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The P- and T-odd nucleon-nucleon potentials are found in the Kobayashi-Maskawa scheme. 
Analytic expressions for T-odd nuclear multipoles are obtained in the shell model. The electric 
dipole moments of the nuclei exceed that of the neutron by two to three orders of magnitude. The 
electric dipole moments are calculated for a number of atoms and molecules. The feasibility of 
experimental detection of T-invariance violation is discussed. 

1. INTRODUCTION 

Although many years have already elapsed since the 
discovery' of CP nonconservation, neutral-kaon decays re- 
main as before the only physical phenomena in which this 
effect was observed. Hence the great interest in searches for 
the electric dipole moments (EDM) of elementary particles, 
one more possible manifestation of possible CP nonconser- 
~ a t i o n . ~  Continuing prolonged experiments by many groups 

us, however, that this additional enhancement factor can 
hardly exceed 10 in stable nuclei. 

The indicated nuclear EDM enhancement shortens 
substantially the gap between the experimental data ob- 
tained on CP nonconservation in the already performed 
spectroscopic and neutron experiments. The possibilities of 
further progress in molecular and atomic experiments is also 
discussed in the present paper. 

(see, e.g., the review by Ramsay3) led to constraints on the 
EDM of the neutron; the most stringent of them is4: 

2. P- AND T-ODD INTERNUCLEON POTENTIAL IN THE 
KOBAYASHI-MASKAWA MODEL 

Idn/e(<4.I0-"cm. (1) 

These constraints permitted a drastic decrease in the number 
of possible CP-nonconservation models. 

The constraint considered to be the best for the proton 
EDM (we shall return to the question of its reliability below) 
was obtained in experiments with the T1F m~lecule .~-~  Ac- 
cording to the latest calculations, it states thats 

d,le= (2,3*3,4) . 10-2'cm. (2) 

The constraint that follows from experiments with atomic 
c e s i ~ m ~ . ' ~  takes the form" 

]d,le) <5,5.10-19 cm. (3) 

Both constraints (2) and (3) were obtained under the assump- 
tion that the EDM of the thallium and cesium atoms investi- 
gated in the experiments are due to the dipole moment of the 
valence proton. 

It is difficult, however, to imagine a situation in which a 
difference of several orders of magnitude can exist between 
the proton and the neutron, two strongly interacting parti- 
cles that are virtually transformed easily into each other 
(e.g., n++p.rr-, pctn.rr+). An impression is therefore gained 
that measurements of EDM of atoms are of no particular 
interest in elementary-particle physics. 

This is not the case, however from our point of view. It  
is shown in the present paper that the dipole moment in- 
duced by T- and P-odd nucleon-nucleon interactions can ex- 
ceed the nucleon EDM by more than 100 times. Additional 
enhancement of the EDM of a nucleus can result from the 
anomalous proximity of nuclear levels of opposite parity. 
The last circumstance was first noted in Ref. 12 and dis- 
cussed in detail quite recently in Refs. 8 and 13. It seems to 

The success of the renormalizable theory of electromag- 
netic and weak interactions makes it quite natural to attempt 
to describe CP nonconservation within the framework of 
this very same approach. Two schemes of this type are being 
most intensively discussed (we disregard here models based 
on grand unification theories or on supersymmetries). In one 
of them the CPnonconservation arises in the Higgs sector of 
the theory,I4.l5 and in the other, in the fermion sector.I6 As 
for the most popular variant of the model of the first type, 
proposed by Weinberg,I5 the neutron EDMl7.Is that follows 
from it 

d , /e - -9 .  cm (4) 

contradicts even formally the constraint (1). There are also 
indications that this model contradicts the CP nonconserva- 
tion parameters in KL -27~  decay^.'^.^^ We consider there- 
fore a P- and T-odd potential in a CP-nonconservation 
scheme of another type-the Kobayashi-Maskawa (KM) 
model.16 It was shown independently in Refs. 18 and 2 1 that 
the main contribution to the neutron EDM is made by the 
effective quark-quark interaction operator 

A m,2 
G I = G ~ I ~ 2 ~ s ~ 2  sin 8 12n - 1 n 7 ,  m, 

which is described by the "penguin" diagram2* of Fig. 1 (the 
dashed line in it represents a gluon). Here G = 10-5m, -2 is 
the Fermi constant of the weak interaction; for the KM ma- 
trix and its parameters S,s,, ci we use Okun's n~tat ion, '~ 
assuming here s2s3c2 sin S--. lop3. For the strong-interac- 
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FIG. 1. 

tion constant we assume the value a, = 0.2. The correction 
factor A that takes strong interactions at short distances into 
account is equal to 1.3 if gluons with virtuality from m, to 
m, are considered; if, however, we go to a lower value, say 
0.2 GeV, we have A = 2.5. This operator is special because it 
contains right-hand currents whose matrix elements are no- 
ticeably enhanced (see Ref. 22). Furthermore, the mutual 
cancellation of the contributions of the t and c quarks in the 
limit m, = m, is ensured here not by the usual factor 
(m: - m:)/mW2-0.1, but by In (m:/mf)-6. 

The dipole moment of the neutron in the KM model at 
A = 1.3 is1' 

d,/e=2.10-32 cm, (6a) 

and at A = 2.5 we have 

d,/e=4.10-32 cm. (6b) 

This is precisely the value of d, that we shall use hereafter. 
The larger valued, /e- lop3' cm obtained in Ref. 2 1 is most 
likely an o v e r e ~ t i m a t e . ~ ~ , ~ ~  

When using the operator (5) to construct the P- and T- 
odd internuclear potentials we confine ourselves to pole dia- 
grams; this, at any rate, enables us to avoid small geometric 
quantities of the type 1/$ which stem from the loops. The 
simplest diagram of this type is shown in Fig. 2: the CP-odd 
vertex, marked B , should be pseudoscalar, for it is precisely 
in this case that the matrix element of the operator (5) is 
enhanced by the right-hand currents. The CP-odd vertex 0 
should then be a scalar, and s wavelike. 

