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An analysis is made of the superconducting properties of systems with a strong electron attraction 
at one center in the limit when such attraction is strong compared with the energy band width. 
This model describes superconductors with local pairs. Expressions are derived for the critical 
magnetic fields HcI and Hc2 and it is shown that the field Hc2 is much higher than the paramag- 
netic Clogston limit 1.25Tc /p, . The fluctuation region in superconductors with local pairs is as 
large as in magnetic systems and in superfluid helium, so that the critical behavior and the 
dynamic properties of these systems resemble the properties of He 11. The feasibility of realization 
of a state of this kind is considered. 

1. INTRODUCTION 

Real semiconductors are usually described on the basis 
of the BCS model in which it is assumed that the width of the 
conduction band and, consequently, the Fermi energy of 
electrons are much greater than the energy corresponding to 
the phonon Debye frequency w, or the binding energy A of 
Cooper pairs. However, a model which in this respect is op- 
posite to the BCS theory has been used in several investiga- 
tions: it is a model with a strong static binding of electrons at 
localized centers and a very weak motion between the 
centers. The first to use this model were Schafroth, Butler, 
and Blatt.' Anderson2 then proposed to describe this situa- 
tion (applicable specifically to amorphous semiconductors) 
by a Hubbard Hamiltonian with an effective attraction of 
electrons at one site. Subsequently the establishment of a 
superconducting long-range order in a model with local 
pairs, and also the competition between the superconducting 
and insulator transitions of the charge ordering type had 
been investigated by Abrahams and K ~ l i k , ~  Kulik and Pe- 
dan,4 and by Alexandrov and Ranninger.5 

The effective attraction of electrons at a localized center 
may occur because of their interaction with phonons if this 
interaction predominates over the Coulomb repulsion (this 
approach is known as the bipolaron model). It is not yet 
known whether such a situation is feasible in practice. Some 
authors are of the opinion that in certain semiconductors the 
electron pairing mechanism can be described adequately by 
the local pair model and by the BCS model (see Ref. 4 and the 
literature cited there). The suitability of a given model for the 
description of real superconductors can be judged only by 
comparing the supeconducting properties predicted by dif- 
ferent (BCS and local pair) models and then identifying the 
differences so as to be able to distinguish between the models 
on the basis of the experimental data. We shall consider the 
magnetic and critical properties of the local pair model and 
we shall show that they differ radically from the correspond- 
ing properties of ordinary superconductors described by the 
BCS model. Observation of such differences would provide 
sufficient grounds for the identification of a specific electron 
pairing mechanism in real superconductors. In particular, 
the most striking and unambiguous characteristic of the re- 

quired kind is the behavior of the upper critical magnetic 
field. We shall compare also other magnetic characteristics 
of superconductors (such as the penetration depth, lower 
critical magnetic field, Ginzburg-Landau parameter, etc.) 
on the basis of the BCS and local-pair models, as well as the 
critical behavior near the temperature Tc . 

The present paper is organized as follows. In Sec. 2 we 
shall derive the effective spin Hamiltonian for the descrip- 
tion of the superconductivity in the local pair model allow- 
ing for the magnetic field. We shall consider the upper criti- 
cal field on the basis of this Hamiltonian in Sec. 3. In Sec. 4 
we shall describe other magnetic characteristics of the local 
pair model and compare them with the same characteristics 
deduced from the BCS model. We shall devote Sec. 5 to the 
critical behavior. In Sec. 6 we shall discuss the feasibility 
that the behavior predicted by the local pair model occurs in 
real compounds. 

2. SPIN HAMILTONIAN FOR THE DESCRIPTION OF THE 
SUPERCONDUCTIVITY IN THE LOCAL PAIR MODEL 

It is shown in Refs. 2 and 5 that the Hamiltonian of a 
system of electrons and phonons under the conditions of a 
strong local polaron effect reduces to the Hubbard Hamil- 
tonian with an effective attraction: 

where m are the lattice sites (we shall consider a simple cubic 
lattice); summation over m' is applied to the nearest-neigh- 
bor sites; a+ and a are the creation and annihilation opera- 
tors for electrons at sites; A is the effective attraction param- 
eter"; t  is the effective resonance integral of a transition; it is 
assumed that A > 0 and A$t.  In the bipolaron model the 
parameter A and the effective resonance integral t are ex- 
pressed in terms of the initial parameters of the electron- 
phonon Hamiltonian using the relationships 

