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The semiclassical approximation is used to show that Dicke superradiance is a consequence of the 
dissipative instability of waves in an inverted two-level medium. This instability is related to the 
existence of negative-energy polarization waves and appears as a result of losses by emission of 
electromagnetic radiation through the boundaries of the specimen. Superabsorbance, which is the 
analog of superradiance and results from the development of dissipative instability due to volume 
ohmic losses, is also examined. The analysis is performed for an unbounded homogeneous medi- 
um, a one-dimensional model of a bounded medium, and a three-dimensional specimen in the 
form of a sphere. 

51. INTRODUCTION 

Superradiance is produced in macroscopic specimens of 
an inverted medium when the concentration Nof active mol- 
ecules is high enough.'-3 Decay of the excited state then oc- 
curs collectively in a time T that is much shorter than the 
characteristic time T, for the spontaneous decay of an isolat- 
ed molecule. The internal energy of the molecules stored in 
the specimen is radiated in the form of a short electromag- 
netic pulse whose power Q exceeds by several orders of mag- 
nitude the power Q,,,,, of noncoherent spontaneous emis- 
sion by the same number of isolated molecules (see Fig. 1). 
The delay time to of the superradiant pulse relative to the end 
of the pump pulse is usually greater than the superradiant 
pulse length r by a factor of 10-20. The superradiant 
(phased) state of the set of molecules is formed during this 
time. In the initial stage, the phasing of the molecules is 
quantum-mechanical in character. However, when a suffi- 
ciently large number of photons appears, the electromagnet- 
ic field and the polarization of the medium become classical 
and the development of the superradiant process may be ex- 
amined in the semiclassical approximation over most of the 

netic (B) fields satisfy boundary conditions that demand the 
continuity of tangential components. The possible presence 
of ohmic dissipation due to the electrical conductivity a of 
the "background" medium is taken into account in (1.1). The 
active medium is an isotropic two-level molecular gas with 
transition frequency wo and homogeneous line broadening 
1/T2. It is described by the quantum-mechanical equations 
for the mean polarization P and population difference A n  
per unit volume: 

a A N  AN-ANo 2 aP 
-=- + - E - .  

a t  
(1.3) 

T* hoo a t  
The coefficient relating the polarization and the field in (1.2) 
is determined by the square of the so-called plasma (cooper- 
ative) gas frequency w, : 

oCZ=-8nd%Noo/3h, (1.4) 

where d is the high-frequency dipole moment of the molecu- 
lar transition. In the inverted gas, AN > 0 and o: < 0. 

interval to (Refs. 2-5). 
§2. DISSIPATIVE INSTABILITY OF TRANSVERSE WAVES IN A 

In this approximation, the high-frequency electromag- HOMOGENEOUS INVERTED MEDIUM 
netic field is described by the Maxwell equations 

1 d B  
We shall consider plane waves E = i[Eo exp( - iwt 

rotE=--- r o t B = -  ' a(E+'nP) + EE. (1.1) + ikr) + c.c.] with a real wave vector k in an unbounded 
c d t '  c dt  c homogeneous medium with fixed inversion AN. In accor- 

On the surface of a free specimen, the electric (E) and mag- dance with (1.2), the electromagnetic properties of the active 

D 
medium will be described by the permittivity 

According to (1. I), the transverse-wave dispersion is deter- 
mined by 

C2kZL 2 
-a &(a), (2.2) 

which is a quartic in the complex frequency o = w' + ion .  
Let us rewrite it in the following form: 

5 t o  r, t i i 
FIG. 1. Emission-pulse profiles Q (t ) for superradiant decay and Q,,,, (t ) ) (of 

-ao) =020.'. (2.3) 

for incoherent spontaneous decay of a specimen of an inverted two-level 
medium. Assuming that 1/T2wo, 2rm/00, Jw, I/w,( 1, and using the 
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resonance approximation Iwo - ck ( (61, for the roots w =;wo 
(i.e., for waves propagating in a single direction), we find that 
the first and second factors in (2.3) can be replaced with 2w. 
Since (1 + i4ru/w)'lZ =; 1 + i.2ru/w), the dispersion rela- 
tion defines two modes, namely, the electromagnetic wave 
and a polarization wave (Fig. 2)" 

When the directions of propagation of the two waves are 
reversed, the frequencies are still given (2.4) except that the 
sign of the real part is reversed. 

For a given field amplitude Eo, the amplitude of the 
polarization of the active medium in the polarization wave is 
greater (usually much greater) than in the electromagnetic 
wave.2) This is readily verified by substituting the eigenfre- 
quencies w = we,  of the normal wave (2.4) into the expres- 
sion for the complex polarization amplitude 

It is clear from (2.4) that only one of the two waves can 
be stable for given wave number k, i.e., either the electro- 
magnetic wave or the polarization wave is stable. This is also 
valid outside the resonance region (ckkw,), which follows 
from the Vieta relation for the sum of two parts of complex- 
conjugate roots of the exact dispersion relation (2.2): 
w: +a;= - 1 / T 2 - 2 ~ < 0 .  

The maximum wave growth (decay) rates are reached at 
the line center for ck = (wi + 1/T: )'I2 = I we ,  I and are giv- 
en by 

Their magnitude determines the evolution of the waves and 
depends on the difference 1/T2 - 2ru. 

