based 
upon the Gel'fand-Levitan-Marchenko equations which 
when applied to the present problem have the form 

-KCi) (z, y )  = 2 Pa ( x + y )  gtD)+ f: ~ K ( R  ( x ,  z )  F,. ( z + y )  dz ,  
p=z B-2 I 

m 

K(p) ( x ,  y )  =F, ,*(x+y)  g(l)-t  K ( , )  ( x ,  z )  PI{ ( z f  y )  d z ,  8=2,3. 
I 

Here 

and K '"(x,~) and K V )  (x,y) are three-component column vec- 
tors. The potentials e * (r,6 ) can be expressed in terms of the 
solution of these integral equations as rl+r + 0: 

e+ (z) =-2 lim K,'~' (7, T I )  =2 lim K:~" ( T ,  T I ) ,  

e- ( T )  =-2 lirn K," ( T ,  7')  =2 lim K,'"'(T, T')  . 
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If there is only one eigenvalue A, = iu we have totic behavior 

F i e  ( y )  =-iCpe-au, Sii (h, hi) = (h-io)/(hfio) , 10) 

St6 (h, hi) 'S8i (h, at) =0, 

2io CB*CB' 
Sba' (1, hi) =6eBr + -' 

h-ia IC212+lCJ1" , B, Bf=2,3. where gkl = Sik, i, k = 1, 2. The scattering matrix is the di- 
rect sum of S, e S-2 X 2 matrices such that 

The solution of the Gel'fand-Levitan-Marchenko equations 
gives 

a 

m i "  (z, E) = s., (El '4'2' (s E l ,  k=1,2. (8') 

e- (z) =-2iCz'~ (z) , e+ (z) =-2iCJ'x (T) , 
x (T) = [e20r+e-2ar (I C2 1 '+I Cs 1 ') /402] -*, 

C,'=~UZ-~ exp ( ~ U Z ~ ) ,  Cs*=2uli exp (20zo) . (11) 

The analytical properties of the Jost functions and of the 
matrices Sik , (6 ) are the same as in the normal Zakharov- 
Shabat spectral p~blem.19*20 The discrete spectrum of the 
operator d /d r  - L is determined by two sets of numbers 
An + and A,- such that Sll + (A,, ) = 0, while 
Im (A,, ) > 0. One can write the eigenfunctions of the dis- 
crete spectrum in the form 

Expression (1 1) is the analog of the McCall-Hahn 2a-pulse 

e (z) =201 sech 20 (z-z,) ( 12) 

with length 1/20 and unit vector polarization 1. 
The evolution of the scattering data with < is given by 

the standard methodsI9 from Eqs. (3b) and (7b): 
a:' (z, An,) =cC' YY' (z, A,,) . (9') 

The construction of the "potentials" e * (7) from scattering 
data (A, * ,n = 1, . . . ,N;C';' ,Sv, g ) )  is realized using the 
functions K * (r,rl) with rf+r + 0: 

e, (t) --2 lim K, (r, i), 

which satisfy the integral equation (7' > r) 

A h  

In the casej* = J-tj, = 4 the matrices L and A have the 
form 

where 
where 

The dependence of the scattering data on the <-variable 
is given by the expressions 

The spectral problem (3a) (like the second linear Eq. (3b) of 
the inverse scattering method) now splits into two indepen- 
dent problems which have been studied before:19s20 where w(A ) is given in (13c). Single-soliton solutions in this 

case of a resonance transition correspond to a situation 
where each of the branches of the discrete spectrum consists 
of a single point A , , = iu , : 
e, (z, t,) =-2io, sech (20, [z-f Re w (ia,) /a*-z,,] ), (16) 

where p, are two-component column vectors. The Jost 
functions @ '$ ( ~ $ 6 )  and Y (1 (r,f ), A = 6 are determined for 
Im A = 0 as the fundamental solutions of (14b) with asymp- 

where 
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3. COLLISIONS OF POLARIZED SOLITONS (1 .4  case) 

Let at a time interval r,-r, at the entrance 5 = 0 of a 
resonance medium two differently polarized solitons be inci- 
dent of lengths 1/20, and 1/2u2 and with unit polarization 
vectors 1"' and 1"': 

p,, (T) =20,1(') sech 201 (z-zi) + 2az1(z) sech 2.2 (z-zz). (1 7) 

On the r-axis the first pulse is positioned to the left of the 
second one when T2 - rl) 1/2un, n = 1, 2. If u2 > the 
propagation speed v, of the second soliton is larger than the 
speed u, of the first soliton, 

(The speeds are here dimensional quantities.) As the solitons 
propagate in the medium the second soliton therefore over- 
takes the first one and, colliding with it, goes on so that as 
(+ co the second pulse turns out to be to the left of the first 
one on the T-axis: 

E (7, c) =20~l'(')e@~ sech 20, (T-T,') 

