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It is shown that dissipative and nonstationary processes occurring during the propagation of light 
in a medium give rise to new nonlinear-optics effects, including optical rectification in a homogen- 
eous isotropic medium and magnetization of anisotropic media by linearly polarized radiation. A 
classical and a quantum-mechanical analysis of these effects is given. The corresponding suscepti- 
bilities are calculated for an atomic gaseous medium. The density matrix is obtained for the steady 
state of the atom in a nonresonant light field. 

Q 1. INTRODUCTION 

It is well known that, in linear optics, absorption pro- 
cesses do not reduce only to the dissipation of light energy: 

dW/d t=-yW.  

The presence of the T-odd (i.e., changing sign under time 
reversal) parameter y may give rise to phenomena that are 
qualitatively different from those in nondissipative media 
[for example, elliptical polarization on reflection of linearly 
polarized light (Ref. 1, §86), and the Maxwell effect (Ref. 1, § 
102; see also the recent Ref. 2)]. In nonlinear optics, we again 
encounter a variety of phenomena due to dissipation (ther- 
mal self-focusing, photovoltaic effects, and so on) which, 
even though they were discovered relatively recently, have 
already found important practical applications. However, 
dissipation effects are commonly neglected in phenomenolo- 
gical studies of the properties of nonlinear susceptibilities, so 
that thermodynamic concepts can be used to establish rela- 
tionships between phenomena of different physical na- 
t~re.'. ' .~ When dissipation is taken into account, analysis 
based exclusively on consideration of spatial-symmetry and 
time-reversal properties does not yield such detailed infor- 
mation; nevertheless, it is often a very convenient means of 
elucidating the conditions under which a particular effect 
will arise,9 and can often predict new phen~mena.~  

In this paper we consider the appearance of constant 
electric and magnetic moments P and M in a medium ex- 
posed to an electromagnetic wave. Inclusion of dissipation in 
the phenomenological description ($ 2) suggests that there 
are new nonlinear-optics phenomena, including optical rec- 
tification in a homogeneous isotropic medium and magneti- 
zation of anisotropic media by linearly polarized light, in 
which the induced P and M are proportional to y. This T- 
odd parameter may also be due to processes of a different 
nature, including nonstationary processes, for example, 
those involving the ionization of atoms by the light field (it is 
precisely the ionization width that is responsible for the ap- 
pearance of some unusual terms in the hyper-Raman cross 
section7). However, the most interesting practical effects are 
those produced by pulsed light fields for which the T-odd 
parameter is determined by the curvature of the envelope F 
of the light pulse: 

h=F-' ( d F / d t )  . 
The induced moments P, M are then proportional to A, and, 

together with A = A (t ), change sign during the propagation 
of the pulse. 

The specific mechanisms responsible for these effects 
are elucidated in § 3 in terms of a simple classical model of 
the medium, namely, a set of noninteracting oscillators. Sec- 
tion 4 gives a quantum-mechanical calculation of the effects 
produced by pulsed fields, and gives numerical estimates for 
monatomic gases. Rigorous quantum-mechanical inclusion 
of dissipation involves the use of the density-matrix formal- 
ism and is employed in § 5 to calculate P and M for a gaseous 
medium when dissipation is due to nonresonant scattering of 
light. 

Q 2. PHENOMENOLOGICAL ANALYSIS 

Consider an infinite medium in which there are con- 
stant uniform electric and magnetic fields F, and B, and a 
propagating electromagnetic wave with electric vector 

1 F (r, t )  = -{Fei'kr-"t) + 
2 

C.C. ). (1) 

The T-even pseudoscalar (Stokes parameter) 

defines the degree of circular polarization of the wave.' In 
the absence of external fields, the medium will initially be 
considered to be homogeneous, isotropic, and centrally sym- 
metric, so that its macroscopic properties can be specified by 
purely scalar parameters. 