Usual treatments of maser (induced) field i n~ tab i l i t y~ ,~ .~  
are concerned with an electromagnetic wave we (k ) under the 
conditions of strong relaxation of polarization and weak- 
field dissipation: 1/T2 > Iw, 1/2 > 2va. According to (2.6), 
the maser growth rate is 

(for l/Tz) lw, 1/2). The polarization wave w,, (k ) then de- 
scribes the highly attenuated polarization oscillations with 
decay rate 1/T2, and is of little interest. 

However, let us now turn to the case of weak relaxation 
(and strong inversion) when the inequality l/Tz < Iw, 1/2 
that characterizes ~uperradiance~,~ is satisfied. To get our 
bearings, we note that, in the usual collisional relaxation in a 
gas, for which 1/T2-<v,N, this case can occur when the 
degree of inversion is not too low: AN/N2 5.10-lo N/w, 
(the cross section of the molecules is taken to be t$ =; 10-l4 
cm2, their thermal velocity v, - 10' cm/s, and the transition 
dipole moment is d - 1 D). 

When field dissipation is small ( 2 ~  < l/Tz), the maxi- 
mum growth rate (2.6) exhibits anomalous saturation: 

(for 1 /T2~lwc 1/2). In contrast to the maser growth rate 
(2.7), which is proportional to the inversion AN, the anoma- 
lous growth rate (2.8) increases only as the square root of 
inversion.' The significance of this saturation is clear from 
the energy balance condition 

2o"I EoI 2/8n=fiooANp-o IEo12/2, (2.9) 

in which the rate of growth of field energy is determined by 
the power carried by radiation emitted as a result of induced 
decay of two-level molecules and ohmic losses. The prob- 
abi l i ty~ of an induced transition from the upper to the lower 
level of a molecule per unit time is given by (1.3): 

Using (2.5) with Iw, 1/2>1/T2,2ru we find that 

This means tht the power emitted as a result of induced de- 
cay of the molecules is determined by the radiation spectral 
density, which is inversely proportional to the growth rate. 
Hence, we have from (2.9) 

This equation leads directly to the anomalous growth rate 
(2.8) and corresponds to the well-known Einstein relation4s6 
for radiation whose spectral width Aw -on =; lo, 1/2 ex- 
ceeds the relaxation width l/Tz of the transition and the 
field decay rate 2 m .  

The situation undergoes a qualitative change when field 
dissipation predominates over the relaxation of polarization, 
i.e., 27x7 > 1/T2. Instead of the electromagnetic-wave insta- 
bility, we then have the polarization-wave instability (see 
Fig. 2). So long as 2 m (  Iw, 1/2, the instability in the interior 
of the line Ick - w,l 5 lo, I has the anomalous character de- 
scribed by (2.8). For strong dissipation, when 2 r u  k Iw, 1/2, 
the background gradually smooths out the spectrum wp (k ) 
(Fig. 2b) and reduces the polarization wave instability: at the 
line center, 

a,"=-oC2/8no-i/T, (2.10) 
[see (2.6) for 2vu) Iw, 1/21. When 2 m )  1/T2 it follows from 
(2.4) that the wave-number band in which the polarization- 

FIG. 2. Dispersion branches of normal waves in an inverted two-level 
mediumat 1/T20, = - o f / o i  = when 1/T2( /w,  1:a)a = 0, 
b) u = 1 0 - 2 ~ d 4 ~ -  loc 1/4n-. The thick line represents the section corre- 
sponding to instability. 
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wave instability develops with a growth rate of the order of 
the maximum value given by (2.6) is determined by 

We shall show that the polarization-wave instability is a dis- 
sipative instability of a negative-energy wave. (An instability 
of this kind is known, for example, for charged-particle 
beams in plasma physics and electronics.) We shall use the 
following equations for the rate of change of electromagnetic 
field energy 

and the polarization energy of two-level molecules 

which follow from (1.1) and (1.2). Eliminating Ed P / J t  from 
these equations, we obtain 

C 
-aE2- -div[E X B ] .  (2.12) 

4n 

The rate of change of the total field and polarization energy 
is determined in this expression by the relaxation of molecu- 
lar polarization, ohmic dissipation, and the inhomogeneity 
of the energy flux. Averaging over the high-frequency period 
for homogeneous normal waves in the active medium (2.5) 
then yields the wave energy density w and the power loss Q 
per unit volume: 

We can now use these two relations to verify that the 
polarization wave in the inverted medium in which wf < 0 
does, in fact, have negative energy (the electromagnetic wave 
has positive energy). This means that, when Q, > 0, the loss 
of energy due to field dissipation produces an increase in the 
amplitude of the polarization wave at the rate3' 

upN=-Qp/2wP. (2.15) 

According to (2.6) and (2.15), the dissipative instability de- 
scribed above occurs in a finite range of conductivities: 

1/T2<2na<-o,ZT2/4. (2.16) 
When - wf T2/4 <ao ,  the instability of the polariza- 

tion wave in the region described by (2.16) and the instability 
of the electromagnetic wave in the region 2 r u <  1/T2 are 
convective and concentrated in the wave number interval 

FIG. 3. Region of unstable wave numbers (2.17) vs conductivity in the case 
@/T,  < Iw, I (shown schematically). The electromagnetic wave is unsta- 
ble in region I and the polarization wave is unstable in region I1 (line A,A,  
is the boundary between these regions). The region of anomalous instabil- 
ity of the waves is doubly hatched. 