+2oZ1'(')e'~ sech 2 q  (z-zz') . (18) 

Here 1'") and 11'~) are the unit polarization vectors of the first 
and the second 277 pulses after the collision, 

the rnO are constants. Such a picture of the collision follows 
from the fact that the Maxwell-Bloch equations have two- 
soliton solutions with asymptotic forms which are the pulses 
(17) considered here. However, instead of a direct study of 
the two-soliton solution to determine the result of the colli- 
sion of these pulses it is simpler to use the Zakharov-Shabat 
method.,' 

If 5 = 0, in the region r- - co the Jost functions 
@ ")(r,ia,) and @ ( 1 1 ( ~ , i ~ 2 )  ofthe spectral problem (3a) and (7a) 
have, respectively, the form g'" exp(a,r) and g"'(u2r). In the 
region between the solitons (r14r(r2) we have according to 
(8) and (9)  

W1) (2, ioi) = [c~:"~(')+c$) g(S)]exp (-o,z), 
a)(') (2, itsz) =Sii (iu2, iol) g(') exp (0'~). 

Here S,,(iu,,i~,) is given by Eq. (10) and the superscript of 
the coefficients C,, and C13 indicates the number of the soli- 
ton. When the Jost functions occurring on the right-hand 
sides of these expressions pass through the second soliton the 
quantities g'2' exp( - a , ~ )  and g'3' exp( - a,r) are trans- 
formed according to (8) andg"' exp(a,r) according to (9). We 
therefore have as 7 b T 2  

I 

(1) m(*) iol) = r( S ~ I  (to,, io2)clI g(8') exp (-on), 
L6'-2 

If 5- W ,  the order of the solitons is changed into the 
opposite one. In that case one can find similarly that as 

The prime at the quantities SkB. (ia,,iu,) and C indicates 
that when they are calculated, using Eqs. (10) all quantities 
refer to the solitons after their collision. 

Comparing (19) and (20) and using the explicit form of 
$, and Cpj we find the following connection between the 
polarization vectors 1'") and 1'(") : 

where 

Ifbefore the collision the pulses (17) were linearly polar- 
ized, according to Eq. (2 1) they will also be linearly polarized 
after the collision. The polarization vectors of the first and 
the second solitons are in this case rotated over different 
angles ,y , and x,: 

Nonetheless as a result of such a rotation the angle between 
the polarization vectors of the solitons is unchanged and 
equal  to^. It follows from (23) that there is no rotation of the 
polarization plane  if^ = 0 o r x  = 77/2, i.e., if the pulses (17) 
are polarized colinearly or at right angles. Circularly polar- 
ized solitons also collide without a change in their polariza- 
tion. 

As a result of the collision of a linearly polarized soliton 
with a circularly polarized one two solitons with elliptical 
polarization are formed. The parameters of the polarization 
ellipses follow from (19) and are determined by the lengths of 
the pulses and the magnitude of the induced dipole moment 
of the 1 4  or 0 4 1  transition. 

For any polarization in the 1 4  transitions the pulses 
(17) behave as repelling particles: the overtaken soliton gets a 
positive increase in its coordinate r10 > 0, while the overtak- 
ing soliton has a negative change r,, < 0. 
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The behavior of the polarizations found here is indepen- 
dent of the degree of inhomogeneous broadening of the spec- 
tral line and of the detuning. The latter affect only the propa- 
gation speed of the soliton (as long as the resonance 
approximation is valid). 

4. COLLISION OF POLARIZED SOLITONS IN THE 4-4 CASE 

It is a peculiar feature of the 1-1 case that left- and 
right-hand circularly polarized waves propagate indepen- 
dently, which is reflected in the reducibility of the operators 
(5). This fact determines both the polarization of the solitons 
and their polarization properties when they collide. 

It follows from Eq. (16) that only when a+ = a- = a 
the electromagnetic pulse corresponding to the soliton (16) 
will propagate as a single unit with velocity 

and with a length of 1/2ain that case. If the initial light pulse 
were linearly polarized the equality of a+ and a- is guaran- 
teed (in the general case An + = A, - ; n = 1, . . . ,N). If, 
however, the incoming pulse is elliptically polarized, we 
have a+ #a- and the situations when a+ #O, a- = 0 or the 
other way round, are possible. It is clear from (16) that the 
propagation velocities of the solitons e+ (T,C ) and e - (~ ,<  ) are 
different (like their lengths). The elliptically polarized initial 
USP thus splits up into a pair of (left- and right-handedly) 
circularly polarized solitons with lengths 1/20, and propa- 
gation speeds v, = c[l + Re w(ia, )/&, I-'. When one 
of the eigenvalues a * is equal to zero there appears only one 
circularly polarized soliton. In order that such an evolution 
of an elliptically polarized incoming pulse occurs it is neces- 
sary that the area under the envelopes e + ( ~ )  or e-(7) be less 
than P. This result follows simply from the McCall-Hahn 
area theorem1 for SIT in the case of nondegenerate reso- 
nance levels. Finally, a circularly polarized outgoing USP 
evolves into a circularly polarized soliton (or N, solitons and 
N2 breathers in the general case, where N = N, + 2N2). 