The standard factorization technique allows us to re- 
duce tke pseudoscalar part of the matrix element 
(pK -IH In) to the form 

Here f, = MeV is the K-,uv decay constant, go = 1.15 is 
the axial-current renormalization constant, and for the 
quark current masses m, , m, , and mu we assume the values 
150,7, and 4 MeV, respectively. 

The calculation of the matrix element ( N K O I ~  IN), 
N = p ,  n reduces in the same technique to calculation of 
(m Idy5d IN ). The nucleon matrix element of the divergence 
of the isovector axial current 

jii) =I/ z (- uy,y,u-dyvyrd) 

leads to the equality 

FIG. 2. 

is the isotopic-spin operator. From isotopic-invariance con- 
siderations it follows that the matrix element 

(NlEy5u+,dy5dlN) 

contains no pion pole, so that in the chiral limit we have 

From (8) and (9) we obtain 

(1  1) 
The scalar vertex in Fig. 2 can be expressed in terms of 

the s-wave amplitudes of the hyperon nonleptonic decays. 
Using the octet-dominance hypothesis, we write down the s- 
wave CP-odd baryon (B ) and pseudoscalar (P ) octet interac- 
tion amplitude in the form (see, e.g., Ref. 23) 

A,[  (PSBB) - (SPBB) ] + A4 [ (PSBB)  - (SPBB) ] 
+A,[  (SB)  (BP)  - (SB)  ( B P )  I .  (12) 

The spurion S-A, is here the sixth component of the octet, 
and the parentheses enclose matrix-product traces. The co- 
efficients A 3,4,7 are expressed in terms of the s-wave ampli- 
tudes of the nonleptonic hyperon decays (we use for these 
amplitudes the phase system adopted in Ref. 22) as follows: 

As a result, the effective Hamiltonian of the s-wave CP-even 
kaon-nucleon interaction takes the form 

Hw=-iGm,2{A3 ( p p )  (KO-KO) + (A3-A4+A,)  (En) (KO-KO) 
+ (A, -A, )  [ (Ep) K--  ( p n )  K + l ) .  (14) 

We note that since the squared momenta of the pion in hy- 
peron decay (q2 = m i )  and of the kaon in intranuclear ex- 
change (lqI2 - m:) are small when measured in hadron scale, 
the coefficients A 3,4,7 in (14) are close to the values (13) ob- 
tained from nonleptonic decays. 

Using Eqs. (7) and (1 1) (and their Hermitian adjoints), as 
well as (14), we arrive at the following CP-odd nucleon-nu- 
cleon interaction Hamiltonian 

where 
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In this expression 

In the derivation of (15) we took it into account that the 
characteristic momentum transfers in the nucleus are much 
smaller than m,, so that the K-meson propagator is 

- 2 (q2-mi)- '= -m, . 
After a Fierz transformation, the last term in (IS), due 

to charged-kaon exchange, reduces in the momentum repre- 
sentation and in the nonrelativistic approximation to 

Here a, and a, are the proton and neutron spin operators, 
while pi and pf are the initial and final momenta of the corre- 
sponding particles. In this and following formulas we omit 
for simplicity the factor mi/(m: - q2), which makes the in- 
teraction nonlocal in coordinate space. The interaction (17) 
does not work in either an ordinary nucleus, in which the 
angular momenta of all nucleons but the outer one are com- 
pensated, nor, e.g., in the deuteron, where the total nuclear 
spin is specified and is not altered by the dipole-moment 
operator; this interaction will therefore be disregarded here- 
after. It is curious that in the case of a P-odd but T-even 
nucleon-nucleon interaction the exchange term with the 
analogous Lorentz structure turns out to be quite substan- 
tial. 

In none of the other possible mechanisms that lead to 
the appearance of P- and T-odd nuclear forces in the Ko- 
bayashi-Maskawa model were we able to observe any mech- 
anism capable of competing successfully with K-meson pole 
exchange. We shall confine ourselves hereafter to just this 
interaction, which we write in the form 

and leave out of (15) the last, exchange term. 
In a heavy nucleus, the P- and T-odd interaction of a 

nonrelativistic nucleon with the core is described by the fol- 
lowing effective Hamiltonian: 

where a is the spin of this nucleon andp is the density of the 
core neutrons and protons. This phenomenological expres- 
sion for the interaction is not connected in essence with any 
concrete CP-nonconservation scheme at the elementary- 
particle level, and is thus quit general. In the Kobayashi- 
Maskawa model, which is of primary interest to us, 

qP=-qn=qo (1.34-0.342/A), (20) 

where Z is the charge of the nucleus and A is the atomic 
number. Numerically we have at Z 2 40 

It must be borne in mind, however, that the Kobayashi- 

Maskawa model predicts most likely the lowest values for T- 
odd multipole moments. 