The polarization P and magnetization M induced in the 
medium must be expressible in terms of combinations of the 
vectors F,, B,, F, F*, and n = k/k, and scalar parameters of 
the medium such as the T-even generalized susceptibilities 
X ,  7, ... and the T-odd parameter y defining, for example, the 
dissipation of light energy. 

For a polar T-even electric polarization vector, the 
phenomenological expansion is 

P=%, (FP') n (24 
+xz (W)F0+xs Re {(F,F) F*) +rx4E2 (FrF') [F,Xn] +. . . , 

(2b) 
where we have retained only time-independent components 
of the vector P that are linear in the wave intensity, so that 
terms including F2 or F*2, which oscillate with frequency 
2w, are absent. 
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Even the first term in (2) gives rise to a new phenomenon 
in isotropic media, namely, static polarization induced by an 
alternating field. This so-called optical rectification effect 
was previously considered to be possible only in piezoelec- 
tric or inhomogeneous media.' 

The various terms in (2b) can be written in tensor form 
as aV(F,), where a, a (FI2 is the correction to the static po- 
larizability which takes into account the anisotropy induced 
by the alternating field in the medium. The dissipation term 
containing x,, which is nonzero only for f 2  #O, gives rise to 
the antisymmetric part aV. The latter would seem to be in- 
consistent with symmetry conditions governing the static 
permittivity, which are established independently of the 
presence of T-odd parameters (for example, of the magnetic 
field B,) in the problem. However, these conditions follow 
from thermodynamic relationships for the free energy1 that 
cannot be introduced when dissipative processes are taken 
into account. 

The higher-order terms in (2), which contain y, are also 
"unusual," but they are mainly responsible for corrections 
to the above effects, and are hardly of independent interest. 

In the phenomenological expansion of the time-inde- 
pendent part of the magnetization M (a T-odd axial vector), 
the first term that is linear in intensity has the form 
vg2(FF*)n. It determines the inverse Faraday effect (magne- 
tization of the medium by a circularly polarized field; Ref. 1, 
5 101) and is not connected with dissipation. The next terms 
are of the form given by (2b) with F, replaced with Boy and 
can be interpreted as tensor corrections to the static magnet- 
ic susceptibility with antisymmetric part proportional to y. 

The most interesting result for M would seem to be con- 
nected with dissipation, and appears when we analyze the 
higher-order terms containing Fg : 

M=b (FF*) {q,F:n+qz (Fon)Fo) 

+yqJ Re { (FoF) [FoXF*]). (3) 
The terms containing v,, v2 in this expression do not contain 
y and produce the usual corrections - Fg to the inverse Far- 
aday effect with allowance for anisotropy induced in the me- 
dium by the constant field F,. These corrections and the 
effect itself vanish for linearly polarized waves (g2 = 0). 
However, the last term in (3), which contains y, remains non- 
zero so that (for f, = 0, we put F = F*) 

M=rlsy (FOF) [FdCFI. (4) 
Thus, when dissipatation is present, the medium can become 
magnetized by the linearly polarized field. The magnetiza- 
tion (4) is perpendicular to the plane containing the vectors 
F, and F and its magnitude is a maximum when F, and F are 
at an angle f 7r/4 to one another (when F,IIF and F, 1 F, we 
have M = 0). 

In spatially inhomogeneous and anisotropic media, 
when the expansion for P and M includes tensor characteris- 
tics of the medium, effects similar to those examined above 
may arise even in the absence of constant external fields. For 
example, the magnetization of a uniaxial crystal described 
by the tensor vivj (the vector v defines the direction of the 
anisotropy axis) in a linear field is given by an expression 
obtained from (4) by replacing F, with v (this vector can also 

be the normal to the separation boundary between the two 
media, and so on). 

It  is also important to note that, in an anisotropic cen- 
trally symmetric medium, the optical rectification effect is 
possible even in the absence of dissipation in the case of non- 
zero circular polarization: 

P=xSZ (W) (vjn) [ v ~ n ] .  ( 5 )  

As far as we know, the effect described by (5) was previously 
not discussed in the literature. 

