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Two-dimensional electrons in the inversion layer on a semiconductor surface with high Miller 
indices move in a weak one-dimensional periodic potential V (x)whose period can be comparable 
with the magnetic length in realistic magnetic fields B. The potential V(x) lifts partially the 
degeneracy of the Landau levels with respect to the center of the orbit, and forms one-dimensional 
magnetic bands. It is assumed that the magnetic-band width is large in comparison with the 
collisional broadening of the Landau levels, but small in comparison with the cyclotron energy. 
The conductivity a,, (i = x,y) over the ground magnetic band is found in the case of Born scatter- 
ing by point impurities to be highly anisotropic and contains two contributions, namely, migra- 
tional and band contributions. The former is determined by the migration of the center of the 
cyclotron orbit and decreases with decreasing scattering. The latter is due to classical motion of 
the electron over the magnetic band and increases without limit as the scattering is reduced; it is 
nonzero only for uyy . 

1. INTRODUCTION 

Studies of the electronic properties of two-dimensional 
( 20  ) systems have largely been confined to inversion layers 
on separation boundaries of semiconductors.' Studies of 2 0  
transport phenomena in quantized magnetic fields have be- 
come particularly topical since the discovery in such systems 
of the quantum Hall e f f e ~ t . ~  From the theoretical point of 
view, this problem is nowhere near a complete solution, even 
in the single-particle approximation, despite its rather long 
h i ~ t o r y . ~ - ~  The basic difficulty is the infinitesimal width of 
Landau levels and the attendent absence of a small param- 
eter associated with scattering. General results have been 
obtained only for systems in which a large number of Landau 
levels is filled. They are: the Hall conductivity a,, is quanti- 
zied whereas the transverse conductivity a,, is zero.'-lo 
There are only two publications in which a rigorous analysis 
is given of arbitrary level filling. It is shown in Ref. 6 that 
uxx = 0 at zero temperature. It is not clear, however, to what 
extent this result depends on the particular model employed, 
namely, the model of a-like impurities. The renormalization 
group was used in Ref. 11 to obtain a qualitative relationship 
between a,, and uxy in the general case. 

The physical complexity of the problem is due to the 
following. On the one hand, the potential due to the impuri- 
ties lifts the degeneracy of the Landau levels with respect to 
the center of the cyclotron orbit and produces a band of finite 
width. On the other hand, it also gives rise to transitions 
between states in the resulting band. Attempts to allow for 
both these factors within the framework of a self-consistent 
approach, undertaken by a number of  author^,^ cannot be 
regarded as convincing (see the discussion given in Ref. 6). 
To elucidate the physics of the phenomenon and, in particu- 
lar, of the possible conductivity mechanisms, it is therefore 
interesting to consider problems in which band formation 

and scattering can be treated independently. 
In this paper, we shall examine a 2 0  system whose Lan- 

dau levels have broadened into bands as a result of magnetic 
breakdown. If the width of the magnetic band produced in 
this way is large in comparison with collisional level broad- 
ening r, the conductivity can be calculated from impurity 
scattering by pertubation theory. 

We consider an inversion layer on the surface of a semi- 
conductor with high Miller indices (Si-Ref. 12, InSb-Ref. 
13). Since we have a long crystallographic period for transla- 
tions along the surface, we can use the effective-mass ap- 
proximation to introduce an additional weak one-dimen- 
sional periodic potential V(x) with period A much greater 
that the lattice constant a. This superlattice gives rise to min- 
igaps in the electron spectrum, and measurements of the size 
of these (1-20 meV) can be used to estimate the amplitude Vo 
of the superlattice potential. As a rule, the bottom minigap 
2V0 turns out to be small in comparison with the width 
2dfi2/mA of the ground allowed miniband, where m is the 
effective mass12 (we confine our attention to minigaps that 
are unrelated to the intervalley interaction). The period A is 
determined by the crystallographic orientation of the sur- 
face and, as a rule, is equal to a/2 sin0 for Si and a/3"2sin0 
for InSb, where 0<1 is the deviation of the surface under 
consideration from the basal plane [(loo) for Si and (1 1 1) for 
InSb]. 

When a magnetic field B perpendicular to the 2 0  layer 
is present, the superlattice potential lifts the degeneracy of 
the Landau level with respect to the center of the cyclotron 
orbit, and this may lead to the appearance of one-dimensioal 
( 10  ) magnetic bands. The energy spectrum of such systems 
has been calculated in the three-dimensional ( 3 0  ) case for 
various limiting situations. 14-l9 A symmetry classification of 
the states and an analysis of the spectrum for arbitrary B 
have also been reported.20 Magnetic bands appear in studies 
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of magnetic breakdown in some metals and narrow band 
gaps on individual segments of the Fermi surface." 

