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Ferromagnets described by the Landau-Lifshitz equation with damping taken into account are 
considered. An effective action is found that permits the thermal fluctuations to be taken into 
account in the form of a perturbation-theory series in the nonlinearities of the dynamic equation. 
It is shown that in the two-dimensional situation the fluctuations lead to logarithmic corrections 
to the theory parameters, viz., to the static "charge" g and to the coefficients A and B that 
characterize the real and imaginary parts of the spin-wave spectrum. There are no corrections to 
A and B in the one-loop approximation. The renormalization-group equations are obtained in the 
two-loop approximation. The behavior ofA and B is analyzed on the basis of these equations in the 
region where perturbation theory holds. 

Long-wave dynamics of ferromagnets is described by 
the Landau-Lifshitz equation.' In the macroscopic treat- 
ment we can take into account the oscillations of only the 
direction of the spontaneous magnetization, which we char- 
acterize by a single three-component vector n, in spin space 
(critical dynamics of ferromagnets is a separate problem). 
We neglect spin-orbit interaction, so that the spin and spatial 
indices can be separated. The free-energy density takes in 
this situation the following simple form: 

Here T is the temperature. We shall have in mind hereafter 
the two-dimensional situation in layered Heisenberg mag- 
nets, in which the exchange integral inside the layer can ex- 
ceed the interlayer integral by several orders. 

In the two dimensional case the constant g in (1) is di- 
mensionless and determines the force of the fluctuations. In 
the casegg 1 perturbation theory holds for the model consid- 
ered. Analysis within the framework of this theory2 shows 
that g becomes logarithmically renormalized by the thermal 
fluctuations and increases with increase of the scale. We 
shall assume that in the system considered there exists a 
large region of wave vectors k, in which perturbation theory 
is valid. This region is bounded from above by the cutoff A, 
and from below by the spin-orbit interaction or by interlayer 
exchange or else by the fact that g becomes of the order of 
unity. The last restriction is no burden, in view of the loga- 
rithmic character of the renormalization. The two-loop ap- 
proximation was considered in this situation in Ref. 3, where 
the following renormalization-group equation was obtained 
for g: 

dg 1 -=- 
1 

g z + - g 3 .  
d l n h  2n 4nZ 

Neglecting the second term of the right-hand side of (2), we 
get hence 

The complete dynamic equation, corresponding to ( I ) ,  
for the vector n is of the form (A and B are constants) 

The first term in the right-hand side of (3) is reactive, the 
second is dissipative, and f denotes the random forces whose 
correlator is 

(f , , ( t , ,  r,) f , ( t2 ,  r , )  > =2gB (6,"-n,n,) 6 ( t i+)  6 ( h - r z ) .  (4) 
The structure of the second term in the right-hand side of (3) 
and the tensor structure of the right-hand side of (4) are con- 
nected by the condition n2 = 1. The fluctuation effects in the 
system described by Eq. (3) were considered for case B-tO in 
Ref. 4. 

EFFECTIVE ACTION 

Applying now to Eq. (3) the procedure described in 
Refs. 5 and 6 we can construct the effective action 

(5) 
Here p is an auxiliary Bose field that satisfies the condition 
p n = 0.  The dots in (5) denote the terms that contain the 
auxiliary Fermi fields $ and $ (Refs. 5 and 6 )  that ensure 
normalization of the distribution function exp(i1). To calcu- 
late these terms explicitly we must introduce some parame- 
trization of the fields p and n, which have two independent 
components each, and then use the procedure of Refs. 5 and 
6. The fluctuation effects can now be taken into account in 
the model considered by perturbation theory, the series for 
which is constructed with the aid of (5) and is represented by 
Feynman diagrams whose vertices are determined by the 
nonlinear terms in Eq. (3). 

The unrenormalized Gren's function ($$) is deter- 
mined by the structure of the linearized equation (3). In the 
Fourier representation it has singularities with respect to 
frequency only in the lower half-plane (as should be the case 
for a generalized susceptibility). The determinant that ap- 
pears on integration of exp(i1) with respect to $ and 3 is 
represented by a sum of diagrams with closed Fermi loops. 
The integrals with respect to frequency, which correspond to 
these loops, are equal to zero by virtue of the aforementioned 
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analytic properties of the ($$) functions, except for the dia- 
grams that contain only closed single ($$) lines. The ex- 
pressions corresponding to these diagrams, however, vanish 
on regularization. Thus, at least within the framework of 
perturbation theory, the aforementioned determinant is 
equal to unity, so that the dependence of the effective action 
on the Fermi fields and $can be omitted. The action (5) is 
quadratic in p, so that the distribution function can be expli- 
citly integrated over this field. As a result we arrive at a 
distribution function exp(iI) with the following effective ac- 
tion: 