(Fig. 3). We note that this interval coincides with the region 
of negative values of the Hurwitz determinant 

ai 1 0 
(2.18) 

for the dispersion relation (2.2), written in the form 

Since the coefficients a, written out above are positive, we 
can use the Lienard-Chipart t h e ~ r e m , ~  according to which 
the inequality (2.18) is the necessary and sufficient condition 
for stability w" > 0. 

It is clear from Fig. 3 that, when ~JZ/T, < Iw, I, an in- 
crease in conductivity o in the region 2 r o >  1/T2 is accom- 
panied by an expansion in the size of the region of instability 
of polarization waves (2.17), which is in contrast to the maser 
instability of electromagnetic waves for 2 m  < 1/T2. This ex- 
pansion occurs because of the appearance of dissipative in- 
stability on the line wings Ick - wol 2 Iw, I .  According to 
(2.4) and Fig. 2b, up to the value 2 m  = - wf T2/8, the range 
of unstable frequencies coincides with the dispersion band 
A B  occupied by the polarization-wave branch. 

We note that the above polarization waves do not play 
an appreciable role in existing lasers. The point is that these 
lasers employ high-Q cavities for which the equivalent loss is 
2m=w,,/2q < 1/T2. Moreover, generation occurs in accor- 
dance with (2.7) with a relatively low level of inversion for 
which there are no weakly-damped polarization waves be- 
cause the condition 1/T, < Iw, 1/2 is not satisfied. On the 
contrary, this inequality is satisfied when superradiance can 
take place. 

53. SELF-EXCITATION OF MODES IN A BOUNDED ACTIVE 
MEDIUM (ONE-DIMENSIONAL MODEL). SUPERRADIANCE 
AND SUPERABSORBANCE EFFECTS 

In the one-dimensional model of superradiance by a 
bounded active medium, described by (1.1)-(1.3), it is usu- 
a l ' ~ ~  to consider plane waves propagating in the direction of 
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FIG. 4. Spatial structure of dissipatively unstable modes in the one-di- 
mensional superradiance model: 1- 1 E t' eikI4)' 1 ,  2-1 E e'k13)z 1 ,  3- 
IEg) eik(2).l, &IEt)xe'k(L)z I ,  1-5-2-IEo(z)1. 

the z axis that is perpendicular to the open plane layer of the 
medium of thickness L>R r2.rrc/wo (see Fig. 4). By lineariz- 
ing (1.1)-(1.3), i.e., by assuming AN = const, we obtain the 
solutions of the homogeneous equations (1.1) and (1.2) in the 
form 

E= ( x 0 / 2 )  [Eo ( 2 )  e-'"'Sc.c.1, 

where the unit vector x0 is perpendicular to the z axis. It is 
assumed that the magnetic field B and polarization P are 
given by similar expressions with amplitudes Bo(z) and Po(z). 
We now write the field as the superposition of two waves 
propagating in opposite directions in the layer: 

E 0 2 -  ( ) -E 0 ( i ) e i k ( l )  z+~'') e ~ ( 2 ) z ,  OGZ<L, (3.1) 

and in the form of waves leaving the layer for the vacuum 
region: 

According to the Maxwell equations (1.1) and the equations 
for the polarization of the active medium (1.2), the spatial 
structures of the magnetic field and the polarization have 
similar form, and 

[see (2.1) and (2.5)]. Equation (3.3) and the boundary condi- 
tions demanding the continuity of the tangential compo- 
nents of the electric and magnetic fields across the surface of 
the layer lead to a homogeneous set of algebraic equations 
for the relative amplitudes of the plane waves E ( j  = 1,2, 
3,4). Its solution gives 

( k )  Eo =Eo (3.4) 

and the characteristic equation 
ctg [ o s ' " ( o )  Llc] = i [ l + e  ( a )  ] / 2 e ' " ( o ) .  

The latter can also be written in a form analogous to (2.2): 

where m is an integer. This equation determines the discrete 
frequency spectrum w, for the modes of the one-dimension- 
a1 model of the open layer of active medium (Fig. 4). In the 
case of superradiance by an inverted specimen, the electro- 
magnetic field and polarization in the interior of the layer 
can be written as superpositions of these modes with ampli- 
tudes depending on the initial conditions. The field ampli- 
tudes of modes in the specimen, A, (t ) = Eo exp(w;t ), are 
functions of time because their eigenfrequencies are complex 
(w; = Imw, ). Fields with continuous spectra are discussed 
in Refs. 2 and 3. 