3. NUCLEAR ELECTRIC DIPOLE AND MAGNETIC 
QUADRUPOLE MOMENTS DUE TO P- and %ODD NUCLEON- 
NUCLEON INTERACTIONS 

The simplest P- and T-odd characteristic of a nucleus is 
the electric dipole moment 

5 I 
d=e r6p (r) d3r=d - I , (21) 

where Sp is the correction to the charge density necessitated 
by the P- or T-odd interaction. If, however, a neutral atom or 
molecule is regarded as a system of pointlike particles with 
Coulomb interaction then, even though the nucleus has an 
EDM, the total dipole moment of the system is zero in accor- 
dance with Schiff s well known the~rem. '~  (A detailed analy- 
sis of a number of problems connected with this theorem can 
be found, e.g., in Khriplovich's book2'.) It was noted in Ref. 
26, however, that this hindrance is lifted, in particular, when 
the finite dimensions of the nucleus are taken into account. It 
was shown sub~equent ly~~ that it is precisely this effect 
which is the main cause of violation of Schiffs theorem in 
heavy atoms and molecules. The Schiff hindrance reduces to 
the fact that the P- and T-odd potentials of the nucleus must 
be written in the form 

wherep,(r) is the spherically symmetric charge density of the 
nucleus, normalized by the condition Jd 3rp,(r) = Z. The sec- 
ond term in (22) ensures, in accord with Schiff s theorem, the 
vanishing of the dipole term of the expansion of the potential 
outside the nucleus. The total EDM of the atom or molecule 
is the electron-shell dipole moment induced by the potential 
(22)- 

In the calculation of the EDM of the nucleus, or of the 
potential (22), it is necessary to take into acount the motion 
of the nuclear core besides the motion of the outer nuclei. It 
is known that the large mass core, even in heavy nuclei, is 
compensated for by the large charge. Let Sp, be the T- or P- 
odd correction to the probability density, due to the outer 
(valence) nucleon of the nucleus. The total charge-density 
correction that enters in (21) and (22) is then 

1 
6p (r) =*6pv (r) f - VPO (r) (r), 

A (23) 

where q = 0 and 1 respectively for the neutron and proton, 
and (r) is the contribution to the dipole moment of the nu- 
cleus, necessitated by the unpaired nucleon: 

The second term in (23) takes into account the fact that when 
the outer nucleon moves the core is shifted relative to the 
mass center (r, =: - r/A ), and this alters the charge density 
po(r - rc ) - po(r) zrVpo(r)/A. With the recoil effect (23) 
taken into account, the EDM of the nucleus takes, as expect- 
ed, the form 
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d=d (111) =e ( q -Z /A)  (r). (25) 
With the aid of (23) it is easy to verify that the recoil effects in 
the two terms of Eq. (22) for Sq, cancel out exactly: 

Thus, Sq, assumes the form that would be obtained 
without taking any account of the recoil. The potential (26) 
can be expanded in powers of R -': 

We recognize that 

The expression in the square brackets is an irreducible third- 
rank tensor (octupole). We shall disregard it, since the corre- 
sponding interaction leads to a mixing of atomic states hav- 
ing only high angular momenta, so that its contribution to 
the EDM of the atom or molecule is noticeably suppressed. 
The remaining dipole contribution to Sq, is of the form 

1 
6cp=-QmdmA - R = 4nQmam6 (R) , 

HTp=-e6p=-4neQmam6 (R) , 

Here H ,  is the Hamiltonian of the T- and P-odd interaction 
of the electron with the nucleus, and < is the mean squared 
charge radius of the nucleus. We shall hereafter call Q the 
Schiff moment of the nucleus. 

A T- or P-parity nonconserving interaction of an elec- 
tron with a nucleus can be caused also by the magnetic qua- 
drupole moment (MQM) of the nucleus." In a gauge with 
div A = 0 the expansion of the vector potential produced by 
a stationary distribution of the currents in powers of 1/R is 
of the form 

The first term of the expansion corresponds to the magnetic 
dipole and is of no interest to us. We transform the second 
term, taking into account the equality that follows from the 
current conservation condition a, j, = 0: 

Since ( ji r ,  r, ) contracts with a tensor that is symmetric in 
the indices n and m, we have 

'lz(jlrmrn) -. 'I,( (iirm--jmri) m). (32) 
The expansion of the right-hand side of (32) in the irreducible 
tensors is: 

where ai is a vector and M,, is a symmetric tensor. Their 
explicit form can be easily found from (33): 

The vector potential is expressed in terms of a and M as 
follows: 

The quantity a is the anapole moment of the system, and M is 
the magnetic quadrupole moment. For a quantum system in 
a state with a definite angular momentum I we have 

Comparing (34) with (36) we see that the anapole moment is 
the result of spatial-parity violation in T-parity conserva- 
tion, and the MQM occurs when P- and T-invariance are 
simultaneously violated. The anapole moment of a nucleus 
was considered earlier in Ref. 29. In the present paper we 
consider only P- and T-odd effects. 

The electromagnetic current of the nucleon takes in the 
nonrelativistic limit the form 

where m and p are the mass and the magnetic moment, in 
nuclear magnetons, of the nucleon. We have neglected in (37) 
the weak dependence of the nuclear forces on the velocity. 
Substituting (37) in (34) we get 

a) Spherical nuclei 

We consider spherical nuclei with one unpaired nu- 
cleon. With allowance for T- and P-odd interaction, the 
wave function of the outer nucleon is 

where f2 is a spherical ~pinor ,~ '  6 = - a . (r/r)f2 and fi is a 
real mixing coefficient. With the aid of (25), (29), (38), and 
(39) we get 
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Here 

We note that according to (40) the MQM is due only to the 
anomalous magnetic moment of the nucleon. This circum- 
stance can be quite simply verified with the aid of the Dirac 
equation in a spherical potential. In a nonspherical nucleus, 
however, the normal magnetic moment also contributes to 
the MQM. 