The expressions for the new nonlinear-optics effects 
given in this section were based exclusively on space-time 
parity considerations. To verify that such effects do actually 
occur (i.e., that the correspondingx and 7 are nonzero), we 
must examine specific models of dissipative media. In the 
following sections, we shall confine our attention to the ef- 
fects described by (2a) and (4). 

§ 3. CLASSICAL MODEL OF THE MEDIUM 

The mechanisms that lead to (2a) and (4) are essentially 
classical, and can be elucidated in terms of a simple oscillator 
model with friction: 

The Lorentz force f, acting in the wave field (1) on the oscil- 
lating charge e, has the form 

(7) 
It depends on the position rand velocity r of the charge, and 
this is responsible for the nonlinearity of the problem. The 
problem is linear in the dipole approximation 

f (r, t) = f d ( t )  =e Re [F exp (-iot)] 

and the solution of (6) has the well-known form 
1 

ro (t) = - a(o)Fe-'"+ c.c., a ( o )  =eZ[x-ma2-ioy]-I, (8) 
2e 

where a is the polarizability of the oscillator. 
The anisotropy induced in the medium by the constant 

field F, can be effectively taken into account by assuming 
that x is a tensor, i.e., 

~ i j = ~ ~ G i j +  ( I ~ ~ ~ - x ~ )  Y ~ Y ~ ,  v=FolFo, 3111-~L~F0Z . (9) 

The same model describes a uniaxial crystal with axis along 
v). The principal values xll and x, of the tensor (9) determine 
the eigenfrequencies wll and w, of the oscillator along the 
anisotropy axis (xII = mwi) and in the plane perpendicular 
to it (x,  = mu:). The polarizability a is then also a tensor 
such as (9) with principal values 

all, L=eZ[m(ol,, ,2-oZ) -ioy]-' (10) 

A. Magnetization of a medium by linearly polarized radiation 

In the general case of an elliptically polarized wave, the 
end point of the vector r,(t ) given by (8) traces out an ellipse. 
In the linear field F(t ) = F cos wt, on the other hand, for 
which y = 0, the oscillations of the charge occur along a 
straight line that does not lie along F because of anisotropy. 
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The oscillations of the charge lag in phase behind the oscilla- 
tions of F(t ) when friction is present. Since the phases of the 
complex principal values a,, and a, are different, the phases 
of the components of r,(t ) along and perpendicular to the 
anisotropy axis are also different. This means that, when 
friction is present, the end point of the vector r,(t ) traces out 
an ellipse even in the case of linearly polarized waves. It is 
clear that the oscillator has then a magnetic moment. To 
show this, consider a linear field and the average value of 
p = (e/2c)ro X i, over one period. Using (8) and (lo), we ob- 
tain 

which agrees with (4). 
The phase shift between the oscillator and field oscilla- 

tions will also occur in the nonstationary problem without 
friction when one of the parameters of the medium or field, 
for example, the wave amplitude, is a function of time: 

The magnetic moment of the oscillator is then 

Expressions (1 1) and (13) can be used to estimate the 
order of magnitude of the magnetization M = ng  per unit 
volume of the medium (n is the density of atoms or molecules 
of the material) if m and e are interpreted as the mass and 
charge of the electron and wl1 ,  as the atomic frequency or 
frequency of interband transitions in the solid. In crystals, 
the anisotropy (wII - wl)/wII,I is usually - lop2. Theanisot- 
ropy induced by a constant field is of the order of ( F a ,  )', 
where Fa, is the characteristic intra-atomic field. In the 
neighborhood of a resonance in a monatomic gas 

the polarizability is -a:w/A (a, is the Bohr radius), so 
that 7 in (1 1) and (13) has the frequency dependence -A -4 