The analysis given below is valid when the collisional 
broadening of Landau levels is small in comparison with the 
width of a magnetic band. The latter is very sensitive to the 
ratio of A to the magnetic length A = ( W e B  )'I2. In weak 
fields, (A$A ), the bandwidth is exponentially small and the 
band itself is substantially "smeared out" by scattering 
(usually, r- 1 meV). The most interesting situation is that 
for which A SA. When t9 'lo-3" and B = 0.5X lo5-1.5 X 10' 
G,wehaveA = 157A- 5 3 A ( ~ i ) , ~  = 213A- 71A(1n~b), 
and A = 115 A - 66A. It is clear that the condition 

Alh-I, (1) 

can be realistically satisfied, and it may be expected that the 
magnetic band width will be small in comparison with r. It 
is important to remember that in such strong magnetic fields 
a real 2 0  system will be close to the magnetic quantum limit, - 
and the quasiclassical analysis of magnetic 
will be invalid. It is thus clear that the determination of con- 
ductivity within the magnetic band is a topical quantum- 
mechanical problem. 

A similar problem was solved in the 3 0  case. The situa- 
tion typical of metals, in which the number of filled Landau 
levels is large, was analyzed in Ref. 23. The magnetoconduc- 
tivity of 3 0  electrons in the presence of a superlattice was 
calculated numerically in Ref. 19. A decrease of the dimen- 
sionality of space alters radically the density of states (it has a 
1D divergence at the band extrema), so that one can expect a 
considerable change in the behavior of the trans~ort coeffi- " 
cients. 

In this paper, we use the Kubo formula to calculate the 
diagonal components of the magnetoconductivity tensor of a 
2 0  electron gas from the ground magnetic ID band formed 
from the lowest Landau level. We shall concentrate our at- 
tention on case (I), which is not attained in 3 0  metals in 
realistic fields. The magnetic band is assumed to be narrow 
in comparison with the separation between the Landau lev- 
els, whose spin and valley degeneracy are neglected. Born 
scattering by short-range impurities of low-density ni 
(niA '$1) is taken into account. The effective radius of these 
impurities is assumed to be small in comparison with all the 
characteristic lengths of the problem, so that we can use the 
6-impurity approximation. The entanglement of Landau 
levels in the field of the impurity and superlattice potentials 
is neglected. The explicit form of V (x) is not specified. 

The spectrum and density of states are found in Sec. 2 
and a,, and ayy are determined in Secs. 3 and 4. It is shown 
that there are two conductivity mechanisms, the classical 
due to band motion, and the quantum-mechanical due to 
migration of the center of the cyclotron orbit. The cumber- 
some calculations are relegated to Appendices 1-4. The 
main results and a discussion of the effects that may take us 
outside the framework of our approximations are presented 
in Sec. 5. 

2. ENERGY SPECTRUM AND DENSITY OF STATES 

Consider a 2 0  electron gas in the inversion layer on the 
z = 0 plane with high Miller indices. The effect of this sur- 

face will be represented by the one-dimensional superlattice 
potential V (x) = V (x + A ). The electron Hamiltonian in the 
quantizing magnetic field B = (O,O,B ) in the presence of im- 
purities producing short-range effects is 

where p = (p, ,p, ) is the momentum operator, ri = (xi ,yi ) is 
the position vector of the i-th impurity, and A = (O,Bx,O). 

The potential V(x) produces a partial removal of the 
degeneracy of the Landau levels with respect to the center of 
the orbit, and this results in the formation of 1D magnetic 
bands. We shall assume that the potential is weak. The wave 
functions of the Hamiltonian unperturbed by the impurities 
can be taken in the zero-order approximation in V: 

Y Nk=L-'heik~(DN (x+A2k), (2) 

whereas the spectrum can be taken in the first order in V: 

E N  (k) = (N+' / z ) f io , f  <NkI VI Nk> , (3) 
where @, is the Hermite function, N is the number of the 
Landau level, w, = eB/mc is the cyclotron frequency, 
- A 'k is thex-coordinate of the center of the orbit, which is 

a good quantum number, and L is the normalizing length. 
The potential V(x) is weak if the width of the magnetic band 
is small in comparison with h, . The bandwidth depends on 
the rate at which V(x) varies over lengths of the order of A. 
Unfortunately, the explicit form of V(x) is unknown, so that 
we shall consider two limiting cases for illustration. For a 
"smooth" ~uper la t t ice~~ 