It is curious that for the same reason the atom's MQM 
induced by the dipole moment contains, in the centrosym- 
metric-field approximation, an additional small quantity, 
the electron's anomalous magnetic moment a/U.  The 
MQM induced in a molecule by the EDM of an electron does 
not contain this smallness. 

Using the Hamiltonian (19) we can calculate the mixing 
coefficient and the values of (3)  and (r),  say, in a Saxon- 
Woods potential. At first, however, we shall perform the 
calculations in a simple model that permits an analytic solu- 
tion; this calculation turns out to be in fact no less accurate 
than a numerical one. Consider the motion of an unpaired 
nucleon in a nuclear potential U, neglecting the spin-orbit 
interaction. It is known that nuclear density and the poten- 
tial U are quite close in form. Assume that they coincide: 
p(r) = U(r)p(O)/U(O). We can then rewrite (19) in the form 

G p(O) HTp=gaVU, g=q T- = -2.10-Zfq [cm]. (42) 
212m U(0) 

The total potential in which the nucleon moves is, cor- 
respondingly, 

t7=U+HTP=U+EoV U-U (r+F;o). (43) 

It is clear hence that the wave function, with H ,  taken into 
account, is of the form 

$=.g(r+Eo) = (l+EoV) $(r) ,  (44) 

where $(r) is the unperturbed wave function. With the aid of 
(44) as well as (25), (29) and (38) we obtain 

where 

I 
tI=l at I=1+'/2, t r  = - - z+ 1 

at I=Z-'I,, (48) 

7 = $ 1$I23d 3r is the mean squared radius of the unpaired 

nucleon, and 1 is the orbital momentum of the nucleus. A 
numerical calculation in a Saxon-Woods potential and the 
experimental data on the electric and magnetic radii of the 
nuclei show that 7 and 6 are nearly equal and we can put 
f = 6 = 3/5R *, where R = r,,A 'I3 is the radius of the nu- 
cleus and r,, = 1.1 fm. Then 

Note that d and M are independent ofA whereas Q increases 
like A 'I3. 

It is useful to compare parametrically the EDM d and 
dn of the nucleus and of the neutron, respectively. Generally 
speaking, such a comparison is possible only within the 
framework of a definite CP-nonconservation scheme. There 
exists, however, a regular enough factor that enhances d 
compared with d, : 

3n (mn2Ur,S) -'=60. (50) 

Here (m; U r:)-' is quite clearly of nuclear origin. The geo- 
metric factor 3 r  occurs when d appears in the tree approxi- 
mation while d, appears only in the one-loop approxima- 
tion. The enhancement factor supplementing (50) in the 
Kobayashi-Maskawa model has a rather random numerical 
character. In a scheme where CP-nonconservation is due to a 
8 term (the corresponding contribution to P- and T-odd nu- 
clear multipoles is considered in Ref. 13), the additional nu- 
merical factor leads to a noticeable decrease rather than en- 
hancement of (50). 

It is easy to verify that for an s,/, nucleon (I = 0, I = 1/ 
2) Eq. (49) yields Q = 0. The point is that we have assumed 
7 = 3, whereas in this case, according to (46) 

i.e., strong mutual cancellation of the two terms takes place. 
We point out that a similar situation obtains for the contri- 
bution induced by the proton dipole moment proper.28 
Clearly, in the case of strong cancellation the considered 
analytically solvable model yields only an order-of-magni- 
tude estimate of Q. Of practical importance is 203.205Tl (3sIl2 
proton), for which experimental data are available (see be- 
low). A numerical calculation in a Saxon-Woods potential 
yields with the aid of (19) and (40) 

A similar calculation with Eq. (5 1) yields - 1.3 - lop8. The 
result (52) is likewise of low accuracy, for according to Telit- 
syn's  calculation^^^ the difference f - 4 is quite sensitive 
to polarization effects and may even reverse sign if these 
effects are accurately taken into account (in a Saxon-Woods 
potential ( 7 - e)/< = - 0.13, and according to Ref. 31 
this quantity equals 0.07 + 0.13). 

For other nuclei, according to numerical calculations in 
a Saxon-Woods potential, Eqs. (45), (46), (47), and (49) are 
approximately 50% accurate. Since this is close to the shell- 
model accuracy, further refinements of Eqs. (45)-(49) are 
meaningful only if multiparticle effects in the nucleus are 
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simultaneously taken into account. Numerical calculations 
show that corrections on the order of 50% can appear when 
account is taken of the nonlocal character of the nucleon- 
nucleon T- and P-odd interaction (Ar- l/m,). 

According to (46) and (49), in the shell model the Schiff 
moment is Q = 3 for nuclei with an external neutron (q = 0). 
Polarization of the core leads to q -0.1 for a neutron, so that 
in this case Q differs from zero. 

The numerical values of d, Q, and M for some nuclei are 
listed in Table I. 

b) Nonspherical nuclei 

Nonspherical nuclei are known to have close levels of 
opposite parity. This enhances the effects connected with the 
usual weak interaction. The possibility of enhancing the 
EDM of nonspherical nuclei when the ground state is close 
to a level having opposite polarity but the same angular mo- 
mentum was first noted in Ref. 12 and was discussed quite 
recently in Refs. 8 and 13. Unfortunately, if only heavy sta- 
ble nuclei are considered, the choice is quite small. We have 
in fact 16'Dy, which has a (5/2-) level at a distance 25.7 keV 
from the ground state 15/2+), as well as 237Np (ground state 
15/2+), excited 15/2-), AE = 59.5 keV). There are also sev- 
eral nuclei with AE-  100 keV (153E~,  155Gd, 163DY, 233U). At 
first glance one might expect a noticeable enhancement of 
the effects compared with spherical nuclei, for which A E -  8 
MeV. It turns out, however, that the enhancement hardly 
exceeds 10 in these nuclei. 

