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The relaxation terms in the equation of motion of the magnetic moment are generalized to the case 
in which an allowance is made for the spatial dispersion due to the exchange interaction. An 
investigation is made of the mechanism of exchange acceleration of relaxation of the magnetic 
moment. A calculation is made of the contribution made to the mobility of Bloch and NCel 
domain walls by the inhomogeneous exchange relaxation terms. 

1. INTRODUCTION 

Relaxation processes in a spin system govern a number 
of characteristics such as the ferromagnetic resonance 
(FMR) line width, the thresholds of parametric excitation of 
spin waves, and the width of the intensity peak of scattered 
neutrons. Two approaches are possible to these phenomena: 
macroscopic and microscopic. The former is based on the 
equation of motion of the magnetic moment with relaxation 
terms, the latter on a study of the processes of relaxation of 
spin waves. 

The interest in relaxation processes has increased again 
recently because of intensive studies of the dynamics of do- 
main walls. The domain wall mobility has been investigated 
by many authors (see, for example, Refs. 1 and 2). This wall 
mobility can be calculated on the basis of a microscopic anal- 
ysis of the processes of collision of domain walls with spin 
waves, phonons, or other quasiparticles, as well as with im- 
purities, dislocations, and other defects in a c r y ~ t a l . ~ - ~  

The domain wall mobility and the dependence of the 
steady-state domain wall velocity on an external magnetic 
field (external force) can also be calculated on the basis of the 
Landau-Lifshitz equation with dissipative terms. This ap- 
proach makes it possible to find the dependence u( H) in a 
wide range of external fields. It leads in a natural manner to 
the conclusion of the existence of limiting velocities both in 
simple single-lattice magnetic materials (as deduced by 
Walker-see Ref. 6 )  and in two-sublattice antiferromagnets 
or weak ferr~magnets.'.~ 

A quantitative comparison of the relaxation constants 
in the Landau-Lifshitz equation obtained from the domain 
wall mobilities with the relaxation constants deduced from 
the FMR or antiferromagnetic resonance (AFMR) data 
shows that they differ quite considerably. The relaxation 
constants deduced from the domain wall mobilities are larg- 
er. This provided the stimulus for our review of the problem 
of a phenomenological description of relaxation processes in 
magnetic materials on the basis of the Landau-Lifshitz equa- 
tion. It should be pointed out that the unsatisfactory features 
of the description of high-frequency properties of ferromag- 
nets in the range of large wave vectors by the simplest relaxa- 
tion term of the Landau-Lifshitz or Gilbert type has been 
pointed out already, for example, in Ref. 9. 

We shall generalize the relaxation terms in the Landau- 
Lifshitz equation to allow for the spatial dispersion, i.e., we 

shall find the contribution made to the relaxation by the 
exchange interaction. The structure of these terms is such 
that the square of the magnetization is not conserved when 
the terms are included. It is shown that the relaxation terms 
of the yH, type, where He is the effective magnetic field, 
give rise to a two-stage relaxation process: a fast exchange- 
accelerated stage of relaxation of the magnetization is fol- 
lowed by a relatively slow relaxation of the magnetization to 
its equilibrium value. We shall calculate the domain wall 
mobilities for different types of the magnetization distribu- 
tion in a domain wall, and we shall also find the FMR line 
widths and the damping factors of short-wavelength spin 
waves. We shall show that the relaxation constants govern- 
ing the domain wall mobility are larger than the constants 
governing the FMR line width because of an allowance for 
the spatial dispersion in dissipative processes. 