V (5) =Vo cos ( h x / A ) ,  (4) 

E N  ( k )  = (N+'12) fio, 

S VoL, (2n2h2/A2) exp (-nZA2/A2) cos (2nk2klA).  (5) 
where L, is a Laguerre polynomial with Lo = 1. For an ex- 
tremely "rough" superlattice, we use the Kronig-Penney po- 
tential: 

V ( x )  ='/,VoA 6 (x+sA)  , C 
8 

8, ( k )  = (N+'/,) hw.+'/zVoA C O i  (sA+hak). (6) 
# 

We shall confine our attention to the ground magnetic 
band with N = 0. Transforming the sum in (6) with the aid of - . . 
the Poisson summation formula, we find that in a relatively 
weak magnetic field ( r2A  2$A ')the two expressions (6) and (5) 
differ only by a shift of the origin from which the energy is 
measured, and the half-width of the ground magnetic band 

A=Vo exp (-nX21A2) (7) 
increases exponentially with increasing B. Further increase 
in B results in the saturation (A = Vo) of the half-width of the 
ground band in model (5 ) ,  whereas in model (6) in strong 
magnetic fields (A '+4 2), the half-width continues to increase 
as VJ [ l  - 2exp( - A '/4A 2)]/4r1'2A. Inthislimit, thespec- 
trum (6) becomes asymmetric: the effective mass of electrons 
at the bottom of the ground band is 

n'"A2h 
me'= --.- A 
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and is much greater than the effective mass of "holes" near 
the top of this band 

whereas in model (5) the spectrum is always symmetric. 
The dispersion relation in the band, written in terms of 

the position of the center of the orbitil 2k, is periodic with A / 
A (Ref. 20), i.e., 

EN (k+A/3ir2) =EN (k) . 
Suppose that, within the interval [ -A /U ',A /U 2], the 
equation EN (k ) = E has the roots k"', i = 1,2,. . . . The den- 
sity of states in the Nth  magnetic band is then given by 

wherefiv('' = /dk fork = k"). Thedivergence ofN (E )at 
the band extrema (see Fig. la) is a consequence of the fact 
that E~ (k ) is one-dimensional. In the model (5), 

and the electron density n, in the ground magnetic band 
depends on the Fermi energy E, as follows: 

measured from the ground Landau level. 
We now give some numerical estimates for the inver- 

sion layer on the surface of Si. For 6 = la, V, = !O meV, and 
B =  1 . 5 ~ 1 0 ~  G, we haveA= 157 &A =66  A, fiwC=9.1 
meV and, in models (5) and (6) ,  24 =: 3.5 meV. The conditions 
for the appearance of the band spectrum (3) are then satisfied 
(fiwC)24)r) if r- 1 meV (Ref. I), and at n, 5 3 . 6 ~  10" 
cm-' the system reaches the quantum limit. It is readily 
verified that 24 /fiwc 5 m V,yl 2/~2f i2  in the case of model (5), 
and the approximation defined by (2) and (3) is valid for all B  
provided the minigap width in the original (at B  = 0) spec- 
trum is small in comparison with the width of the allowed 
miniband. As noted in Sec. 1, it is precisely this case that is 
usually realized in experiments. 

As N increases, the bandwidth decreases, and this com- 
plicates its experimental detection. Moreover, for N > 0, the 
variation of B  may be accompanied by oscillations of the 
'bandwidth, which are described by Laguerre polynominals 
in model (5). In other respects, however, the results obtained 
below in the quantum limit do not change qualitatively as 
the higher-lying magnetic bands become filled. 

Here and below, whenever we use the model (5), the energy is 

FIG. 1 .  a) Density of states in a magnetic band with two extrema; b) 
conductivity a,, in the direction ofthe superlattice axis; c) band contribu- 
tion to the conductivity eY across the superlattice axis. Dashed curves 
correspond to the inclusion of collisional broadening and the dot-dash 
curve shows the magnetic band edge. 