We shall parametrize the components of the unit vector 
n in the following manner: 

n= ( (2-1.1)'" (x+x*) 12, - i  (2-x*x) " (x-x*) 12, 1-x*x) . 
(7) 

Here x and x* are complex conjugate fields. The parametri- 
zation (7) is convenient because the Jacobian of the transition 
fromx andx* ton with the condition n2 = 1 is equal to unity. 
Expanding now the action (6) up to second order in x, we 
obtain the following expression: 

We obtain thus in the quadratic approximation the following 
expression for the paired mean value of the Fourier compo- 
nents: 

Here v is the frequency and q the wave vector. The proper 
spectrum of the system is determined by the poles of (9) and 
takes the form 

v=Aq2- iBq2.  (10) 

Thus, A determines the real part of the spectrum of the spin 
waves, and B their damping. For the equal-time correlator 
we find 

This expression agrees, as it should, with that calculated 
with the aid of the free energy (1). 

To carry out the renormalization the variables must be 
divided into fast and slow parts. We do this via the change of 
notation 

np+Rpvnv. (12) 

Here R is an orthogonal matrix that depends on the slow 
variables, and the unit vector n, depends now on the fast 
variables x. Substitution of (12) in the action (6) reduces to a 
replacement of the derivatives by "covariant" ones: 

d / i l t+d /d i+@,  V + V + a ,  

where 

(the superscript T denotes the transpose). Putting nowx = 0, 
we obtain for the slow variables an effective action equiva- 
lent to (6): 

Here 

@ , = m 3 , ~ i @ , , ,  @ ,= i@, ,  

and analogously for a. 

RENORMALIZATION GROUP 

The renormalization procedure consists of integrating 
the distribution function exp(i1) with respect to the fast var- 
iables and representing the result in the form exp(iIre,), 
where Ire, differs from (14) because of the fluctuation terms 
due to the interaction of the fast and slow variables. The 
integration is by perturbation theory, in which the averaging 
is over a distribution function with action (8). Expanding the 
action (6) (with "covariant" derivatives) ion powers ofx, we 
obtain numerous non-Gaussian terms, both those contain- 
ing @ and a and those containing only x and x*. It turns out 
that the fluctuation corrections to I which stem from these 
expansion terms lead to a logarithmic renormalization of the 
parameters of the model, but no structurally new logarith- 
mic terms appear, so that the action (6) is found to be renor- 
malizable. 

To obtain the renormalization-group equations in the 
one-loop approximation it suffices to expand the action I to 
second order in x. This integration gives rise to fluctuation 
terms represented by the diagram of Fig. 1, where the solid 
line corresponds to the D function (9), and the black dot 
denotes an interaction vertex with slow variables. In some of 
the terms corresponding to this diagram, the integral with 
respect to v and q diverges at the upper limit; these terms 
should be omitted in the regularization. As a result we arrive 
at purely logarithmic integrals (see the Appendix) which re- 
combine the coefficients (14). It turns out that all three terms 
in (14) are renormalized in the same manner, so that A and B 
remain constant in the one-loop approximation. 

This makes it necessary to consider the two-loop ap- 
proximation. To obtain the renormalization group in this 
approximation the action must be expanded up to fourth 
order in x. In the integration with respect to x these expan- 
sion terms generate in the action a fluctuation contribution 

0 FIG. 1. 
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FIG. 2. 

represented by the diagrams of Figs. 2 and 3. We note that 
the action fluctuation contribution represented by Fig. 4 
(where the light circle denotes the vertex of the x self-action 
vertex) vanishes upon regularization, this being the conse- 
quence ofthe parametrization (7) assumed by us. The expres- 
sion corresponding to the diagram of Fig. 2 is carried out in 
analogy with the regularization of the aforementioned 
terms. The regularization of the expression corresponding to 
Fig. 3 is somewhat more complicated and is considered in 
the Appendix. After the regularization, all the above contri- 
butions lead to a purely logarithmic renormalization of the 
parameters of the action (14). 

Two-loop diagrams generate mutually canceling dou- 
bly logarithmic terms (this cancellation is an expression of 
the normalizationability theory). From these double loga- 
rithms one must separate the singly logarithmic term that 
causes the renormalization in the two-loop approximation; 
this is not a trivial manner. We carry out the calculations by 
the dimensional regularization method (see, e.g., Ref. 7) in 
the variant proposed in Ref. 8. In this method the (logarith- 
mic) integrals are calculated in a space with dimensionality 
d = 2 - E, thereby ensuring their convergence on the upper 
limit. Convergence on the lower limit is ensured by the pole- 
term substitution q2_tq2 + m2, where m has the dimensiona- 
lity of the wave vector and determines the boundary between 
the fast and slow variables. It is also necessary to add in (6), 
(8), and (14) a factor A" to ensure their nondimensionality. 
After calculation in d-dimensional space, the limit as ~4 
must be taken. 