which is more rapid than in the usual nonlinear-optics ef- 
fects in media with cubic nonlinearity. When light scattering 
is the dissipation mechanism, the term yi in (6) must then be 
replaced with the radiation friction force (2e2/3c3)'r. The 
quantity y in (1 1) is then replaced with 

and, when w ~ w , , , ~  yra,/m, it is of the order of the natural 
width of the atomic levels that are being excited. The magne- 
tization M vanishes in the limit as w 4 ,  q,,vA a w2 (Ma w4 
when the radiation reaction is present). For optical frequen- 
cies generated by pulsed solid-state lasers, one would expect 
that M- 10-6-10-4 erg.G-' .~m-~ in resonant monatomic 
gases or crystals. 

8. Optlcal rectification 

In contrast to the magnetization F. that appears even in 
the dipole approximation (8), the optical rectification effect 
arises only when the forces f, and f,, associated with spatial 
inhomogeneity and magnetic field of the wave are taken in 
the first order. According to (7), 

ieo 
f k  = -(n r)Fe-im'+ c.c., 

2c 

and the solution of (6) is now 
r (t) =ro (t) +rk (t)  +rB (t) + . . . . 

Assuming that the medium is isotropic (wII = w,=w,), we 
find that 

- - 0 
rr=O, r~ = - a (0) Im a (o) (FF') n, 

2ce2 

where a(0) is the static polarizability of the oscillator. Thus, 
the constant part of the dipole moment 8 = eFinduced by the 
alternating field, 

is due to the magnetic field of the wave and is produced by 
the radiation reaction f,. It is clear that f, lies along the wave 
vector k and is nonzero only when friction is present (y#Oj, 
so that the oscillator absorbs light energy. 

To avoid misunderstanding, we note that the electric 
quadrupole interaction fQ of the oscillator with the field 
F(r,t ) in (1) corresponds only to the potential part of fk in (16), 
whereas the nonconservative part of fk together with f, cor- 
responds to the magnetic dipole interaction f,. Both fQ and 
f, then provide the same contribution to (17): 

(Q) X7'X, +X:p), =XfC)  =x1/2. 

In the case of a light pulse with the envelope given by 
(12), we must take into account the nonadiabatic corrections 
to r,(t ) and remember that, because of the spatial inhomoge- 
neity of the light-pulse envelope, there is a change in the 
force fk . Thus, for a traveling wave in a tenuous medium, the 
envelope of F is a function of the argument n*r - ct, so that, 
in accordance with (12), we have 6'Fi/6'r = - n(A /c)Fi and 
the expression for fk given by (16) acquires the factor 1 + iA / 
w. Effects due to nonstationarity (12) and spatial inhomoge- 
neity of the envelope make comparable contributions to the 
constant dipole moment 8 induced by the light pulse. 

The resulting expression for 8 can be written as the sum 
of terms respectively due to magnetic dipole and electric 
quadrupole interactions: 

- 
d=b (dP) ) (FF')  n, 

where, as in the case of (1 7), the entire effect in (1 8) is due to 
the light pressure alone. The absorption of light energy that 
is responsible for the light pressure is then due to an increase 
in the oscillation energy with increasing field amplitude F. 
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When F (A < 0) decreases, the oscillator gives up energy to 
the wave, and d changes sign. In contrast to (17), the mom:nt 
a in (1 8) does not vanish in the limit as w-0. 

The absence of effects associated with the spatial in- 
homogeneity of the wave in (17) and (18) is due to the fact 
that we have used a highly simplified model of the medium. 
In real systems, the contribution of quadrupole terms is 
usually the dominant one (see below). 

5 4. QUANTUM-MECHANICAL CALCULATION OF EFFECTS IN 
THE FIELD OF A LIGHT PULSE 

We shall confine our attention to a monatomic gaseous 
medium when we quantitatively examine the effects defined 
by (2a) and (4). The state $ of an atom in the field (1) is a 
solution of the Schrodinger equation 

ih(aqlat)  = [ H , + V ( t )  1% (19) 

where the perturbation operator V(t ) has the form 

ieo v y  =- - 
4c 

and r and L are operators for the position vector and angular 
momentum of the optical electron in the atom (the factor 
1 + iA /w in the quadrupole interaction operator V, takes 
into account the spatial inhomogeneity of the envelope of the 
light pulse; see 5 3B). 