In the case of a collision of differently linearly polarized 
solitons (ai + = ui - ; i = 1,2; a, +a, f ) one can easily 
show by using a method analogous to the one given in the 
preceding section that the polarization of the solitons re- 
mains unchanged while the solitons themselves undergo ad- 
ditional coordinate shifts T,, and T,, given by Eqs. (20) with 
b = 1, a, = a,, , a, = a2 + . A similar result holds when so- 
litons with identical circular polarizations collide 
a,, #a2, , a, = a, = 0. The collision of left- and 
right-hand polarized solitons is not accompanied at all with 
any effects. 

An interesting picture will be observed when a linearly 
polarized soliton collides with a circularly polarized soliton 
(a2+ =a2-anda , ,  =O,a,-+Oora,- =O,a,+#O).Let 
a, > a, and let the linearly polarized soliton overtake the 
circularly polarized soliton 

e, (T) =2o,lCir~ech 20, (T-T~) +2'a2lx sech ~ G Z ( T - T ~ ) ,  (24) 

where lCic = 1 = - 1 + l Y  for right- and 
lci, = 1- = (1, - 1lY)/q2 for left-hand circular polariza- 

tions, while 1, and ly are unit vectors along Cartesian axes. 
To fix the ideas we put l,,, = 1,. Performing the piocedure 
of taking the Jost functions @ (?,An , ) through the soliton 
potentials (24) we can obtain expressions similar to (19) and 
(20). It follows from these expressions that the first soliton 
after the collision, retaining its shape, is shifted along the T- 

axis by an amount 

The left-hand polarized part of the second soliton is shifted 
by an amount 

along the T-axis whereas the right-hand polarized part of the 
same soliton is shifted by an amount 

The differently circularly polarized components of a linearly 
polarized soliton are thus separated. As the result of a colli- 
sion of a circularly polarized soliton with a linearly polarized 
one three circularly polarized solitons have thus been 
formed (the total numbex of points of the discrete spectrum 
of the operator 8 / 8 ~  - L (A,e+,e-) has, of course, not been 
changed): 

E (T, 5) =2ail+ exp (irp,) sech [2a1 (T-T,-AT,)] 

+2021- exp (irpz) 

Xsech [2a2 ( T - T ~ - A T ~ )  I 

where 

Two (of the three) solitons formed move with the same veloc- 
ity and they are farther separated the smaller the difference 
in velocities of the colliding solitons. One can easily under- 
stand these results if we consider a linearly polarized pulse as 
a combination of independent left- and right-hand circularly 
polarized waves. When a linearly polarized soliton interacts 
with a soliton with circular (e.g., right-hand) polarization the 
right-hand polarized component of the first soliton interacts 
with the second soliton like repelling particles while the lefi- 
hand polarized component evolves in the usual way. Due to 
this the left-hand polarized components of the first soliton 
are spatially separated after the collision and as the result of 
the collision the three solitons (25) are formed which are 
circularly polarized. 

A similar result ensues when a circularly polarized soli- 
ton overtakes and interacts with a linearly polarized soliton. 

CONCLUSION 

In contrast to the well-known solitons of the Korteweg- 
de Vries, the sine-Gordon, and the nonlinear Schrodinger 
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equations the soliton solutions of the generalized Maxwell- 
Bloch equations found here have an additional parameter- 
the polarization. Collision of two solitons now leads not only 
to a phase shift but also (in general) to a rotation of the polar- 
ization vectors. A similar situation is encountered in the 
problem of the self-focusing of a polarized light beam. l8  Boo- 
meronsZZ also are polarized solitons but so far they have not 
found a physical interpretation. Solitons in SIT theory in a 
three-level nondegenerate medium8-lo called simultons in 
Ref. 8 can be interpreted as polarized  soliton^'^ if we take the 
relative amplitudes of the pulses which form the simulton as 
the components of the polarization vector. The solitons 
studied in the present paper complete this small list. We have 
not considered here the problem of finding the infinite series 
of constants of the motion although it would not be too com- 
plicated to do this on the basis of the Lax representation 
which we found. 

The fact that for arbitrary j, and j, we did not succeed 
in finding a Lax representation serves, apparently, as an in- 
dication that the Eqs. (2) in the general case are not integra- 
ble. Although one can find sometimes by standard methods 
(see, e.g., Ref. 1 for j, = l+jo = 1 or Ref. 13 for 
j, = 2+j0 = 2) stationary solitary wave collisions of such 
waves, especially of differently polarized ones, lead, evident- 
ly, to their disintegration. It must be of great interest to study 
such a process by numerical means. 
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