As in the preceding section, we shall seek the solution of 
the characteristic equation in the resonance approximation 

~ r n = ~ o ~ I w o - - n m c / L l ,  I e ( w m ) - l l < I ,  

assuming that the parameters 1/T,wo,2~u/wo, (w, J/wo,c/ 
Lw,(l are small. Let k, = ?rm/L and recall that the quanti- 
ty 

is small in comparison with w,. We then have from (3.5) 

Solving the quadratic (3.7) for the explicitly appearing fre- 
quency w,, and neglecting squares of the above small pa- 
rameters, we find that 

Substitution of (3.8) in (2.4) will show that there are two 
types of mode in the bounded layer: electromagnetic (m,e) 
and polariton (m,p). Their properties are analogous to those 
of electromagnetic waves and polarization waves in an un- 
bounded medium (see $2). In particular, only one of the two 
modes can be unstable. The principal difference between the 
modes (3.8) and those in (2.4) is that their spectrum is discrete 
and the correction S, a 1/L to the characteristic equation 
[see (3.54, (3.8), (2.2), and (2.4)] appears in them. The latter 
leads to an additional decay (growth) rate and to the inhomo- 
geneity of the spatial structure of the modes (3.1) and (3.2) 
(Im k(" # 0). In the limit of an infinitely long layer (L-+ cu ), 
the frequency spectrum (3.8) becomes denser, S m 4 ,  and 
the modes of the bounded specimen take the form of waves in 
unbounded space [see (2.4) form- a, k, = am/L+k ). For 
a specimen of finite length L, and using the above approxi- 
mations, we have 

6m~6m'r2n(5rad ( m )  = -In I L  e%(mm)- l  
(3.9) 

where l n 2 (  - 1 % 1 The effective quantity 
urad(m) = S & / ~ I T  is introduced because it appears in the 
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expression for the complex frequencies (3.8) as part of a sum 
involving the electrical conductivity a ,  and characterizes the 
rate of dissipation of the field by radiation through the boun- 
daries of the specimen. 

The latter statement becomes clear if we turn to the 
expression for the rate of change of energy (2.12) and inte- 
grate it over the thickness L of the layer and unit cross-sec- 
tion area S, i.e., over the volume V = LS. After averaging 
over the high-frequency period, we obtain the following ex- 
pressions for the energy and power loss in the mth mode: 

Hrn=exp (20mr't) [ IE01'+1Bo1~ 
16n 

v 

Hence, using (3.1)-(3.3) together with the equation 
Im (om E"'(w, )) = - &,,, we find that 

omN=-Qm/2Hrn, Arn=Eo exp (ornut). (3.14) 
The term containing a,,, in the expression for the power loss 
(3.13) is the flux of the Poynting vector CIA 2, /S/47~ through 
the boundaries of the specimen, and constitutes an addi- 
tional channel for energy dissipation that was not present in 
the unbounded medium [see (2.14)]. The other consequence 
of the bounded nature of the open specimen of the active 
medium is the exponential inhomogeneity of the mode struc- 
ture, noted above. This ensures that the energy characteris- 
tics of the modes, given by (3.12) and (3.13), are actually 
determined not by the entire volume of the medium, but only 
by the boundary layer, whose thickness4' is of the order ofL / 
ln(2/(~"' - l)l [see (2.13) and (2.14)]. 

Substitution of (3.8) in (3.12) shows that, in the inverted 
specimen, the polariton (m,p)-modes have negative energy 
and the electromagnetic (m,e)-modes have positive energy. 
As in the unbounded medium, the polariton modes are 
therefore unstable during energy dissipation Q,, > 0 (this is 
the dissipative instability), whereas electromagnetic modes 
are unstable during negative dissipation Q,, < 0 (maser in- 
stability). The maximum growth (decay) rates of the modes 
are given by 

which differs from (2.6) by the replacement a-w + a,,, . 
These rates are achieved for modes at the line center for 
ck, + 6: -ao, where, according to (3.6), we have 6: 5 c /  
L4ww 

When all the above factors due to the finite length L of 
the specimen are taken into account, analysis of the condi- 
tions for the appearance of mode instability and different 
limiting cases is analogous to that given in $2 for an un- 
bounded medium. In particular, formulas (2.7), (2.8), and 
(2.10) are extended to the case of a bounded active medium 
by making the replacement o-w + a,, . Dissipative insta- 
bilty of polariton modes arises for sufficiently large inversion 
Iwc I > 2/T2 for which 

1/T2<2n (oto,,,) <-oc2T2/4 (3.16) 

[see (2.16)]. The wave-number band for which the instability 
growth rates of polariton modes are of the order of the maxi- 
mum rate in (3.15) is given by the following expression which 
is analogous to (2.11): 

Let us now consider the special case corresponding to 
the well-known conditions for Dicke ~uperradiance:'.~ oh- 
mic dissipation is absent (a = 0), inversion is large enough 
(lac 1$2/T2), and losses by radiation are not too high 
(~BU~, ,  & - wf T2/4). The last of these means that the length 
of the specimen is much greater than the minimum length 
for which superradiance first becomes possible.1° 

L>Lmi,=4c ln 12/ (8'"-1) I/ (-wC2T2). 

For simplicity, we shall also assume that 

i.e., the length of the specimen is small in comparison with 
the so-called Arecchi-Courtens length:" L<Lc=c/lw, 1 
[see (3.9)]. These conditions are sufficient for inequalities 
(3.16), which lead to dissipative instability of polariton 
modes, to be satisfied. Only one of them, namely, the (m,p)- 
mode that is the closest to the line center and has the maxi- 
mum growth rate, plays a dominant role: 

wprrz-o,2/8nomd. (3.18) 
The other modes with indices m + I (I = 1,2, ...) do not fall 
into the strong instability band (3.17) since 
Ik,*, - k ,  I=?rl/L2Akm. 