3. CONDUCTIVITY IN THE DIRECTION OF THE 
SUPERLATTICE AXIS 

Let us now calculate the diagonal components of the 
conductivity tensor a,, corresponding to a current along the 
superlattice axis. An electron moving along they axis with 
velocity -d&/dk is scattered by an impurity and is displaced 
in the direction of the x axis along the electric field. The 
conductivity a,, is determined by migration, due to scatter- 
ing by impurities, of the center of the cyclotron orbit of the 
electron. This is typical of transverse conductivity in a mag- 
netic field in the 3 0  case.24 

The calculation was based on the Kubo formula in the 
representation of the orbit centerz4: 

whereX = iil 2d /dy is the operator for thex coordinate of the 
center of the orbit, G (E ) = (E - H + i0)- ' is a single-parti- 
cle Green function, f (E ) is the Fermi-Dirac function, Sis  the 
area of the system, and the angle brackets denote standard 
averaging over impurity  configuration^.^^ 

The use of (10) is justified because the relative coordi- 
nate of the electron on the cyclotron orbit is bounded. The 
much more complicated calculation based on the complete 
Kubo formula26 leads to the same result. 

The operator representing the velocity of the center of 
the orbit, xaa. = ifip1(Xa - Xa )Uaa., is linear in U, so that 
we confine our attention in (10) to the lowest order in scatter- 
ing, which entitles us to replace G (E ) with the unperturbed 
Green function G Oaa. = Saa. (E - E, + i0)- l, where 
a = { Nk ) is the set of quantum numbers and Xa = - il 'k. 
In basis (2) we have at T = 0 
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niuoZh3 (k-k') 
( IZ>= 

(2n) '"E2L 

In the quantum limit (N = N ' = O), the expression in the 
square brackets in (12) is equal to exp[A 2(k - k ')2/2] and (1 1) 
becomes simpler. Leaving out the laborious though straight- 
forward intermediate steps, and merely quote the final re- 
sult: 

(1 3) 
where the function F, (b ) is determined in Appendix 1, i and j 
label theroots ofthe equation~(k ) = EF on the period of&(k ), 
and v g  = u(') for E = EF. In the region of magnetic fields 
defined by (1), in which we are interested, we find that condi- 
tion (A.3) is satisfied for Fl(b ), the asymptotic behavior de- 
scribed by (A.4) is valid, and ax, satisfies the Einstein rela- 
tion 

a,(Ep) =eZN (EF) [ (nniuo2h21h) N (E,) 1. (14) 
The density of states at the Fermi level in this expression is 
given by (8), and the expression in the square brackets can be 
interpreted as the coefficient of diffusion Dxx(EF) for the 
center of the orbit along the x axis. 

The function ax, (E,) follows the variation of N '(EF). 
The divergence of a,, at the band extrema (v!-0) is deter- 
mined by two factors, namely, the divergence of N (E,) and 
the divergence of the diffusion coefficient D,, (EF). It is well 
known that the latter is due 24,27 to the use of the Born ap- 
proximation to calculate the probability W,,, of the elastic 
scattering: 

To cut off the divergence of o;, , we must, as in the 3 0  
case, take into account the smearing ofN (EF) by  collision^,^^ 
or abandon the Born approximation.29230 Other possible cut- 
off mechanisms (inelasticity of the ~ca t t e r i ng ,~~  allowance 
for the finite electric field32) will not be considered here. 

Let us now consider the collisional cutoff mechanism 
and confine our attention to model (5) for the sake of simpli- 
city. We then find that (9) and, consequently, (14) diverge at 
the band edges (see Figs. la and lb). As EF approaches the 
band edges, expression (14) becomes meaningless at 
IEF ( 2 lEFl 1, where (E,, ( is given by 

When IEF I 2 IEF, 1 ,  the interaction between the electrons 
and the scattering impurities cannot be resolved into indi- 
vidual  collision^.^^ The time T between collisions is deter- 
mined with the aid of (15) and, in the quantum limit, is given 
by 

When the function F2(b ) is given by the limiting formula 
(A.3) in Appendix 1, we have the asymptotic expression (A.5) 
and instead of (17) we obtain 

Simultaneous solution of (16) and (18) subject to the condi- 
tion fi/r<A yields 

Apart from numerical coefficients, the last inequality can be 
writtenintheform(r/A )4/3< 1 wherer = (2ni uO2/35-A ')l/'is 
the broadening of the Landau level in the self-consistent 
Born approximation.' As scattering increases, IEF, I shifts 
toward the center of the band and the range of validity of (14) 
becomes smaller and shrinks to zero when (19) is not satis- 
fied. 

On the other hand, as EF approaches the band edges, 
IuF ( falls, and there is more intensive scattering of electrons 
by impurities. At IEF I 2 IEF2 I, the Born approximation be- 
comes unsuitable and scattering by each impurity must be 
taken into account in all perturbation theory o r d e r ~ ~ ~ * ~ O  (see 
Appendix 2). The quantity IEF2 I in (A.8) is close to the band 
edge if (~~1235-A 2A )2< 1. 