When a nonresonant perturbation V(t) is turned on 
adiabatically, it takes the atom from the nondegenerate state 
10) with energy Eo to the quasienergy state (QES) I$o) (Ref. 
9). The perturbation-theory expansion for is1' 

I Ilo ( t )  > = { I f  GEo+aoV'L)e-'wt+GEo-hwV(-)eiof 
f GE,' [V'-'GEa+~oV(+)+V(+)GE,-noT'(-)] f. . .) 1 o), (21) 

where GE is the Green function of the optical electron of 
energy E, and contains summation (and integration) over the 
intermediate states In) with energies En : 

where GHL denotes the sum (22) for E = E, with the term 
containing In) = Ik ) omitted. When nonadiabatic correc- 
tions are taken into account in the case of a smooth envelope 
(12), the wave function of the atom can be written in the form 

Substituting this in (19) and recalling that 
dVc*)/dt =AVc*), we find that 

Evaluating the average of the operator d = er in the first 
order in A in the state defined by (23), and isolating the non- 
oscillating part of d, we obtain the following expression for 
the optical rectification effect: 

- 

d=hxr ( a )  ( F  P * )  n, 
( P )  ( P )  ( 9 )  

X A ( ~ )  = X A  ( o )  + ~ r  ( - a )  + X I  (o )  + ( - a ) ,  (25) 

+ ~ x G :  y  [~Gz,+am-GE~+nw~l Y 

+~yGa+na[~Ga+rw-Ga+nm~l  Gz,+nu~) 10). 

Using the commutativity of L, and GE as well as simple 
transformations of the spectral sums, we can express the 
magnetic dipole part of (25) in terms of the polarizability 
a(w) of the ground state: 

LP) ( C )  e d  
X A  (o)+x& (--o)=-- 

4rnco2 d o  { a [ a ( o ) - a ( O )  I ) .  
This result is universal and is therefore valid for both quan- 
tum-mechanical and classical systems. In particular, the 
expression for x?) given by (18) follows from it. 

As an example, Fig. 1 shows the dispersion relation 
xA(w) for the ground state of hydrogen (the calculations 
make use of the Sturm expansion of the Coulomb Green 
function"). At frequencies h = En - Eo, the susceptibility 
X, has second-order poles. As in 5 3B, X, remains finite as 
1 3 4 .  In atomic units, 

xh(0'0) = ~ ~ [ ~ ~ / 8 + 2 . 5 . 1 0 ~ ~ 0 ~ +  . . . ] , ~ = ' / i $ , .  

As w increases, the susceptibility X, (w) increases rapidly and 
the main contribution to X, ( - 90%) is provided by the qua- 
drupole part of (25). Calculations performed for inert gases 
in the model-potential approximation1' yield values of X, 
that are greater by two or three orders of magnitude as com- 
pared with hydrogen (4-6 orders of magnitude in the case of 

FIG. 1. Dispersion relation for ,y,(o) (in atomic units; 1 
a.u. = 2.09 X cgs). Dashed lines represent resonance frequencies. 
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the alkali metals). Thus, for frequencies in the optical range, 
the polarization per unit volume of the gas at atmospheric 
pressure, induced by a picosecond pulse (A - 10"s-') with 
amplitude F-5-10' V/cm, turns out to be about cgs. 
We note, for comparison, that a comparable polarization is 
induced in the gas by a constant field Fo- 10' V/cm. 