where V is the Coulomb repulsion between electrons at a 
center; g, is the parameter representing the interaction of 
electrons with local phonons of type i, whose frequency is 0, ; 
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to is the "bare" (unrenormalized resonance integral for elec- 
tron transitions between the centers m and m'. The polaron 
effect results in narrowing of the electron energy bands and 
also in the appearance of a net attraction when A > 0. The 
expressions in Eq. (2) are valid if t,<B(g;/o,) and this condi- 
tion is essential to ensure that the local pair model applies. It 
should be pointed out that the delay effects are ignored in the 
derivation of the expressions in Eq. (2). This is justified if 
togmi. We shall later (see Sec. 6 )  show that the model in 
question may be realized in practice when this condition is 
satisfied. It therefore follows that the local pair model repre- 
sents the case opposite to the BCS model not only in respect 
of the parameter t /A, but also in respect of t  /mi. 

Equation (1) ignores the interaction between electrons 
at different centers; we shall allow for this interaction within 
the framework of the effective spin Hamiltonian. 

The Hamiltonian of Eq. (1) applies to a system in zero 
magnetic field. The field can be included in Eq. (1) in the 
usual way. Its influence on the electron spins reduces to the 
addition to Eq. (1) of the term 

rn 

whereas an allowance for the orbital effect of the field is 
ensured by the replacement 

where A is the vector potential and r, is the coordinate of a 
site m. 

As pointed out earlier, the parameter t /A in the Hamil- 
tonian (1) is assumed to be small and the condition t / A 4  1 
corresponds to the local pair model, whereas in the case of 
the BCS model we have t /A) 1. In the limit t4A, in zeroth 
order with respect to t, we should allow only for the attrac- 
tion of electrons at lattice sites. The ground state of a system 
of N, electrons at N sites corresponds to a distribution of 
N,/2 electron pairs in the lattice. Such a state has the energy 
- AN, /2 and it is degenerate in respect of the distribution 

of pairs. Since at each center the number of pairs can only 
have two values (0 or I), a system of degenerate levels can be 
described by an effective spin Hamiltonian for N spins each 
of value 1/2. All the other levels of the system (which corre- 
spond to dissociated pairs) are separated from the ground 
state by an energy A and in the range TgA the thermody- 
namic properties are governed only by those levels which are 
described by the effective spin Hamiltonian. 

The degeneracy in respect of the pair distribution is lift- 
ed in the second order with respect to t and the adoption of 
spin operators in a space of 2N states involves the substitu- 
tion (see Ref. 5). 

The spin Hamiltonian is in the form of the anisotropic Hei- 
senberg Harniltonian: 

-Sm-Sm,+ exp ( - - i @ m m l )  1, (4) 

where 

and the corresponding Schrodinger equation with this Ha- 
miltonian is a secular equation for the degenerate levels of 
the Hamiltonian (1). 

If we split the lattice into two sublattices and if for one 
of them we substitute S", - SS", and SY, -+ - SY,, i.e., 
S 2 + - S 2 ,  we find that the Hamiltonian (4) can be con- 
verted into one which is completely antiferromagnetic, i.e., 
in the absence of a magnetic field if @,,, = 0, we obtain the 
isotropic Heisenberg model of an antiferromagnet. A mini- 
mum of the energy of the system can be found subject to the 
additional condition 

m 

which corresponds to fixing the number of electrons in the 
system under discussion. An allowance for the Coulomb in- 
teraction between pairs at different sites reduces to an addi- 
tion of the term 

mu 

The state characterized by (S; ), (S; ) #O has super- 
conducting properties. According to Eq. (3), such a state is 
analogous to the Cooper pairing and the superconducting 
transition in the local pair model can be regarded as a Bose 
condensation of bipolarons. 

The charge ordering corresponds to the antiferromag- 
netic order with (S', ) #O. Both types of ordering appear at 
T, - t */A. In the absence of the Coulomb interaction vand 
for N, = N these two situations are degenerate, as is clear 
from the above discussion. The appearance in the N, # N  
case of a nonzero chemical potential p ,  which acts as an 
external field in the Hamiltonian of Eq. (4) (giving rise to an 
additional term p2Sk ), stabilizes the superconducting 
phase (an anisotropic antiferromagnet subjected to a field 
along the z axis becomes ordered in the xy plane); on the 
other hand, the interaction at different centers represented 
by ~,,,,S',S: favors the charge-ordered state. We shall 
therefore consider only the superconducting state which is 
realized for low values of v = N, /2N (Ref. 4). 