The calculation for deformed nuclei is carried out in a 
"frozen" (rotating with the nucleus) reference frame. The 
conversion to the laboratory frame is via the formulas 

where T = d, , Q, , M, is the operator of interest to us, (0 ) is 
the ground state, and IL? ) is the state of opposite parity. We 
calculated the matrix elements in (54) in the Nilson single- 
particle oscillator model. Unfortunately, the matrix ele- 
ments d, , Q, , and HTp between the nearest neighbors are 
small and cannot be reliably calculated. For example, the 
calculated matrix element (5/2+Id, (5/2-) turns out to be 
one-fifth the experimental value determined from the life- 
time of the 15/2 - ) level of 161Dy. The matrix element 
(L? lHTp 13 ) furthermore depends strongly on the choice of 
the parameters of the distribution of the density p in the 
Hamiltonian (19). It appears that only the matrix element 
( 3  IM, IL? ), which is not small, can be reliably calculated. 
There are good reasons for the suppression of the matrix 
elements d, , Q, , and HTp. First, the angular momenta I of 
the dominant components in the Nilson functions of the 
anomalously close states 10 ) and 13 ) differ by two, and are 
therefore not mixed by the above operators. Second, there is 
a special reason, connected with its spatial structure, why 
the operator HTp is suppressed. The density and potential 
have like profiles also in nonspherical nuclei. Therefore if the 
spin-orbit interaction is neglected the approximate formula 
(43) is valid: 

H T P x E o V  U=iE [UP, HO]-, 

where H, =p2/2m + U is the single-particle Hamiltonian. 
Therefore 

Similar factors explain the anomalous suppression of 
(0 Id, 13 ) in calculations by the Nilson oscillator model. 
Indeed. if 

(53) mwL2 (xZ+yZ)  mwz2zz 
We have taken it into account that in the ground state of the U =  C)  +T, - L, 
rotational band we have J = 0, where 0 is the projection of 

L 

the angular momentum on the axis of the nucleus. The quan- We have 

tities d, , Q, , and M, are the components of the correspond- e dU ie 
ing tensors in the frozen system, the z axis is directed along a,= er, E - -. = - 

mu:  dz mwZ2 [pz,HoI-.  (56) 
the nuclear axis. The contribution due to the close level is 
equal to Consequently (0 Id, (3 ) is also proportional to the small 

TABLE I. Electrodipole, Schiff, and magnetic-quadrupole moments of nuclei. The parameter 71 
is the coefficient in the T- and P-odd interaction Hamiltonian (19). The value given in the table for 
the neutron was obtained from 16b) by dividing by 71. 120a). 

spherical 
nuclei 

deformed 

light 
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energy difference Ea - En. 
Thus, if Eqs. (55) and (56) are used literally, the contri- 

bution of the anomalously close level to M,, and Q, turns 
out to be not enhanced, and the contribution to d, is even 
suppressed. Actually, of course, this is not the case, since the 
spin-orbit interaction cannot be neglected and the potential 
and density profiles are not exactly similar. Numerical cal- 
culations in the Nilson model lead to the following conclu- 
sions. There is no enhancement of d and Q compared with 
spherical nuclei if the calculated values of (D Id, 13 ) are 
used. With the experimental values, however, the EDM of 
l6'Dy is enhanced by 5-10 times (in 237Np the experimental 
value of (D Id, 13 ) is half the calculated one). The magnetic 
quadrupole moment in I6'Dy and 237Np is enhanced by ap- 
proximately one order. The calculation results are given in 
Table I. We emphasize once more that our calculations give 
only the order of magnitude of d, Q, and M for deformed 
nuclei. These values can probably be improved by using a 
deformed Saxon-Woods potential. 

c) Light nuclei. 2H and JHe 

The deuteron binding energy is relatively small: 
E=: - 2 MeV. Therefore the range of the wave function ex- 
ceeds greatly the radii of the strong and weak (T- and P-odd) 
interactions. Outside the effective range of the nuclear 
forces, the unperturbed wave function is 

where x = (m(E ()'I2 and xs is the spin wave function 
(S = 1). When account is taken of the T- and P-odd interac- 
tion (18)-(20), the wave function in the outer region takes the 
form 

where a is the range of the forces, a, and on are the proton 
and neutron Pauli matrices, and y is a dimensionless numeri- 
cal factor. In the Kobayashi-Maskawa model 7, = 1.34 7, 
and 772 = - rlO. Equation (58) can be derived under various 
model assumption, e.g., for a rectangular potential well. The 
parameter y depends on the model, but y - 1 in all the cases 
considered by us. We point out that no suppression due to 
the low deuteron binding energy enters in the wave-function 
increment. With the aid of (58) we obtain 

where pp and p, are the magnetic moments of the proton 
and neutron in nuclear magnetons. The numerical values of 
d, Q, and M at a = 1 fm are listed in Table I. It can be seen 
that the values ofd and M turn out to be practically the same 
as in heavy spherical nuclei. The same table lists estimates 
obtained for 3He with the aid of Eqs. (46) and (47). 