2. ALLOWANCE FOR THE SPATIAL DISPERSION IN THE 
RELAXATION TERMS OF THE EQUATION OF MOTION FOR 
THE MAGNETIZATION 

It is known that the motion of the magnetic moment M 
of a ferromagnet is described by the Landau-Lifshitz equa- 
tion" 

M=~[MH,]  +(AIM)  [MIMHel I ,  (1) 

where g is the gyromagnetic ratio; A is the relaxation con- 
stant; He is the effective magnetic field which is defined as 
the variational derivative of the internal energy W of the 
ferromagnet: 

H,(xj =-6W/b41 (x ) .  (2) 

In the case of a uniaxial crystal, this energy is 
1 dM aM 1 H," fiMZ2+ - 

dx, dx, 2 8n 

where a,, are the exchange constants; 0 is the anisotropy 
constant ( p > 0); H, is the magnetic field of the dipole inter- 
action; H, is the external magnetic field; f ( M 2, is the energy 
density of the homogeneous exchange interaction. The or- 
der-of-magnitude expressions are a - ( Tc /,uMo)a2, 0- 1, 
and f ( M 2, - ( Tc /PM,)M 2, where T, is the Curie tempera- 
t u r e , ~  is the Bohr magneton, a is the lattice constant, and Mo 
is the equilibrium value of the magnetic moment. It should 
be pointed out that ( Tc/,uMo)- lo3 if Tc - lo2 K and 
Mo- lo3 G. 
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Using Eq. (2), we can find the effective magnetic field 

He=-f'(M2)M+ (VaV)M+Pn (nM) +H,+H,. (4) 
Here, a prime of the function f denotes differentiation with 
respect to the argument of the function and 

d d 
(VaV)=a,,--. 

ax, ax, 

The relaxation term in the equation of motion (1) can be 
represented also in the form proposed by Gilbert: 

i i ~ = ~ ,  [?AH,]+ (vl :I) [Mslj. (5) 
Solving this equation for M, we obtain Eq. (1) where1' 

g=g,/ ( l+v2) ,  h=gv. (6) 

It therefore follows that Eqs. (1) and (5) are equivalent apart 
from the notation. Both equations, (1) and (5), contain the 
integral of motion M ' and the relaxation terms do not in- 
clude the derivatives with respect to the coordinates, i.e., 
they do not allow for the spatial dispersion. The relaxation 
terms in Eqs. (1) and (5) are of the relativistic origin, as point- 
ed out in Ref. 10. In fact, we have 

Using Eq. (5), we can rewrite this relationship in the form 

Hence, it follows that energy dissipation occurs also in the 
case when the magnetization precession is homogeneous. As 
soon as the relativistic interaction results in relaxation of the 
homogeneous magnetization, the value of v becomes of the 
relativistic origin. 

We shall show how to allow for the spatial dispersion in 
the relaxation terms. Inclusion of these terms in the case of 
weakly inhomogeneous states is justified only when they are 
governed by the exchange interactions. We shall denote 
them by R and write down the equation of motion for the 
magnetization in the form 

M = ~ ,  [MH,] +(VIM) [MMI +R. (9) 
The quantity R should be in the form of a divergence of a 
tensor. This is due to the fact that the exchange approxima- 
tion conserves each of the components of the magnetic mo- 
ment of a body 

%=I Mkx ( 10) 

and the Landau-Lifshitz equation should be in the form of 
the law of conservation 

where 17, and 17; are the dynamic and dissipative fluxes of 
the ith component of the magnetic moment per unit time 
through a unit area which is orthogonal to the k th axis. The 
tensor Kk is1': 

We shall find 17; by substituting M from Eq. (1 1) into Eq. 
(7). We then obtain 

The dissipative flux and the effective magnetic field He van- 
ish in the equilibrium state. Expanding 17; as a series in 
powers of SHe;/Sxk, we obtain 

and 

In the determination of the nature of R we have used the law 
of conservation of the total magnetic moment. A further 
simplification of the nature of R is obtained if we note that in 
the case of homogeneous rotation the vector R should trans- 
form in the same way as M or, which is equivalent, as He, 
since in the exchange approximation the rotation of a spin 
system as a whole does not alter its dynamic or static proper- 
ties. Hence, it follows that 

vik, m,,=gM~mke'Tia 

and 

It is important to point out that MR#O. This means that an 
allowance for the relaxation terms of the exchange origin 
removes the integral of motion M '. 