At the beginning of the superradiance process, when 
AN = const, the square of the amplitude \Ap (t ) 1 of the above 
polariton mode obeys the law 

dlAp12/dt=20p"IApJ2. (3.19) 

Since the growth rate is w; > 0, the polarization of the medi- 
um increases, i.e., the high-frequency dipole moments of the 
molecules increase and become phased. As the mode ampli- 
tude grows further, the inversion AN begins to vary. In the 
adiabatic approximation, the time dependence of IAp 1' can 
again be described by (3.19) in which the growth rate w;(t ) in 
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(3.18) is determined by the instantaneous difference AN (t ) 
between the populations [see (1.4)]. The structure of the elec- 
tromagnetic field in the interior of the layer of active medi- 
um is then set by the mode structure (3.1) with the instantan- 
eous value of the amplituded, (t ), whereas, outside the layer, 
it is set by the structure of departing waves (3.2), whose am- 
plitude at each point z is determined by the mode amplitude 
A, (t ') at the retarded time t ' = t + z/c for z < 0, and 
t ' = t - (z - L )/c for z > L. In other words, in the nonsta- 
tionary problem that we are considering, the field outside the 
specimen is formed by radiation from the surface of the 
specimen. 12-l4 

The population difference d N ( t )  averaged over the 
length L of the specimen and over the high-frequency period 
27r/wP is the solution of the equation - 

which follows from (1.3) in the absence of noncoherent relax- 
ation (TI = m). For simplicity, we shall also neglect the slow 
time dependence of a,,, and substitute w; a dN in accor- 
dance with (3.18). It is important to note that the use of the 
average inversion dN in the growth rate (3.18) is a very 
crude approximation, similar to that adopted in the mean 
field In this approximation, (3.19) and (3.20) can 
be integrated and the result of this is referred to as the con- 
servation of the length of the Bloch ~ e c t o r : ~ . ~  

Equation (3.19)-(3.21) lead to the following well-known 
expression for the superradiant pulse ~hape:~.~. '*  

where Q = - (fiwd2)d dN/d t  = CIA, I2/47rL is the power 
radiated per unit volume of the specimen, 

-c=3cfi ln 12/ (E'"  (w,) - 4 )  1 / 4 n o o d 2 r ~  ( 0 )  L 

is the length of the superradiant pulse, and to = rln[Q,,, / 
Q (O)] is the delay time (see Fig. 1). It is assumed in (3.22) that, 
at the initial time t = 0, the radiated power has the fluctu- 
ation value 

Q ( 0 )  <~-=fio,~N(o) /42, 

so that tO)r. 
It is clear from the solution (3.22) that the superradiant 

pulse length T is 1/2w;, i.e., it is equal to the reciprocal of the 
growth rate of dissipatively unstable polariton mode closest 
to the line center. This is valid even for extended specimens 
of length exceeding the Arecchi-Courtens length (in the so- 
called oscillator superradiance regime2.3.10). In this case, 
27rarad S Iw, I and the growth rate a,,, assumes the maxi- 
mum possible value Iw, 1/2 [see (2.8)], which determines the 
maximum rate of the superradiant process. Corresponding- 
ly, the minimum superradiant pulse length is equal to the 
Arecchi-Courtens cooperative time, well known in superra- 

diance theory:" 7, = l/lo, I .  As far as the conditions neces- 
sary for dissipative instability (3.16) are concerned, they are 
the same in both cases as the previously established condi- 
tions for superradiance in the one-dimensional m~del.~.'O 

The above account shows that the superradiance effect 
is a consequence of the dissipative instability of polariton 
modes with negative energy, which arises as a result of ener- 
gy loss by radiation through the boundaries of the specimen 
of inverted med i~m.~ '  When 27rurad < 1/T2, i.e., the length of 
the specimen is very large so that L > c ~ , l n  1 2/(&If2 - 1) 1, it 
is clear from (3.15) that, instead of the dissipative instability 
of polariton modes, we have the usual maser instability of 
electromagnetic modes. This corresponds to a transition to 
maser amplification of spontaneous emission which is re- 
ferred to as "superl~minescence."~ This transition is due to 
the fact that energy dissipation by radiation through the 
boundaries becomes ineffective and the total power loss 
(3.13) is negative [see the discussion of (3.12)-(3.14) and foot- 
note 31. 

Next, let us examine the case opposite to superradiance, 
in which the main factor in field-energy dissipation is vol- 
ume ohmic loss [see (3.13)], and radiation losses through the 
boundaries are of minor significance: a)arad, i.e., 

LB (c /2no)  [In 12/(~'"-1)  11 . 
For sufficiently strong inversion Iw, 1 )2/T2 and, according 
to (3.15) and (3.16), we again have dissipative instability. In 
particular, when 27x7) Iw, I, the nonlinear dynamics of the 
development of this instability is described by (3.22). The 
latter follows from formulas analogous to (3.18)-(3.21) if we 
replace grad with a and define Q as the ohmic power released 
in the form of heat rather than radiation. This process of 
collective relaxation of the population difference in the in- 
verted medium, which gives rise to a pulsed heat release, 
may be referred to as superabsorbance. 

In the general case of an arbitrary ratio between ohmic 
power dissipation and power lost by radiation through the 
boundaries of the specimen, the existence of dissipative in- 
stability of polariton modes under the conditions defined by 
(3.16) leads to a composite superradiance + superabsor- 
bance effect. The result is collective relaxation of the invert- 
ed molecules to the lower energy level and, after a delay 
to> 1 /h ;  following the end of the pump pulse, the emission 
of a powerful pulse of electromagnetic radiation from the 
specimen, accompanied by its ohmic heating for the time6' 
T = 1/h ;  (see Fig. 1). 