Direct calculation of X, (w) is impossible for condensed 
media. Here, we can only relate X, to the usual nonlinear 
susceptibility xjk, that determines the polarization of the 
isotropic medium with spatial dispersion in two fields F"' 
and F"' with frequencies w and w', propagating in the same 
direction n. The component of the polarization vector at the 
difference frequency w - w' is 

Pj ( t )  = ( i / 2 ) ~ ~ ~ ~ ~ ( o ' - - o ' ;  o, -a1) F:') ~ , ( ~ ) ' n , e ~ ( ~ ' - ~ ) ' +  C.C. 

(26) 
For o = w', the susceptibility xjk, of nondissipative media 
is equal to zero. For F"' = F"' and comparable w and w', the 
resultant field F(t ) = F"'(t ) + F"'(t ) can be written as a wave 
of frequency (w + wf)/2 and envelope F varying with fre- 
quency 6 = Iw - w11/2. Expressing P in (26) in terms of F 
and A = F - 'dF/dt = - S tan St in this case, and passing to 
the limit as w'+, we obtain the following expressions for an 
isotropic medium if we take into account the symmetry 
properties of x,,, : 

(27) 
It is interesting to note that, in this particular problem, the 
s~sceptibilityx,~, (w' = a) is zero and the size of the effect is 
determined by its frequency dispersion in the neighborhood 
of w = w'. The result (27) was obtained for the special case of 
the envelope F, but is valid even when F is an arbitrary func- 
tion of time t. This is readily verified by expressing the re- 
sponse P(t ), which is quadratic in F, in the form of a double 
integral of Fk(t - r)Fl(t - 7') with respect to r and r', and 
then transforming it as in the derivation of the energy rela- 
tions in dispersive anisotropic media.'.'' 

The determination of the magnetization of a gas in a 
constant electric field F, by a pulse of linearly polarized radi- 
ation is based on (21), (23), and (24) and is analogous to the 
determination of d. The nonoscillating part of the magnetic 
moment is 

The explicit expression for 7, (w) is very unwieldy (it con- 
tains several tens of composite matrix elements), and will not 
be reproduced here. The expression for 7, (a) becomes much 
simpler near resonances for which we can confine our atten- 
tion to terms that are the most rapidly varying functions of 
frequency. Thus, near resonance with a p-level for [ A  I (w, 
&I = E , + h - E p  wehave 

where f,, is the oscillator strength of the 10)-+Jp) transition 
and a; is the tensor part of the static polarizability of thep- 
level that determines the splitting S of the magnetic sublevels 
in a constant electric field F,: 

S=E,,,=o - EPsm = ,  = 3a;Fi. We note that, for the 
three-dimensional oscillator f,, = 1 and S /fi is the frequen- 
cy difference w,, - w, introduced in $3, so that (29) becomes 
identical with the classical result (14) in the neighborhood of 
resonance. 

In monatomic gases, the magnetization becomes appre- 
ciable only for frequencies w approaching the resonance val- 
ue. The characteristic values for atoms are&, - 1, a;- lo3 
a.u., so that the magnetization of the gas for A = 10 cm-', 
A = 10" s-', F= 10' V/cm, Fo = lo4 V/cm amounts to 
about lo-' erg.G-'.~m-~, i.e., it is comparable with the 
magnetization of a diamagnetic medium in a constant mag- 
netic field B - 1000 G. 

By analogy with (26) and (27), the magnetization of a 
medium by a pulsed light field can also be looked upon as the 
limiting case of magnetization in the field of two frequencies 
w and w': 

When o = w', the tensor qjkl is antisymmetric in the indices 
k, 1 in the case of nondissipative medium and determines the 
inverse Faraday effect. Mj(w =a') vanishes only when F"' 
and F"' are linearly polarized in the same direction. The 
transformation of (30) that is analogous to the transition 
from (26) to (27) then yields') 

In particular, allowance for the spatial symmetry of vjk, in 
the case of a uniaxial crystal enables us to rewrite (3 1) in the 
form 

where 

and we assume that the z axis is the crystal anisotropy axis. 