The relaxation term (17) describes the establishment of 
a homogeneous distribution of the magnetization in a body 
and the rate of relaxation increases on increase in the local 
magnetization inhomogeneity. Since the components of the 
magnetic field then migrate from the regions where they are 
larger to those where they are smaller, it naturally follows 
that the local magnetization M is not conserved. It  is some- 
times convenient to know the expression for R not in terms 
of He but in terms of M. We can obtain such an expression by 
deriving He from Eq. (9) ignoring dissipation: 

It is this part that determines the magnetization dynamics 
[see Eq. (I)]. Therefore, the dissipation in the dynamic pro- 
cesses can be described by the relaxation term 

R=-M(VveV) [MM] /M'. (19) 

We shall now write down explicitly the equation of motion of 
the magnetic moment allowing for the relaxation terms of 
the relativistic and exchange origins: 

M=~[MH,] +(v/M) [ M M I - g ~  ( V V ~ V ) H ,  (20) 

or 
M=~[MH,]+M{v+ (vv'v) )  ( [MM]/M'). (21) 

The dissipative function F is 

2 dx, dx, 

1 a (MM) d [MMI P= -J d 3 2 { ~ ~ + ~ & - - - - }  - (22') 
2 dx, M2 dx, MZ 
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We shall now consider the problem of the relaxation 
terms in the Landau-Lifshitz equation using a system of the 
Onsager equations.13 Since Tb = - w (a is the entropy of 
the system), it follows from Eq. (7) that the quantities de- 
scribing the quasiequilibrium state are the components of 
the magnetic moment M and the generalized forces are the 
components of the effective magnetic field He.  After 
allowance for the spatial dispersion the system of the On- 
sager equations becomes 

A?, (x, t )  = j yih (~- i ,  M) H ,  (XI, t )  a3x'. (23) 

In the case of a weak spatial dispersion, when He (x,t ) varies 
slowly with the coordinate, we have1' 

where 

(M) = I yik (x ,  M) hr, yik,nm (M) = j  yik ( ~ 7  M, xnxmd3x' 

(25) 

It follows from the definition that the tensor yik,nm is sym- 
metric in respect of the pair of the last indices. We can easily 
see that the energy dissipation is governed by f i  and fik,,, 
which are the parts of the tensors yik and y,,,, symmetric in 
respect of the indices i and k. The parts of the tensors yik and 
y , , , ,  antisymmetric in respect of the same indices, govern 
the dynamics ofM. We shall allow for the contribution made 
to the dynamics only by the antisymmetric part yik , because 
the contribution of y,,,, contains an additional small pa- 
rameter due to weak inhomogeneities. The structure of the 
dynamic part of the equation of motion of the magnetization 
has been discussed on many occasions (see, for example, Ref. 
14) and can be represented in the form 

yik"=-g~i,nM,~. (26) 

The same considerations which were used to simplify the 
tensor v,,,, allow us to determine ySk,,, in the form 

r~,nrn=-7ntn~6ih. P7) 
Using Eqs. (26) and (27), we can rewrite Eq. (25) in the form2' 

M = ~  [MH,] ++I,- (vYev)  He. (28) 
The first and last terms on the right-hand side of this equa- 
tion are identical with the corresponding terms in Eq. (20) 
and we shall not discuss them further. The second term9 

R,=-~H, (29) 

differs from the corresponding relaxation terms in Eq. (20). 
The relaxation tensor is of the relativistic origin, since 
it describes the relaxation of M also in the case of homogen- 
eous oscillations. An interesting feature of R, is the fact that 
Rl  results in an exchange acceleration of the relaxation of the 
magnetic moment, whereas the relaxation terms 

and, for the sake of simplicity, assuming that the tensor y is 
diagonal. We then have 