54. SUPERRADIANCE FROM A THREE-DIMENSIONAL 
SPECIMEN 

Let us now consider superradiance from an open three- 
dimensional specimen of an inverted medium in the form of a 
sphere (this problem was posed in a number of papers; see 
Ref. 17 and the references cited therein). For a homogeneous 
sphere of arbitrary radius R, the solution of the linearized 
equations (1.1) and (1.2) (AN = const) for the complex ampli- 
tudes of electric and magnetic fields can be expressed in 
spherical polar coordinates in terms of the Debye poten- 
tials14 u and u: 
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du 1 dZ( rv )  Bo,=ikE'" - f - - . 
d0 rsin 0 dr drp 

The complex amplitude of the polarization is given by (2.5); 
k = (w/c )E~/~(w)  for r < R, and k = w/c for r > R. The poten- 
tials u and v satisfy the same wave equation, namely, 

Af+k"=O (f=u, V )  . (4.2) 

The solution of (4.2) can be written in the form of an 
expansion in terms of the spherical harmonics Y ?'(C)(B,p ) and 
spherical Bessel and Hankel functions 

in ( k r )  = (n/2kr)"'Jn+% ( k r )  , 

in the form 

in the interior of the sphere (r<R ), and 

outside the sphere (r)R ). The latter expansion is a superposi- 
tion of spherical waves leaving the sphere. On the surface of 
the sphere (r = R ), the Debye potentials must satisfy the 
boundary conditions 

which represent the continuity of the tangential field compo- 
nents E,, ,E,, ,Boo ,B,, . Substituting the expansions (4.3) 
and (4.4) into them, and recalling the orthogonality of the 
spherical harmonics Yk7, we find that the conditions for a 
nontrivial solution of (4.5) and (4.6) leads to the following 
characteristic equations, respectively: 

jn-, (2)  ht[!)l (2') cn (i-E (o )  ) 
-=-- 
E ( )  j (2) h(',) (2') ORE ( a )  

(4.7) 

sth ( a )  in-, ( Z )  - hi:: (2') -- 
i n  (2)  h(2  (2')  ' 

The first of these determines the discrete spectrum W, of 
electric modes with radial index n and angular index 
j = - n ,..., 0 ,..., n, in which the field structure is described by 

the potential u. For these modes, Br =O. The second equa- 
tion refers to the magnetic modes with Er =O, described by 
the potential v. As in the one-dimensional model [see the 
discussion after (3.5) and (3.19)], the field in the specimen in 
the case of superradiance by a sphere can be written as a 
superposition of the above nonstationary modes." 

Let us now consider a sphere of large radius R %A. Using 
the asymptotic expansion of the Bessel and Hankel func- 
tionsI9 with Z-oo for modes with a fixed radial index n 

and again assuming that the parameters 1/Tp0,2m/ 
a,, I uc I E ( w )  - 1 I, I w - W,~/W, are small in comparison 
with unity, we find from (4.7) and (4.8) that ctg[Z - n ~ /  
21 = i/D where D = ~ / E ' / ~ ( W )  for electric modes and 
D = E ' / ~ ( w )  for magnetic modes. Let us write this character- 
istic equation in the form 

,omel" (om) =nc (n+2m) /2R-is,, (4.9) 

where the factor a,, which governs the inhomogeneity of 
the mode field, is given by 

C 
6,= - arth D m  - 

2 

R 2'R ln(=) ' 

Equations (4.9) and (4.10) coincide with the correspond- 
ing equations (3.5) and (3.6) in the one-dimensional model if 
we introduce the replacement m+(n + 2m), L+2R in the 
latter. Consequently, all our conclusions about the proper- 
ties of modes in a bounded specimen ($3) remain valid for the 
electric and magnetic modes of the three-dimensional open 
sphere with low radial indices n [see (3.7)-(3.11) and (3.14)- 
(3.17)]. In particular, for each n in (3.16), there is a dissipative 
instability of electric and magnetic polariton-type (m,p)- 
modes with negative energy and positive losses. The contri- 
bution of radiative energy loss through the surface of the 
sphere to the growth rate of w!, is given by 

[see (3.9) and (3.15)]. Hence, in an isotropic inverted medium 
in the form of a sphere, the superradiance and superabsor- 
bance effects are determined by the dissipative instability of 
negative-energy modes. 

Let us estimate the number M of disipatively unstable 
modes with growth rate of the order of the maximum value 
(3.15) under the following conditions that are typical for su- 
perradiance: 

Lmi,=4c In 121 (&'A-1) I / (-o,ZTZ) <2RGL,=c/l o, I, 
1 o,l >2/T2, o=O. 