We shall introduce $, = (S; ) and $2 = ( S t  ), 
where $,,, is a complex order parameter (representing the 
wave function of the condensate). The functional of the ener- 
gy of the system for a given average value (S  ', ) = 1/2 - v is 
given by 
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(we are considering a simple cubic lattice). The functional for 
the entropy u($) can be deduced from the usual expression 
for the entropy of a spin system 

where S is the average spin, i.e., 

S=[(S=)z+(Sm~)2+'<Smz>2]11~= [(t -, ) I  +, q ,  21%. 

Using Eqs. (5) and (6) ,  we obtain the following functional of 
the Ginzburg-Landau type: 

where 

Variation of Eq. (7) with respect to the vector potential gives 
the following expression for the superconducting current 
density 

where d is the distance between the sites. The functional (7) 
and the expression for the current (8) provide a complete 
description of the superconductivity by the local pair model 
at all temperatures in the self-consistent field approxima- 
tion. It is clear from Eqs. (7) and (8) that the Ginzburg-Lan- 
dau functional for the local pair model is of the difference 
type and it describes the Josephson interaction between the 
neighboring centers. The difference nature of the functional 
leads to unique superconducting properties of the local pair 
model: they are analogous to the properties of the Josephson 
systems. 

3. UPPER CRITICAL MAGNETIC FIELD 

The condition for the appearance of an infinitely small 
superconducting nucleus can be found simply from the qua- 
dratic terms of the expansion of y($) as a function of $. The 
resultant quadratic functional is 

We shall assume that the magnetic field is directed 
along the z axis and that the vector potential component 
A, = - Hx differes from zero. Then, in accordance with 
Eq. (4), the value of @,,, differs from zero for the m, m' pairs 
along they axis and is given by 

where @, is a flux quantum; the coordinate is x = dm and 
the integer m labels the lattice sites in thex direction. Then, 
Eq. (9) yields the following difference equation for the order 
parameter: 

The eigenvalue solution of Eq. (10) was obtained by 
Turkevich and Klemm.6 For H =  0, it is found that 
Tc = Tc , , we can transform Eq. (10) into a differential equa- 
tion 

which gives the upper critical field near Tc : H,, ( T )  = 6@,7/ 
 IT^ ,. This expression is conventional for the case when the 
correlation length6 (T )  is the quantity d /TI/'. At lower tem- 
peratures Eq. (10) can be solved only numerically and the 
dependence ofHc2 on T has the form shown in Fig. 1, plotted 
on the basis of the results of Ref. 6.  

It is clear from Eq. (10) and Fig. 1 that: 
a) the effects of the fields H and H + @ d d  on the sys- 

tem are equivalent, because the field @dd,  gives precisely 
the flux quantum across the closed path of a pair with the 
smallest area; 

FIG. 1. Critical superconducting temperature plotted as a function of the 
magnetic field directed along the crystal axes without allowance for the 
paramagnetic effect. The temperature is a periodic function of H and the 
period is found from the condition that the flux through the smallest 
closed contour represents one quantum of flux. Additional singularities 
are exhibited by the curve when the flux through large contours is equal to 
one quantum of flux. 
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(b) below T * ~ 0 . 8 8  Tc the magnetic field does not des- 
troy at all (in this approximation) the superconducting long- 
range order. This range of temperatures corresponds to the 
Josephson regime when the currents through a contact can- 
not destroy the superconductivity at the "banks" of the con- 
tact. In fact, below T * the superconductivity is destroyed 
only by the paramagnetic effect and the corresponding criti- 
cal field is Hc2 = A /p, . This field exceeds the Clogston lim- 
it (of the order of Tc/pB ) by a factor (A /t )') 1. 

This behavior of Hc2 ( T )  is predicted on the basis of the 
self-consistent field approximation. An allowance for the 
fluctuations can alter this behavior. A similar situation was 
considered in layer superconductors by Efetov7 and he con- 
cluded that three-dimensional correlations were suppressed 
by an increase in the magnetic field. The system under consi- 
deration can also exhibit a change in the detailed nature of 
the behavior of the field Hc2 ( T )  under the influence of fluctu- 
ations, but-as indicated also by the results of Ref. 7-the 
scale of the change in the critical field remains unaffected by 
the presence of fluctuations: Hc2 cc @,Jd '. Moreover, in con- 
trast to layer semiconductors, the dependence on H obtained 
in our case is periodic already in the initial free-energy func- 
tional (7) and, therefore, the periodicity should be retained 
by the dependence Tc (H ) also when an allowance is made for 
the fluctuations. 