The diagrammatic equations mentioned above are in- 
vestigated in the Appendix. Calculation (in d-dimensional 
space) yields the following fluctuation corrections to the pa- 
rameters of the action (14): 

1 A - - = - -  - " g 2"+iA I ( " )  +-(A) Re- 
@ 2neB m 8n2eB m B-iA 

L, 

FIG. 3. 
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- 

(18) 
Here 

L-=L,+iL,=ln [ l - '1 ,  (1-iAIB)'] . (19) 

As E-+O the expressions in the right-hand sides of (16)-(18) 
diverge formally, this being due to the character of the as- 
sumed upper cutoff. We, however, are interested in the 
changes of g, A ,  and B following a shift of the real cutoff A ,  
and these expressions remain finite as E+O. The latter is 
ensured by the absence of terms a E - ~  from the right-hand 
sides of (16)-(18) (by virtue of the renormalizability of the 
action). 

RENORMALIZATION EQUATIONS 

Differentiating (1 6)-(18) with respect to 11~4 and taking 
the limit as E-0, we obtain the renormalization-group equa- 
tions in the two-loop approximation. The resultant equation 
for g agrees with (2), as it should; the equations for A and B 
are: 

We introduced in these equations the dimensionless param- 
eter b = B / A ,  the ratio of the imaginary and real parts of the 
spin-wave spectrum. The components of the logarithm L are 
expressed in terms of b as follows: 

From (20) and (21) we can obtain for b the equation 

We consider the case of weak damping, bg 1. In this 
case we obtain from (20) and (21) 
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d ln b g2 1 
-=-- ln-. 
d l n A  2nZ b 

Equation (24) agrees with the one in Ref. 4, although the 
statement made in that reference that the renormalization of 
1nA and 1nH have the same character is incorrect (a 1nH / 
a 1nA and (24) are of opposite sign). Equations (24) and (25) 
can be integrated if the second term in the right-hand side of 
(2) is neglected. In this case we get 

A=A,  e x p ( - g / 2 n ) ,  (26) 

In b-'=ln bo-' exp ( - g l n )  . (27) 
At small b, the value ofb can thus increase considerably with 
increasingg. As already noted, however, too small values of 
b, cannot be expected; the lower limit is here the value 
6,-gi obtained in Ref. 4. 

We consider now the case of strong damping, b> 1. We 
then obtain from (20) and (21) 

In this limit, (3) is a pure diffusion equation, and (29) deter- 
mines the law that governs the diffusion coefficient with in- 
creasing scale. This diffusion equation can be extensively 
generalized to a number of so-called nonlinear a models, in 
which a renormalization equation similar to (29) is obtained 
for the diffusion coefficient (in the two-dimensional situa- 
t i ~ n ) . ~  Equations (28) and (29) can be integrated if the second 
term in the right-hand side of (2) is neglected. The result is 
then similar to Eq. (26): 

B=Bo exp  [- (I-In ' / s ) g / 2 n ] .  

The technique developed has thus made it possible to 
investigate in detail, on the basis of the renormalization- 
group procedure, the behavior of the coefficients of the two- 
dimensional Landau-Lifshitz equation with damping in the 
region g < 1 where perturbation theory is valid. The coeffi- 
cient A,  which determines the real part of the spin-wave 
spectrum, decreases with increasing scale, but this decrease 
cannot be appreciable in the region of validity of perturba- 
tion theory, by virtue of the condition g < 1. The coefficient 
B, which determines the spin-wave damping, increases at 
small ratios B /A with increasing scale, although it does not 
manage to approach -A in the region where perturbation 
theory is valid. At B 2A the coefficient B decreases with 
increasing scale just as negligibly as A. We note that the ratio 
B / A  always increases with increasing scale. 