4. ELECTRIC DIPOLE MOMENTS OF ATOMS AND 
MOLECULES 

a) Single-particle matrix elements between electron states 

The Hamiltonian of the interaction between an electron 
and the quadrupole field (36) is 

Here I is the angular momentum of the nucleus and a is the 
Dirac matrix for the electron. The matrix element of 
between single-electron states is 

where D is a spherical spinor corresponding to the total an- 
gular momentum j of the electron, and n = r / r .  The radial 
integral S can be calculated with the aid of the quasiclassical 
wave functions given, e.g., in Ref. 27: 

a, is the Bohr radius, f and g are the upper and lower radial 
components of the electron bispinor, Zi is the atomic-core 
charge, and v is the effective principal quantum number for 
the outer electron (E = - Z :Ry/?, Ry = e2/2a, ). The rel- 
ativistic factor RM is formulated such that RM+l as Z a 4 .  
In the most important case of the matrix moment s -P,~,, 
the numerical factor is x = - 2/3, R M ( Z  = 55) = 1.3, 
R, (Z = 80) = 1.8. 

The matrix element of the electron interaction with the 
scalar T- and P-odd nuclear potential (2) or (29) is calculated 
similarly. Only the mixing of the s andp waves need be taken 
into account here, since a suppression - R Z  /a,, where R is 
the radius of the nucleus, sets in at higher orbital momenta of 
the electron. If Eq. (29) is used, the matrix element for a 
relativistic electron diverges. With the aid of (22) we get 

The relativistic factor RQ is different for p,,, and p3/, elec- 
trons: 
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wherex, = 2ZR /a,. With the aid of (46), (47), (64), and (65) 
we can compare the contributions of Q and M to the T- and 
P-odd moments of the atom: 

where me and m are the masses of the electron and proton. It 
can be seen that the MQM contribution usually predomi- 
nates at I>  1/2. Only for atoms with heavy spherical nuclei 
(A > 200) do the contributions of the Schiff moment and the 
MQM become comparable, all the more since R , increases 
with Z more rapidly than RM (at Z = 8 1 we have R, = 7, 
R3/, = 5 and RM = 1.8). As for nonspherical nuclei, the 
MQM contribution for them can be enhanced by one order, 
as shown in the preceding section. 

b) lnduced dipole moment of atoms 

We remark right away that the MQM of a nucleus con- 
tributes to the EDM only in systems with unpaired electron 
angular momenta. The point is that even when an electric 
field (the "measure" of the EDM) is turned on the magnetic 
field % of the electrons in an atom with zero angular mo- 
mentum remains equal to zero (it follows from T-invariance 
that %cannot be proportional to g). As a result, the MQM 
of the nucleus does not influence the state of the system in the 
linear approximation. At the same time, the mixing (65) con- 
nected with the scalar potential of the nucleus works also in 
systems with closed electron shells. The last circumstance is 
particularly important for molecules, where the electrons 
are usually paired. 

We consider first the EDM of the cesium atom. All the 
necessary calculations were made in fact in Ref. 11 (see also 
Ref. 27), where an atom EDM induced by a proton EDM 
was calculated: 

Here r,,, is the radial integral for the amplitude E 1 in Bohr- 
radius units. The upper number in the curly brackets refers 
to the total angular momentum of the atom F = I + j = 4 
(and is independent of1 ), and the lower to F = 3. Calculation 
using (68), M and Q from Table I, and the parameters of the 
cesium atom (e.g., from Ref. 27) yields (in units of e, 
~ m ) d ( ~ '  = 2.8, d (Qi  = - 0.23 a t F =  4andd(Mi  = - 4.5, 
d',) = - 0.22 at F = 3. It can be sseen that, just as in the 
effect induced by the intrinsic EDM of the proton," the d ( M )  

contribution predominates. From the experimental value 
Idc, )/e < 3.7 . 10-22cmobtained'oforthestateF = 4weget 

TABLE 11. EDM of atoms 

the limit 177 1 < 130. 
The calculation is similar for the EDM of the 131Xe 

atom in the metastable state 5p56s3P2 (E = 67068 cm-I), 
where the main contribution is also made by the MQM of the 
nucleus. The situation is different in the ground state of Xe, 
where the MQM does not work. The atom's EDM is pro- 
duced here mainly by the interaction between the Schiff mo- 
ment of the nucleus and the outer 5p6 shell. The Schiff mo- 
ment determines also the EDM of the thalium atoms, since 
the MQM in the stable isotopes 203Tl and 205Tl is zero. Con- 
tributing to the EDM are here both the closed 6s2 shell and 
the outer 6p electron. 

Particular interest attaches to rare-earth atoms, since 
their spectra contain very close levels of opposite parity. In 
samarium, for example, there is a metastable level 
4 f '('F)5d ('F)6s9F3 (E = 14920.45 cm-') at a distance 
A E  = 4.62 cm- ' from the level4 f 6(7F)6s6p(3P )9G3 (Ref. 32). 
This circumstance enhances significantly the EDM in the 
metastable state. It can be easily estimated on the basis of the 
calculation for cesium. The effect in Sm is due mainly to 5d- 
6p mixing when an electron interacts with the MQM of the 
nucleus. It follows from (62)-(64) that the numerical coeffi- 
cient in the single-particle matrix element (61) is in this case 
smaller by a factor 5-10 than for s-p transitions. In addition, 
what are rally mixed are not single-particle states, but com- 
plex multiparticle states with - 10 simple components, and 
this weakens the effect by approximately one more order. 
Thus, the EDM of the metastable state of samarium exceeds 
that of cesium by two orders (and not by four as might be 
expected from a comparison of the energy intervals and the 
charges of the nuclei). A more accurate calculation using the 
wave functions of the mixing states from Ref. 32 confirms 
this estimate. 