We can therefore see that the characteristic feature of 
the superconductivity in the local pair model is its stability in 
the presence of a magnetic field. In the BCS model the upper 
critical magnetic field does not exceed a value approximately 
amounting to Tc/pB (in the absence of a strong spin-orbit 
scattering), whereas in the local pair model the limiting field 
exceeds the Clogston limit by a factor (A /t )') 1. Supercon- 
ductors which exceed by so much the Clogston limit are not 
known. Therefore, we are of the opinion that none of the 
compounds known at present is a superconductor of the lo- 
cal pair type. 

Another interesting property of superconductors with 
local pairs is their "reverse" behavior, compared with the 
BCS case, in the presence of impurities. It follows from the 
results of the present section that such superconductors 
should be practically insensitive to magnetic impurities since 
their influence would have to be compared with the large 
parameter A. On the other hand, these superconductors 
should be very sensitive to the influence of ordinary impuri- 
ties (see also Ref. 4). The potential of these impurities, such 
as the local potential 2,h, a&a,,, gives rise to additional 
terms in the spin Hamiltonian (4) and these are in the form of 
a random magnetic field along thez axis: Z;, h, S ;  , so that it 
is clear that the field in question is comparable with T, and 
it can destroy completely the order in thexy plane, i.e., it can 
suppress the superconducting coherence. The local pairs are 
not broken up, but they become localized in the region of the 
impurity potential minimum. 

4. DEPTH OF SCREENING OF THE MAGNETIC FIELD, 
GINZBURG-LANDAU PARAMETER, AND LOWER CRITICAL 
FIELD 

It follows from the expression for the current given by 
Eq. (8) that the screening of the magnetic field is governed by 

the following relationship between the current and the vec- 
tor potential: 

where I $ ]  Z ~ v l n ( v - ~ )  for T( 1 and I $ /  z v for T( Tc . It fol- 
lows from Eq. (12) that the penetration depth of a weak field 
is 

and we shall assume that the field is weak if it obeys the 
inequality H < Ho = I$ItA -'/'d -312 when sin x in Eq. (12) 
can be replaced with x defined by x = 2edA, /&. Knowing 
1 ,  we can write down the expression for the lower critical 
field: 

where Hcl The thermodynamic critical field H, is of the 
order of (T,d -3)$)4)1'2 near Tc , whereas in the limit T - 0 
we have to replace l $ I 4  with ( $ I 2 .  The Ginzburg-Landau 
parameter x = A /go = R /d considered in the local pair mod- 
el is 

Ac 
e ( t d )  " 

When the numerical values of the relevant parameters 
are substituted in Eqs. (13) and (14), it is found that the depth 
of penetration A is one or two orders of magnitude greater 
than typical values of this quantity for an ordinary supercon- 
ductor and the field Hc, is then three or four orders of mag- 
nitude less than for known superconducting systems. 

The large values ofR (compared with those for ordinary 
superconductors) in combination with a short coherence 
length go -d make the properties of the systems under consi- 
deration similar to those of an uncharged Bose liquid in the 
form of superfluid helium 11. The similarity of the two types 
of systems was already pointed out in Ref. 5. We shall make 
the following additional comments. 

In contrast to ordinary superconductors, the systems 
with local pairs should exhibit-in direct analogy with the R 
transition in helium-a wide critical fluctuation region. This 
follows already from the fact that the model under consider- 
ation is close to the Heisenberg model and the corresponding 
superconducting transition is equivalent to a phase transi- 
tion in what is known as the XY (or planar rotator) model,8 
for which-as is well known-the Ginzburg-Levanyuk pa- 
rameter is t, > l and the average field approximation is not 
valid under any conditions. This circumstance gives rise to 
several specific phenomena in local pair systems and we shall 
deal with them in the next section. 

All that we have said so far is summarized in Table I 
where a comparison is made of the orders of magnitude of 
the principal characteristics of the superconducting states 
predicted by the BCS and local pair models. It is clear from 
Table I that local pair systems are characterized by an anom- 
alously high upper critical field, an anomalously low lower 
critical field, and a wide fluctuation region. 
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TABLE I. 

cy, 
Local pairs, Alt ' 1 
Note. In the BCS case the quantity A is the superconducting gap. 

5. COLLECTIVE OSCILLATIONS AND CRITICAL BEHAVIOR 

It follows from the above discussion that in the case of a 
strong interaction characterized by A)t our local pair sys- 
tem is described by the effective spin Hamiltonian of Eq. (4) 
and the superconducting state corresponds to the ordering 
of "spins" in thexy plane. In view of this equivalence, we can 
expect the critical behavior to be very different from that in 
the BCS model and, in general, a different spectrum of col- 
lective excitations. 