APPENDIX 

The diagram shown in Fig. 1 gives rise to the following 
fluctuation contribution to the coefficient of the first term of 
(14): 

Here d = 2 - E. Calculating the integral with respect to the 
frequency v, which reduces to a residue at a pole of (9), as 
well as integrating over the angles, we obtain, introducing 
the required cutoff, 

Here S, = 27f"2 /r (d /2) is the surface of a d-dimensional 
sphere. Retaining in this expression the leading term in the 
small E ,  we obtain the first terms of the right-hand side of 
(16). In perfect analogy we obtain the first terms of the right- 
hand sides of (17) and (18). We consider now the fluctuation 
contribution to the coefficient of the first term of (14), a con- 
tribution due to diagram of Fig. 2: 

This integral is transformed in the same way as (A.l) and 
yields 

In perfect analogy we obtain 

Much more difficult to analyze is the renormalization 
due to the diagram of Fig. 3. We consider first the contribu- 
tion made to the coefficient of the first term of (14) and given 
by the integral 

XD ( ~ 1 ,  q i ) D  (vz, qz)D (vs, qs) . (A.6) 
Here v3 = v1 + v2 - W ;  q3 = q, + q2 - k; w and k are the 
external frequency and external wave vector. By virtue of the 
logarithmic character of the integral in (A.6) the dependence 
of w and k can be left out of it. After integrating over the 
frequencies we obtain, introducing the required cutoff, 

Here Q = q: + q: + q: . The first term in the integrand of 
(A.7) gives rise to a contribution that is exactly canceled out 
by (A.4). The second term in the integrand of (A.7) leads to a 
contribution cc E-  ', SO that under our accuracy requirement 
the integration over the angle can be carried out in it in a 
space with d = 2. The remaining integration with respect to 
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q, and q2 can be easily carried out by changing to the variable 
ql/q2. As a result we obtain in the leading approximation in 
the small E the second term of the right-hand side of (16). 

The diagram of Fig. 3 causes also the following contri- 
bution to the integrand of (14): 

The integral in (A.8) diverges formally at the upper limit, but 
this divergent part is eliminated by integrating over the an- 
gles. We must therefore separate in (A.8) that part of the 
integrand which is linear in k (we recall that 
q3 = q 1  + q2 - k); the coefficient of k is now determined by a 
logarithmic integral. Recognizing that k is the wave vector 
of a_ ,  i.e., ki. a- = - iVi a_ ,  we arrive at the conclusion 
that (A.8) renormalizes the second term of (14). It is techni- 
cally simpler to integrate first over the frequencies and then 
separate that part of the result which is linear in k. We then 
obtain, introducing a lower cutoff, 

The factor d - ' in the second term of (A.9) is due to the aver- 
aging over the angles in d-dimensional space. In (A.9) we can 
already leave out the dependence on w and k. The terms 
proportional to E - ~  in (A.9) cancel one another; the integra- 
tion over the angles can therefore be carried out at our re- 
quired accuracy in a space with d = 2. The remaining inte- 
gration with respect to q, and 9, can be easily carried out by 
changing to the variable q,/q2. As a result we obtain the 
second and third terms of (17). 

The calculation of the contribution due to the diagram 
of Fig. 3 leads to two terms. The first is determined by a 
logarithmic integral and yields 

The factor d - ' in (A. 10) is due to averaging over the angles in 
two-dimensional space. The integration over the frequencies 
reduces (A. 10) to an expression similar to that obtained from 
(A.3), and leads to the result 

AZ+B2 4g(AZ+BZ) A '" S,2 ( r ~ / 2 ) ~  
A-=- (F) (2ir)dsinz(nei~) 

. (-4.11) 
gB dB 

The diagram of Fig. 3 leads also to the following contri- 
bution to the integrand of (14): 

(A. 12) 

The integral in (A. 12) diverges at the upper limit, and must 
therefore be regularized by subtracting from it expression 
(A. 12) at w = k = 0. The remainder must be expanded in 
terms of w and k. The term linear in k is made to vanish by 
the integration over the angles, and the term linear in w also 
vanishes, as can be verified after integrating it over the fre- 
quencies. We now must separate in (A. 12) the term quadratic 
in k, whose coefficient is now determined by a logarithmic 
integral. Recognizing that k, a- = - iVi a_ ,  we arrive at 
the conclusion that the resultant term renormalizes the third 
term of (14). I is technically simpler to integrate first over the 
frequencies, and then separate that part of the expression 
which is quadratic in k. As a result we find, after introducing 
the required cutoff, 

(A. 13) 

It is necessary first to separate in this integral the part pro- 
portional to cP2, which turns out to be equal to (A.5). Sub- 
tracting (A.5) from (A. 13) we can integrate over the angles in 
this difference, at our accuracy, in two-dimensional space 
and then evaluate the integral with respect to q, and q, by 
transforming to the variable ql/q2. The result is the second 
term of (1 8). The last term of (1 8) is obtained by adding (A. 1 1) 
to (A.5) multiplied by two. 
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