A nearby opposite-parity level 2p3,, increases also the 
EDM in the metastable 2s state of deuterium: d,/ 
ev -0.5 . cm. The main contribution is made here by 
the magnetic quadrupole and directly by the deuteron EDM. 
The latter contributes because the hyperfine interaction does 
not satisfy the Schiff theorem. Experiments with deuterium 
are inconvenient because an electric field causes emission of 
the 2s level. 

The calculated EDM of the atoms are listed in Table 11. 

c) lnduced dipole moment of molecules 

It was shown in Refs. 28, 33, and 34 that T- and P- 
nonconservation in polar molecules is greatly enhanced be- 
cause of the small interval between rotational levels of oppo- 
site parity. We consider first diatomic molecules with paired 
electron momenta. As already noted, the MQM of the nu- 
cleus does not work in them and the EDM of a molecule in a 

Atom / I3Cn I 131Xe 

State F=3 F=4 ground 3P2,F=7/2 F = l  E=f4920cm- '  

d - e r n  1 - 4 , 7 1 2 , 6  1 0  1 -47 1 0,s  1 -~~ 
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stationary state is the result of the Schiff moment. To explain 
how the constraint on the T- and P-odd interaction constant 
can be deduced from experiments on observing T-invariance 
in the T1F m ~ l e c u l e ~ - ~  we consider a simple model of the 
electronic structure of this molecule. We shall assume that 
an outer electron goes over from the T1 atom to the F atom. 
The distance between nuclei is re = 3.91aB .35 AS a result, 
the T1+ ion is in an electric field %' = e/e ,  which polarizes 
the outer 6s2 shell. Therefore the single-particle orbitals be- 
come mixtures of 6s and 6p states: 

Here r,,, , E, and E ,, are the radial integral and the ener- 
gies in Tlt . The quantities r,,, and re are in units of a,, and 
w = f 1/2 is the projection of the single-electron angular 
momentum on the molecule axis. With the aid of (69) and 
(65) we find the effective Hamiltonian of the T- and P-odd 
interaction of the T1 spin with the molecule axis N: 

(70) 
The effective T1+ charge is Zi = 2, v, = 1.63, 
Y,, = 2.15 (E = - Z Ry/g), and r6,& = 2.3. A more ac- 
curate calculation8 yields a result 2.5 times smaller than (70). 
Taking this into account and using the value of Q,, from 
Table I, we get 

Heff (TIF) =Ry %TI (IIZ) T I N ,  ltT1=-0.6. IO-"q. (7 1) 

The subscript T1 signifies that we are dealing with the inter- 
action of the T1 spin with the molecule axis. The best of the 
experimental limits of the constant x,, is7 

From (71) and (72) follows 

Comparing (74) and (71) we see that the contribution of the 
T1 nucleus still seems to predominate here. 

The kinetics of xBi in the molecule TiF (Cl, Br, I) is 
approximately the same as that of x, in T1F (Cl, Br, I). It 
appears also that x,, in the NpF molecule is 4-6 times larg- 
er, owing to the larger Z and Q of the neptunium nucleus (if 
such a molecule exists and has a simple enough electronic 
structure). 

Consider finally the CsI molecule, which is apparently 
most convenient from the experimental point of view. Here, 
too, in first-order approximation the iodine atom has one 
extra electron, and with respect to the electron wave func- 
tion near I this molecule is similar to T11. One should there- 
fore expect x, to be approximately of the same order as in 
T1I. The value of x,, is of the same order. The larger of the 
two values of the constants for the considered molecules are 
given in Table 111. We emphasize that these values are in fact 
estimates accurate to within a factor 2-3. 

We calculate now the T- and P-odd EDM of a molecule 
in a stationary rotational state. The experiment is performed 
in a magnetic field that breaks up the hyperfine structure due 
to the interaction between the nuclear magnetic moment and 
the rotational one. The wave function of the molecule can 
therefore be represented by the product 

where L is the rotational moment of the molecule. The EDM 
is produced in the state (75) on account of T- and P-odd 
mixing by the interaction He, = xRy N . I/Z of the oppo- 
site-parity rotational states: 

The estimate (71) is valid also for T1 compounds with other - x R y  5 L(L+l)-3L.a -- 
halogens, since they have similar electron structures. In the B ""I 1 L(L+l) (2L-1) (2L+3) ' 

(76) 

TI1 molecule, the interacion of the spin of the iodine nucleus Here Dm,, is the dipole moment of the polar molecule in its 
with the molecule axis becomes noticeable. We shall esti- rest system (see Refs. 35 and 36), and E = BL (L + 1). 
mate its magnitude, using the calculation8 for th TlF mole- Equation (76) is valid in not too strong an electric field: Dm,, 
cule and taking into account the regular growth factor as Z %' (2B (L + 1). In an arbitrary field, the Stark energy shift 
increases from fluorine to iodine: Z 2 ( ~  + 2R312) (see (65)). can be obtained from the plots of ( N ,  ) in Ref. 37. The elec- 
This yields tric dipole moment is a maximum at L = 0 and I, 'I: 

TABLE 111. Constant of T- and P-odd interaction of nuclear spin with molecule axis [see (71)] 
and EDM of molecules in the ground state 
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The numerical values of d for the molecules considered are 
given in Table 111. Because of the smaller rotational interval, 
the EDM of iodine compounds exceeds that of fluorine corn- 
pounds. This advantage vanishes however in an electric field 
8' -5-10 kV/cm, for beyond this the growth of the molecule 
polarization is practically stopped. 