It follows directly from the Hamiltonian of Eq. (4), 
which is the Hamiltonian for the anisotropic Heisenberg 
model with an easy-plane anisotropy, that there is a zero-gap 
branch of collective oscillations ("spin waves") with a spec- 
trum w - t 2k '/A. In this case the specific heat at low tem- 
peratures T <  Tc is not an exponential function but behaves 
in accordance with a power law. However, it is known that in 
the BCS model there is a also a collective mode with a spec- 
trum of the acoustic type, but an allowance for the long- 
range part of the Coulomb repulsion of electrons increases 
its frequency to the plasma value. We can expect the situa- 
tion to be similar in the local pair model. 

This is indeed confirmed by a direct calculation of the 
spin wave spectrum when an allowance is made for the Cou- 
lomb interaction between pairs. This interaction reduces to 
addition, to the Hamiltonian (4), of a term 

Conventional calculations yield the frequency of spin waves 
which differes from zero in the limit k + 0 and is given by 

where A is defined by Eq. (13). The expression (15) agrees 
with the familiar dispersion law of acollective ("acoustic") 
mode: 

which follows from the magnetohydrodynamics of super- 
conductors (see, for example, Ref. 9). 

It is a requirement of the local pair model that wo 5 Tc 
because otherwise there would be no superconducting state 
but a state with a charge density wave. Therefore, the low- 
temperature specific heat deduced in the local pair model 
obeys the exponential function C a exp( - w,JT), but the ac- 
tivation energy is w, 5 A (tz/A '), i.e., this energy is consider- 
ably less than the gap A in the electron spectrum. 

The difference between the local pair and BCS super- 
conductors should be also manifested in the critical behav- 
ior. It is obvious that a local pair system is equivalent in 
respect of its symmetry to theXY model or superfluid He 11; 

the presence of a gap in the low-temperature spectrum does 
not affect the critical behavior. 

It follows from the Ginzburg-Levanyuk criterion that 
the width of the critical (fluctuation) region is t, (for T < Tc ) 
and it is found from the conditionlo 

<i6$19/1$12=T,b/2nlaIfg(~)>1. (16) 

Here, (IS$1') is the temperature-dependent part of the rms 
value of the fluctuations $; a and b are coefficients in the 
expansion of the volume part of the density of the free Ginz- 
burg-Landau energy; f is the coefficient in front of the gradi- 
ent term; 6 (7) = (f/2la is the coherence length. In the 
model under discussion (corresponding to v( 1) these coeffi- 
cients are as follows: 

Using the above values of the coefficients and Tc = (12t '/ 
A )In-'(v-') [see Eq. (lo)], we find from Eq. (16) that 

Therefore, in the local pair model the fluctuations are large 
practically throughout the range of existence of the super- 
conducting phase. 

Since the fluctuations are large, it follows that the re- 
sults obtained in the preceding section using the average 
field approximation are only qualitative and are of order-of- 
magnitude validity. 

Inside the fluctuation region the temperature depen- 
dences of the various physical quantities should be different 
from the corresponding dependences calculated in the aver- 
age field approximation (and applicable to ordinary super- 
conductors). We can expect that, on the basis of the principle 
of universality of critical phen~mena,~ these dependences 
are of the same nature for the local pair systems as those near 
the A transition in helium. The specific expressions for 
these dependences can be found employing the ordinary 
functional of the free Ginzburg-Landau energy, but with the 
temperature dependences of the coefficents modified in the 
spirit of the theory of the scaling invariances (by analogy 
with the phenomenological theory of superfluid helium I1 
near the A point"): 

a = a o ~ I ~ I " ' ,  b=bolr12'*, f = f o l ~ l z ,  

where 6 5  lo-' (see Ref. 11). 
Similarly, in the case of the dynamic phenomena at tem- 

peratures T >  Tc we should assume that the temperature de- 
pendence of the damping constant is y a r - ' I3  (Ref. l l )  in 
the frequently used-in such cases-time-dependent Ginz- 
burg-Landau equation. Table I1 gives the temperature de- 

860 Sov. Phys. JETP 60 (4), October 1984 Bulaevsklet a/. 860 



TABLE 11. 

pendences of the following physical quantities: the specific 
heat C, the density of superconducting electrons n,, the 
quantities c, A a n; "2,x, and the fluctuation component of 
the conductivity (for .r > 0) of ordinary superconductors (of 
the BCS type) and of the local pair ~u~erconductors.~'  We 
can see that these dependences are very different. The most 
interesting is the observation that in the case of the local pair 
systems the parameter x is temperature dependent: it de- 
creases as T approaches T, in accordance with the law 

cc 171113. 
A local pair superconducting system can be identified 

experimentally also using the prediction that the specific 
heat should have a characteristic A-like maximum at T = Tc 
and that the fluctuation-induced increase in the conductivity 
in these systems at T >  Tc should occur in a much wider 
range of temperatures than in ordinary superconductors. 