Using Eq. (4) for H, (m) in the principal exchange approxi- 
mation, we obtain 

He (m) =-2f"(Mo2) Mo (mMo) . (31) 
In this formula the symbol f "  denotes the second derivative 
off (M ') with respect to its argument. Substituting Eq. (31) 
into Eq. (30), we obtain 

where 

1 / ~ , = 2 y y  (1Cfo2) Mo2. (33) 

Assuming that f "  - f /M and estimating f from f - ( T, / 
,uM,)M ', we obtain the following order-of-magnitude esti- 
mate 

The time dependence of the part m transverse to M, (without 
allowance for the spatial dispersion of the relaxation) is given 
by 

ml=g [MoH. (m) I +yEm,, g = i .  (35) 
Hence, we can see that r1 = l/y is the relaxation time of the 
transverse components of the homogeneous magnetization. 
It is clear from Eq. (34) that the relaxation time of the longi- 
tudinal component mil is reduced by a factor (,uM,/T,), 
compared with the relaxation time of the transverse compo- 
nent m, . Since re governs the relaxation time of the magnet- 
ic moment M, it follows that Eqs. (33) and (34) are evidence 
of the exchange acceleration of the process of relaxation of 
the quantity M compared with the relaxation of M to its 
equilibrium direction if the relaxation is described by the 
term R, = yH, . This relaxation mechanism is deduced in 
Ref. 9 on the basis of a microscopic analysis. We can show 
that an allowance for the off-diagonal elements of the tensor 
fik does not alter the conclusions reached on the relaxation 
times of m, and mli . 

We shall conclude this section by giving the dissipative 
function F. If yf, = yak and yfk  = 4 S , ,  we find that 

We can determine the relaxation constants y and 4 if 
we know the FMR line width and the mobility of domain 
walls, for example, of the Bloch walls. Naturally, in the gen- 
eral case the number of the relaxation constants is more than 
two and we can determine them if we have, in addition to the 
experimental data obtained under various conditions for the 
FMR line width, also the data on the mobility of domain 

(VIM) [MM] EI (LIM) [MIMHeI 1, walls of different symmetries. 
occurring in Eqs. (1) and (5) do not describe at all the magne- 
tization relaxation process. We can demonstrate that this is 3. MOBILITY OF DOMAIN WALLS, FERROMAGNETIC 

RESONANCE LINE WIDTH, EXCHANGE DAMPING OF SPIN true by noting that, apart from linear terms, the magnetiza- WAVES 
tion M = M, + m is given by 

We shall show that the relaxation constants v and y 
M2=Mo2+2M0m, occur in the expressions for the FMR line width and for the 
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domain wall mobility. We shall consider the specific case of a 
uniaxial ferromagnet with the easy-axis magnetic anisotro- 
py. Its internal energy is given by Eq. (3). The FMR line 
width for an ellipsoid with the revolution axis parallel to the 
anisotropy axis is easily calculated from Eq. (5) and it is given 
by 9.11: 

AH= (If.,+H,-4nM1Vs)v, (37) 

where HA = PM and N, is the demagnetization factor along 
the z axis. 

We shall now calculate the mobility of a Bloch domain 
wall. We shall assume that the wall is parallel to the Z Y 
plane, i.e., that q, = ~ / 2 ,  and also that 8 = 8 (x - ut ) (q, and 8 
are the azimuthal and polar angles of the vector M). The 
distribution in a domain wall is given by lo 

xo8,=sin 8 ;  (38) 

here, x, is the thickness of a Bloch domain wall; x: = a/& 
8, = dB /dx. We can easily see that if 8 = 8 (x - u t  ) and 
q, = r/2, it follows from Eq. (22') that 

where S is the domain wall area. Using Eq. (38), we now 
obtain 

F= ( M v 2 / g x o ) S  [v+ (ve /3xn2)  ] . (40) 
We shall apply a standard procedure to find the friction 
force and the mobility of a domain wall using the relation- 
ship 77 F,, = - Sv. Bearing in mind that the work done by 
the friction force per unit time is 