5 5. POLARIZATION AND MAGNETIZATION OF A GASEOUS 
MEDIUM BY A NONRESONANT MONOCHROMATIC LIGHT 
WAVE 

In a nonresonant field in which the detuning from reso- 
nance fid = (En - E, - h I exceeds the thermal energy kT 
of the atom, collisions between atoms do not affect the inter- 
action between radiation and medium, and spontaneous 
scattering of light by atomsI3 is the principal mechanism for 
the dissipation of light energy. When spontaneous scattering 
is taken into account, the state of the atom in the field is no 
longer described by pure QES (2 1) because of the presence of 
effects due to radiation reaction. The simplest way of taking 
into account radiative damping is to introduce the width T, 
of the excited levels, i.e., by substituting En-+E, - ifirn/2, 
but this is valid only for resonance scattering of a low-inten- 
sity light wave. In the general case, on the other hand, the 
density matrix formalism has to be used to take into account 
the effect of the thermostat (in our problem, the electromag- 
netic vacuum) on the state of the system. 
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Under the influence of the light field, the system even- 
tually reaches a steady state described by the density matrix 
p(t ) =p(t + 277/w), which is periodic in time. It can be writ- 
ten as the sum of "even" and "odd" parts: 

~ ( t )  =&,At) +P,, ( t ) ,  (33) 

wherep,,, describes the "forced oscillations" of the system 
(with frequencies that are multiples ofw) and p,, represents 
the effect of "friction" (dissipative processes) on these oscil- 
lations. It is preciselyp,, that determines the effects that we 
are considering. 

The usual Bloch-type relaxation equations are unsuita- 
ble for the determination ofp(t ) in a nonresonant field and we 
must resort to the more general integro-differential equa- 
tions.13 However, the determination ofp,, is then simpler: 
in a nonresonant field pod, /p,,, -r /A 4 1 (where r and A 
are the characteristic level width and detuning from reso- 
nance, respectively) and we can develop a perturbation the- 
ory in r. If, in addition, the interaction V with the light wave 
is also looked upon as a perturbation, simple closed expres- 
sions can be obtained for the first few terms of the expansion 
forp,, in powers of V. In particular, when dissipation is due 
to the dipole scattering of light, we have in the first order in r 

where yn = 2e20 i/3c3 and the vector operator is 

Rn05 I n)(l~lrG~~+~~V(+)+V(+)G~~~rlO)(01. 
The various terms in the sum over n represent the effect of 
friction due to the transition from the ground state 10) to In) 
with the absorption of a photon fio and the emission of a 
spontaneous Raman photon M2, = E, + fio - En. The 
sum over n is finite because it includes only components with 
0, > 0. In particular, when the external field frequency w is 
less than the distance to the first resonance, the sum contains 
only then = 0 term that corresponds to elastic scattering of 
light (0, = w). 

When the average electric or magnetic moments in the 
state (33) are evaluated, peven does not contribute to the ef- 
fects. The time-independent component of the moment is 
determined exclusively by the constant terms in the expres- 
sion for p,, : 

The final expression can be written in the form 

Each of the terms in X, is the product of two matrix ele- 

ments: 

= - o M ~ , ~ M ~ ( ~ ) ,  XJ,t' = ~ M ~ , ~ , M , ( ~ ' ,  

where M?), M y )  and Mt' are the components of the dipole- 
dipole, dipole-quadrupole, and dipole-magnetic-dipole 
light-scattering tensors: 

(a' Mn =(n 1 &'G,sn-nmr+rGEo+n&' 1 o), 

and the matrix elements Mi,, (i = 1,2,3) are given by 

Mi, ,=(0 1 Y ~ Q ' ~ i ~ E , + n o r +  YG~,'rGEnnh~vi+r~~n-nwyG~B-hw Vi 

+ ~ G ~ ~ - ~ ~ V , G E ~ ' ~ + V ~ G ~ ~ + ~ . ~ G E ~ + ~ ~ ~ + V ~ G E ~ + ~ ~ ~ G E ~ ~ Y  In), 

where Vl = xy, V2 = y, V3 = L,. 
The magnetic-dipole part of (35) with n = 0 (elastic 

scattering) is expressed as in Section 4 in terms of the polariz- 
ability of the ground state 10): 

which is identical in the case of the oscillator with the result 
of the classical analysis in § 3B. 