6. CONCLUSIONS. FEASIBILITY OF PRACTICAL 
REALIZATION OF THE LOCAL PAIR MODEL 

BCS 

It follows from Eq. (2) that the effective attraction 
between electrons at centers occurs if the attraction of elec- 
trons via phonons predominates over the Coulomb repul- 
sion. On the other hand, the exponential narrowing of the 
polaron energy band and the corresponding reduction in 
Tc - t 2/A can be avoided provided the phonon frequency mi 
is of the order of the electron-phonon interaction gi . Conse- 
quently, it should be possible to observe the local pair behav- 
ior predicted on the basis of the bipolaron model if 
wi -gi - V ,  i.e., if the phonon frequencies approach the elec- 
tron frequencies. Clearly, the pairing centers should be suffi- 
ciently large to reduce the Coulomb repulsion V between 
electrons, i.e., in other words, they should be fairly large 
molecules. It seems to us that the situation under considera- 
tion may be realized in crystals composed of large organic 
molecules provided it is realizable at all. These molecules M 
should have a unique property: the energy of a system com- 
posed of a doubly charged molecule M 2- and a neutral mole- 
cule M should be less than the energy of a system of two 
homogeneously charged molecules M - because of the inter- 
action of electrons with the internal molecular vibrations. 

c a'r-a 

a=O 
(discont.) 

- 
E ~ I T I - ~  1 m8a,ric 1 ia1~j- l  1 xcc,~,-; 1 25 

of bipolarons exists in this compound at temperatures in the 
range 130K < T < 140K. However, the low-temperature 
transition in this compound is not to a superconducting state 
but to an insulator state with a spatial ordering of bipolar- 
ons. 

We can summarize this discussion by saying that the 
superconducting properties of local pair systems are in many 
respects very different from the properties of ordinary super- 
conductors of the BCS type. Although none of the presently 
known superconductors can be described by the local pair 
model, an investigation of this model is still very illuminat- 
ing. In a certain sense the local pair model is the opposite 
limiting case to the BCS model. If we compare the results 
obtained for both models, we can gain a general idea of the 
nature of changes in the principal superconducting charac- 
teristic on increase in the interaction and on reduction in the 
energy band width. Such a comparison is made inTables I 
and I1 and it is illustrated in Fig. 2. Although, as pointed out 
already, there are no real superconductors which would 
manifest the local pair case in its pure form with t<A, the 
results mentioned above may help in a qualitative interpreta- 
tion of the intermediate cases. 

Among the currently available superconductors the 
lowest value of the ratio t /A is exhibited by systems with 
heavy fermions [CeCu,Si, (Ref. 15), and UBe,, (Ref. 16)], 
and also possibly by triple chalcogenides of the MeMo,S, 
type17 and compounds with the A-15 s t ru~ture '~ ;  however, 
for all of them the ratio in question is still 2 lo2. 

It would be very interesting to continue the search for 
such systems and to study them. 

The authors are grateful to K. V. Efetov and I. 0 .  Kulik 
for valuable discussions. 

la1 s10-2 
pairs Caln l z l  

Molecules with such characteristics are not known at pres- 
ent. 

On the other hand, certain experimental evidence of the 
conductivity (but not yet superconductivity) due to bipolar- 
ons has been found for systems such as trans-polyacetylene 
or p~lyphenylens.~~, '~ However, bipolarons are present in local pairs I BCS "A 

such systems as excitations with a low concentration' FIG. 2. Qualitative behavior of the principal superconducting character- 
The situation in Ti407 (Ref. 14) is closer to the one un- istics plotted as a function of the ratio of the band width t to the electron 

der consideration: it is postulated that a high concentration interaction strength A .  

I='/z 

1=5/2='/3 

,z=o 

1%=6/2=~/~ 

- 
v=</2 - 

v= (2-a)/3rJ2/8 
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