F. v=- ( S v Z / q )  =-2F 

we find that the Bloch domain wall mobility is 

qo-'= ( 2 M / g x o )  [ v +  ( v e / 3 x 0 2 ) ] .  (41) 

In the case of a NCel domain wall parallel to the Z Y plane, 
we have 

q = O ,  8=O ( x - v t )  , x18,=sin 0, (42) 

where x, is the thickness of this wall and x: = a/(P + 4 4 .  
Using these formulas and Eq. (227, we find that 

F= ( M l g x , )  v Z S  [ v +  (ve/3xl" 1 .  
Hence, the mobility of NCel domain walls is given by 

?,-I= ( 2 M / g x l )  [ v+  ( v e / 3 x i 2 ) ] .  (43) 
Comparing Eqs. (21) and (19) and bearing in mind that 
x, <x,, we can see that the mobility of Bloch domain walls is 
higher than the mobility of NCel walls: 7, > 7,. If we know 
A H, vO, and vl, we can readily find Y and 4. 

We shall now give the expression for the damping of 
spin waves-with a vector k  considered in the exchange ap- 
proximation. Assuming that 

M = M , f  [m ( k )  exp{i ( k r - o  ( k )  t )  + c.c.1 

and ignoring the relativistic terms, we find from Eqs. (9) and 
(12) that 

F= (velgiM,) k 2 0  ( k )  I m ( k )  I2V, 
(44) 

w = ( o ( k ) / g M , )  I m ( k )  I2V, 
where Vis the volume of the investigated crystal. Hence, we 
readily find the damping factor of spin waves 

ye ( k )  = F / 2  W = ' / , v e k 2 0  ( k )  = ' / ,vegMoak4.  (45) 
This result is in full agreement with a microscopic calcula- 
tion of the exchange damping of spin waves.15.16 We shall 
now consider the dissipative function (36) or Eq. (28). In this 
case the FMR line width and the damping factor of spin 
waves considered in the exchange approximation are de- 
scribed by 

Al i= (Ha+Ho-4nN3M)  ( y / g M o ) ,  (46) 

*; ( k )  = y e k 2 0  ( k ) / 2  ( gh f , ) ' .  (47) 

Without stopping at simple steps, we shall give the final 
expressions for the domain wall mobilities. Using Eqs. (36) 
and (1 8) for the mobility of a Bloch domain wall in a uniaxial 
ferromagnet, we obtain 

q0-'= ( 2 / x o g 2 )  [ y i -  ( y e / 3 x 0 2 ) ] .  (48) 

Similarly, the mobility of a NCel domain wall is 

r,,-*= (2 /x1gZ)  [y+ ( y e / 3 x I 2 ) ] .  (49) 

The expressions (48) and (49) reduce to Eqs. (41) and (43) if we 
make the substitution y = g M Y. 

We shall conclude by noting that-as is demonstrated 
by the formulas (40), (43), (48), and (49) for the domain wall 
mobilities and by the formulas (37) and (46) for the FMR line 
width-the effective relaxation constant deduced from the 
domain wall mobility 

q-i=2~effM/g~=2yefr /g2~,  (50) 

where 

v, , ,=v+ve/3x2,  y e f f=y+ye /3x2  (51) 

and x is the thickness of the domain wall in question, is 
greater than the relaxation constants Y or y deduced from 
the ferromagnetic resonance data. 

We shall now compare the relaxation constants gov- 
erned by the inhomogeneous exchange interactions and the 
homogeneous relativistic interactions. Since these constants 
are proportional to the probabilities of the scattering pro- 
cesses governed by the relevant energies, it follows that 
y z P ,  4 -a ,  and the ratio yx2/f is of the order of unity. 

The author is grateful to B. A. Ivanov and I. V. Bar- 
'yakhtar for discussing the results obtained. 
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