We consider now molecules with unpaired electron an- 
gular momenta. The dominant effect here is that of the 
MQM of the nucleus. We take by way of example the mole- 
cule 201HgF. The electronic state of this molecule is 2H. It is 
known that for such states the electron spin can be regarded 
as split off from the molecule axis, so that in the rest system 
only the wave function of the electron orbital motion need be 
considered. We obtain this wave function under the assump- 
tion that one outer electron of the mercury atom goes over to 
F. The wave function of the remaining electron is [cf. (69)] 

Now, regarding the expression in the angle brackets in (61) as 
an operator, we obtain wifh the aid of (78) the effective Ha- 
miltonian 

48 Mm, Z , 2 Z 2 a 2 R ~  1, F=Z+'/2 
x=-- 

s l r e c & B  - 1 - ( z + i )  (Z-k3/2) 

1  
, F=Z-'/, 

For Hg+ we have RM = 1.8, and the parameters Zi , v, , v6, 
and r,,, are practically the same as for T1+ (see the calcula- 
tion for TIF). We assume that, just as for TlF, Eq. (8 1) overes- 
timates the answer by 2.5 times. As a result we have 

The results of an analogous calculation for the molecules 
BaF and BaI are given in Table IV. Owing to the large MQM 
of the l6lDy and 237Np nuclei (see Table I) we can expect for 
DyF and NpO a value of x about 20 times larger than for 
HgF, provided, of course, that these molecules have a suffi- 
ciently simple electronic structure. We calculate now the T- 
and P-odd dipole moments of molecules with unpaired elec- 
tron spin in a definite rotational state. We assume that in 
first-order approximation the rotation is split off from F, and 
F, I$) = IF, F, ) IL, L, ). We then get in analogy with (76) 

- --- 21'3~ Mm, Z?Z2a2RM tmkomNk 
5 e a ~  ( v 6 , v e P ) ~  Z(2Z-I) a 

(79) 

Equation (79) was derived with allowance for the equality 

The magnetic interaction of the electron spin with the nu- 
clear spin causes the stationary state to have fixed F, where 
F = I + s. Recognizing that 

we transform from (79) to the effective Hamiltonian 

The numerical values of d are given in Table IV. For the 
molecules BiO and BiS, owing to the strong coupling of the 
electron spin with the molecule axis, the calculation de- 
scribed cannot be used literally. One can nevertheless expect 
for these molecules, in lower rotational states, the EDM to 
be the same or even somewhat larger than for HgF (d/ 
ve- 10-l9 cm). 

5. CONCLUSION 

Regular enhancement of the T- and P-odd multipoles in 
atomic nuclei adds greatly to the real physical significance of 
experimental searches for T-nonconservation in atoms and 
molecules. Whereas the disparity of the experimental con- 
straints (1) and (2) on the nucleon EDM reaches three orders 
of magnitude, the constraints on the superweak interaction 
constant 7 differ by only one order [compare (1) with (6b) and 
(73) with (20a)l. Moreover, by merely going from TlF to oth- 
er compounds, without increasing the absolute experimental 
accuracy, an advance by 1-2 orders would be possible. The 
dipole moments of the compounds of dysprosium and nep- 

TABLE IV. Constant of T- and P-odd interaction of the angular momentum F = I + s with the 
axis [see (81)] and EDM of radicals at F = I - s. 
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tunium, expected in the Kobayashi-Maskawa model (see Ta- 
ble IV), are close to the sensitivity of the experiements aimed 
at finding the neutron EDM. Although diatomic molecules 
of dysprosium and neptunium are difficult to synthesize, one 
can imagine that these molecules can enter in more compli- 
cated compounds, some of which may be volatile (see Ref. 
38). We recall that dysprosium has a stable isotope, and nep- 
tunium an almost stable one, and in both the T-odd moments 
are additionally enhanced by approximately an order be- 
cause the nucleus contains close levels of opposite parity. 

As for atomic experiments, the efficiency might be in- 
creased here by approximately two orders by going to metas- 
table states of rare-earths, where anomalously low energy 
intervals between levels of opposite parity are encountered. 
On the other hand, the obvious experimental advantages of- 
fered by the ordinary atomic xenon in the ground state could 
offset with large margin the suppression of the effect in it 
compared, say, with atomic cesium. 

Moreover, the experiment might be performed with liq- 
uid xenon. We wish in this connection to call attention again 
to the possibility of searching for T-nonconservation with 
the aid of NMR in the liquid phase. This possibility was 
discussed earlier in Ref. 39. 

Of particular interest might be experiments such as on 
NMR in ferroelectrics, where the effective electric field act- 
ing on the nuclear one is not much weaker than the atomic 
field. In other words, we have here an effect enhancement of 
the same type as in diatomic polar mlecules. 

Finally, in experiments with superfluid 3He in the po- 
larized A ,  phase one might hope to measure the EDM of the 
3He nucleus at a level - e  cm (Ref. 40). As seen from 
Table I, this figure is only two orders of magnitude larger 
than the prediction of the Kobayashi-Maskawa model. 

Thus, atomic and molecular experiments undoubtedly 
possess some still unexplored possibilities for serious pro- 
gress in the investigations of the nature of CP-nonconserva- 
tion. i 
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Note (25 July 1984). In a just-published article (Phys. 
Rev. Lett. 52,2229, 1984), T. G. Vold, F. J. Raab, B. Heckel, 
and E. N. Fortson obtained the following result for the EDM 
of the ground state of the xenon atom (the isotope 129Xe): 
d = ( - 0.3 + 1.1) e cm. According to our estimate 
of this quantity, which applies equally well to 13'Xe and 
129Xe, d- r]e . cm (see Table 11), so that the constraint 
on the parameter r ]  is Ir] 1 5 1, quite comparable with the con- 
straint (73) which is the best available to date. 
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