Figure 2 shows the frequency dependence x,(w) for the 
hydrogen atom. As w 4 ,  the susceptibility becomes 
X, z360w4 a.u., i.e., it falls as in (17) with y = y,,, in (15). 
The contribution of magnetic dipole terms X, at low fre- 
quencies is about 30%, and falls rapidly with increasing w. 
Near resonance with the first excited level, X- l/A as in 
(17). The appearance of third-order poles at resonances with 
higher-lying levels is a consequence of Coulomb degeneracy. 
The n $0 terms in (35) provide no more than 10% of x,, in 
practically the entire frequency range because 0 <03. 
Hence, X, is determined largely by dissipation through elas- 
tic scattering. For atoms other than the hydrogen atom, the 
magnitude of X, is greater than in Fig. 2 by two or three 
orders of magnitude. The polarization per unit volume of the 

FIG. 2. Dispersion relation for x,(o) ( 1  a.u. = 7.75X lo4' cgs). The signs 
ofxy(u)  at different frequencies are indicated against the curve. 
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gaseous medium in a field of about lo5 V/cm is about 10W6 
cgs. 

According to (34), the magnetization of the atom in the 
linear field is 

The expression for q, will now be given but only for the case 
where w is close to resonance with thep-level and provided 
we confine our attention to terms corresponding to elastic 
light scattering (it is precisely these terms that provide the 
dominant contribution to the effect): 

where A ,  f,, and a; are the same as in (29). This result is in 
agreement with (1 I), so that estimates of M based on the 
classical model remain valid for resonant monatomic gases 
as well. 

5 6. CONCLUSION 

In the microscopic determination of the effects defined 
by (2a) and (4) in Section 5, we confined our attention to the 
simplest (though universal) dissipation mechanism, i.e., 
spontaneous light scattering. The presence of a T-odd pa- 
rameter in the problem may, of course, be due to other non- 
equilibrium processes as well. For example, in a resonant 
gaseous medium in which elastic collisions are important, 
the T-odd parameter will be determined by the transverse 
level widths, i.e., dissipation of the "coherence of atomic 
states." At the same time, inhomogeneous widths (Doppler, 
etc.) are not related to irreversibility and can themselves give 
rise to the above effects. 

In precisely the same way, nonstationary processes are 
not exhausted by the case of the light pulse examined in § 4. 
In particular, it is very interesting to consider the effects 
defined by (2a) and (4) during the development of threshold 
processes, for example, when stimulated Raman scattering 
or the generation of harmonics (or simply the generation of 
laser radiation) occurs in the medium. 

The manifestations of the new effects may be different 
in different cases. For example, when a particular amount of 
resonance radiation (analog of the n- pulse) is transmitted by 
an anisotropic gaseous medium, the medium remains mag- 
netized after the passage of the pulse, and the magnetization 
M subsequently oscillates at frequency (all - w, ( and re- 

laxes during the lifetime of the excited resonance state. 
All these problems are, however, connected with reso- 

nance processes. Their analysis in each individual case re- 
quires specialized techniques that lie outside the range of the 
present paper. 

The above effects will provide us with new information 
on the nonlinear properties of different media and can be 
used to investigate different dissipative and transient pro- 
cesses. It may be more convenient to carry out experiments 
with intensity-modulated radiation and observe the electric 
or magnetic polarization oscillating at the modulation fre- 
quenc y . 

The authors are indebted to B. Ya. Zel'dovich and L. P. 
Pitaevskii for useful discussions and to S. I. Marmo for assis- 
tance in computations. 
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