We have already shown that dissipatively unstable polariton 
modes exist under these conditions for sufficiently low radial 
indices n (or, more precisely, for8' n(w$ /c). For large val- 
ues of n, we use the asymptotic expansions of the Bessel and 
Hankel functions of the form19) H y )  = Jn + iYn for n-CD 
and fixed Z: 
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Substituting these into the characteristic equation (4.7) for 
the electric modes, we obtain an equation of the form 
&(a)=: - 1 - iv where v gives the contribution of radiative 
losses to the dissipative instability growth rate. For large n, 
this quantity turns out to be small: v cc (w,,R /cn)'" + ' . It fol- 
lows from the solution of this equation, namely, 

a=oo+~,2 /400- i /T2- i~~v /800  

and the fact that the polarization relaxation time is finite 
(T, # cu ), that all the electric modes are damped out n)w,,R / 
c for (w" < 0). The characteristic equation (4.8) for the mag- 
netic modes then reduces to wR /c = 2n, which has no reso- 
nance roots w ~ w , .  We may therefore conclude from this 
that the number E of different radial structures generating 
dissipatively unstable modes is of the order oP'w,,R /c. Using 
(3.17) and recalling the (2n + 1)-fold degeneracy of the 
modes, which is due to the fact that the characteristic equa- 
tions (4.7) and (4.8) are independent of the angular index 
j = - n, . . ., 0, . . .,n of the spherical harmonics Y ;I, we ob- 
tain the required estimate: 

M - f i ( 2 5 f l )  - (ooR/c)Z=.>l. (4.12) 

The presence of a large number of simultaneously un- 
stable modes is the fundamental difference between superra- 
diance in a sphere and superradiance in the one-dimensional 
model. As we k n ~ w , ~ . ~  the latter is closest to a cylinder of 
length L and cross section S-AL, since the Fresnel number 
is then F = S /AL - 1 and the inhomogeneity of the field in 
the lateral direction is at a maximum. Most papers on super- 
r a d i a n ~ e ~ . ~ , ' ~  are devoted to the study of superradiance by 
this kind of "single-mode" cylinder within the framework of 
the one-dimensional model. There is some point, therefore, 
in comparing superradiance from a sphere and from a cylin- 
der of length L - 2R)A and lateral cross section S- 2RA for 
the same inversion density AN. In accordance with the fore- 
going, the length of the superradiant pulse is the same for the 
sphere and the cylinder: T = 1/2w; [see (3.18)]. The peak 
superradiant power Q,,, from the sphere is greater by the 
factor 2R /A as compared with the cylinder. This factor is 
determined by the ratio of the energies stored in these two 
specimens: 

(4n/3) R3f iooAN/RSf io ,AN-2R/h.  
For the same level of fluctuations (thermal and spontane- 
ous), the initial amplitudes of unstable modes are roughly 
equal, so that the total initial power Q(0) in the sphere is 
greater by the factor M as compared with the cylinder. Since 
to = rln[Q,,, /Q (O)] and M-  (2R /A )' [see (3.22) and (4.12)], 
it follows that the superradiance pulse delay time for the 
sphere is shorter than for the cylinder by an amount of the 
order of rln(2R /A ). Next, we must allow for the fact that 
superradiance from a sphere consists of fields due to a large 
number of electric and magnetic modes with multipole radi- 
ation patterns [see (4.1) and (4.3)] and random initial phases. 
The superradiance from the sphere is therefore almost iso- 

tropic and its intensity per unit solid angle is smaller by the 
factor 2R /A  than the superradiance intensity from a single- 
mode cylinder radiating into the narrow solid angle - (A / 
2R )' along its axis. 

Finally, we shall show that, in the limit as R / A 4  1, the 
exact characteristic equations (4.7) and (4.8) lead to the well- 
known results obtained in the granular model of superra- 
diance (Dicke model).'-3 We now use the following expan- 
sion for the spherical Bessel functions:19 

and recall that the first-order spherical Hankel function is 
h !' = j, + iy, , we obtain from (4.7) the following approxi- 
mate expression for the electric dipole (n = 1) mode:9' 

If we use the permittivity (2. I), the solution of this equation 
gives w' = w0 and 

In the inverted medium in which w: <0, the growth rate 
becomes positive for sufficiently small values of 1/T2. 

The growth rate w" can also be deduced from energy 
considerations if we recall that we are dealing with the oscil- 
lations of a high-frequency point dipole (47r/3)R 3P, and we 
neglect the growth rate 1/T2 for simplicity. The power loss 
per unit volume, Q = Q,,, + Qohm , consists of radiation into 
the space surrounding the grain12 Q,,, = (a: lPo12/3~3) 
(47rR 3/3) and ohmic losses Qohm = a1 E, 1 2/2. The complex 
polarization and field amplitudes in these expressions are 
related by Po = (E - l)E,-,/4~=: - 3E,-,/4a [see (4.13)]. The 
energy density in the uniformly polarized grain is given by 
the following well-known electrodynamic f ~ r m u l a : ~ . ' ~  

We can then readily verify that the quantity w" = - Q /2w, 
is in complete agreement with the growth rate (4.14). The 
electric dipole mode of the grain is therefore a dissipatively 
unstable polariton mode of negative energy. 

In the adiabatic approximation, the dynamics of dissi- 
pative instability in a small specimen R(A is described by 
the equations 

[compare this with (3.19) and (3.20)]. When T2 = CO, a = 0, 
which is the case usually examined in superradiance the- 
~ r y , ' , ~  the solution of (4.16) is similar to that given in 93 and 
leads to the classical superradiant pulse shape (3.22) (see Fig. 
1). In particular, the superradiant pulse length is T = 1/ 
2h" = - 9c3/2u: w:R which agrees with the Dickegranu- 
lar model. 
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55. CONCLUSION 

We have shown that two types of modes, namely, elec- 
tromagnetic and polariton, can be excited in an inverted two- 
level medium. Electromagnetic mode instability developes 
when the degree of inversion is small and there is consider- 
able relaxation of polarization (lw, 1 <2/T2). Polariton- 
mode instability is possible in a highly inverted medium 
((w, I > 2T2). Mode energy calculations show that the polari- 
ton modes have negative energy whereas electromagnetic 
modes have positive energy. Polariton modes are therefore 
unstable for true (positive) energy dissipation whereas elec- 
tromagnetic modes are unstable for negative dissipation. 
The latter situation corresponds to the maser mechanism of 
amplification of electromagnetic radiation. In contrast to 
this, the instability of polariton modes is the dissipative in- 
stability of negative-energy modes. It arises as a result of 
volume ohmic dissipation and also radiation through the 
boundaries of the specimen of active medium. 

It follows from the account presented above that Dicke 
superradiance is the result of the development of the above 
dissipative instability of negative-energy polariton modes 
and is due to energy loss by radiation through the specimen 
boundaries. Superabsorbance is possible when ohmic losses 
predominate. It is analogous to superradiance in that it leads 
to rapid collective relaxation of inverted molecules to the 
lower energy state in a time much shorter than the time of 
noncoherent relaxation of the isolated molecule ( T ~ T , ) .  
However, superabsorbance converts the energy stored in the 
active medium into heat rather than electromagnetic radi- 
ation. Superabsorbance is gradually transformed into super- 
radiance as ohmic losses are reduced, i.e., the electrical con- 
ductivity of the medium is reduced. In both cases, the length 
of the collective relaxation pulse is determined by the dissi- 
pative instability growth rate: T = 1/2wJ. The growth rate 
w; and the polariton mode structure depend on the shape of 
the specimen. They were found above for the one-dimension- 
a1 model (flat layer) and the three-dimensional model 
(sphere). 

Our description of the connection between Dicke super- 
radiance and dissipative instability of polariton modes can 
be exploited to provide a more complete macroscopic de- 
scription of different features of this effect. This will require 
further analysis of the dynamics of collective excitations of 
three-dimensional specimens of active media under superra- 
diant conditions. The nonlinear interaction between modes 
and the spatial distribution of inversion within the specimen 
will be of particular interest. In addition, the statistical prop- 
erties of superradiance can be investigated by quantizing the 
polariton and electromagnetic mode oscillators. 

"This paper is confined to the problem with initial condition. When the 
boundary-value problem is formulated, the dispersion relation given by 
(2.2) must be looked upon as an equation in the complex wave number k. 
In the absence of spatial dispersion, it is a quadratic and its solution 
k = + (w/c)~/ '~(w) determines only one type of propagating forced os- 
cillation. 

"It is precisely for this reason that the nonelectromagnetic branch is re- 
ferred to as a polarization wave. We note that, when Iw:IT2/4<oo, 
which is usually satisfied in gases, the susceptibility of the active medium 

is small (1x1 <I), and the magnetic field in both waves is roughly the same 
(Since ck/lo, ,  I = I E ' / ~ ( W , ) [  1; see (1.1)]. 

3 ' ~ o r  the electromagnetic wave w, > 0 and the wave amplitude increases 
(01 = - Q. /2w, > 0) for negative loss Q, < 0, which is possible only for 
2 r a i  l/T2 [see (2.14)] and corresponds to the maser instability [see 
(2.7)]. In an uninverted mediums in which the energy and power loss are 
positive for both waves, there is no instability. 

4'We note, for comparison, that, for an active medium in a closed resona- 
tor with perfectly reflecting walls, the spatial structure of these modes is 
homogeneous: ~m[o&' /~(o)]  = 0. When the reflection coefficient R is 
small, we have 2rur, = ( d 2 L  )lnR - I .  

51An analogous superradiance instability is found in nonequilibrium plas- 
ma in magnetic traps.16 

6'When 1/T2 = O,lw, 1 < 2 m ,  a,,, = 0, the quantity 1/20; is the pulse 
length noted in Ref. 5, which is described by the equations of the one- 
dimensional model of superradiance when periodic boundary conditions 
are imposed and radiative losses are taken into account by introducing 
effective volume losses. 

"The modes of an active spherical specimen in a nontransparent medium 
that prevents superradiance are discussed in Ref. 18. 

"To show this more rigorously, we have to use the uniform asymptotic 
expansions of the Bessel and Hankel functions of the formt9 J,  (nZ), 
H (,ll(nZ ) for n- a, . 

9'All the magnetic and higher-order multipole electric (n>2) modes are 
damped in the Dicke granular model of superradiance. This follows from 
(4.7) and (4.8). 
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Note added in proof (30 September 1984). The existence of modes with 
symmetric structure (Fig. 4) is confirmed by observations of synchronous 
superradiance in the form of identical pulses from the two ends of a 
KCl:O,-crystal [Florian et al., Phys. Rev. A 29,2709 (1984)l. This regime 
is not described by the unidirectional propagation model [Haake et al., 
Phys. Rev. A 29,3208 (1984)l. It arises when the reflection coefficient R is 
mall but finite (10-2-10-6), and is due to the discontinuity in permittivity 
across the boundary of L 5  LC = c/lw, 1, when 2rarad = (c/ 
2L )lnR -' > lo, 1/2 [see (3.9) and (3. la)]. 
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