It is thus clear that (14) is valid for 

The function u,, (EF) in model (5) has two peaks at the band 
edges (Fig. lb). As B is reduced, the width A decreases ex- 
ponentially, the peaks a,, ( If: EFm ) come closer together, 
the a,, valley at the band center is reduced, and, finally, the 
valley disappears altogether for E,"<A. The above results 
are then no longer valid, and the problem reduces to the 
evaluation of the 2 0  magnetoconductivity without the su- 
prelattice. The intensification of scattering is qualitatively 
equivalent to a reduction in B. 

The above results are readily extended to the case T # 0. 
In the quantum limit, and not too high a temperature 
( T g k ,  ) we have 

where a,, (E) is given by (14) and the integral is evaluated 
over the entire band, taking into account the cutoff at the 
band extrema. For example, in model (5), the finite value of T 
for T<A gives a small ( -  T2/A ') positive correction to (14). 
For *A, the chemical potential p depends on the degree of 
filling of the band u = 235-A 2n, as follows: 

which is valid to within terms of the order ofA /T. With the 
same precision, we find from (20) that 

When *A, the conductivity falls, since the band is, on aver- 
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age, uniformly filled with electrons because of the tempera- 
ture smearing. 

4. CONDUCTIVITY IN THE DIRECTION PERPENDICULAR TO 
THE SUPERLATTICE AXIS 

The conductivity component uyy will now be calculated 
from the Kubo formula (10) with the replacement X-k The 
operator of the orbit-center velocity along they axis is 

where Y = - i/Z 2a /ax + y contains two contributions. The 
first (-aU/ax) is proportional to the force acting on the 
electron due to the impurities, and the second( -aV/ax) is 
due to the superlattice. Hence, ayy is determined both by 
migration of the center of the orbit during scattering by im- 
purities and by classical motion of the electron within the 
magnetic band. Since ayy is bilinear in ?, cross terms con- 
taining (aV/ax)(aU/ax) may, in principle, appear. However, 
it is shown in Appendix 3 that these terms vanish when on 
averaging over the impurities. 

Thus, ayy = o$ + ey where the migration o$ and 
band 4 contributions are given by the following expres- 
sions for T = 0: 

Let us now consider the migration contribution to uyy . 
Evaluation of o$ is analogous to the evaluation of axx . Since 

we find from (23) that, in the lowest order in scattering and in 
the quantum limit, 

In the limit defined by (A.3), this formula is identical with 
(14), with the expression in the square brackets in (25) be- 
coming the diffusion coefficient Dyy (E,) of the center of the 
electron orbit in the direction of they axis. We then have- 
Dyy (EF)zDXx (E),  and all the conclusions of Sect. 3 apply 
also to o$. The diffusion becomes anisotropic in very strong 
magnetic fields and o$(EF) #axx (Ef). 

Let us now calculate the band contribution to a,,,, . We 
shall confine our attention to the ground band and will omit 
the index N = 0. Since 

we can rewrite (24) in the form 

(kt) 
X -  

dk' Im Ghr,k(Ep) ) 
Computational difficulties that arise when we try to "unra- 
vel" (26) in the general case have the same origin as the diffi- 
culties encountered in the solution of the Boltzmann equa- 
tion for arbitrary ~ ( k  ). Let us therefore consider a very simple 
"Fermi surface" ~ ( k  ) = EF consisting of the two points k, 
and - kF within the period of the function ~ ( k  ). The next 
steps are analogous to the determination of the conductivity 
of a free electron gas under elastic scattering by i m p u r i t i e ~ . ~ ~  
The calculation is carried out in Appendix 4 with allowance 
for the specific features of the spectrum ~ ( k  ) (umklapp pro- 
cesses must be taken into account). 

The result 

describes the classical conductivity of a degenerate electron 
gas in a one-dimensional band ~ ( k  ). The expression in the 
square brackets in (27) can readily be shown to be the trans- 
port relaxation time. In the limit defined by (A.3), it follows 
from (8), (27), and (A.5) that 

The band conductivity 4, in contrast to migration 
conductivity 4, increases as scattering is reduced. The be- 
havior of ey(EF) is determined by the function V;(E,) (see 
Fig. lc). Scattering increases at the band extrema and (28) 
becomes invalid. The range of validity of (28) is reduced with 
increasing scattering, and eventually vanishes altogether. In 
model (5) this occurs for E ,"(A, (see Sect. 3). 

When T #0, theconductivity 8, ( T )  isgiven by (20) with 
the replacement x-y. Thus, as the temperature increases in 
model (9 ,  the conductivity of,, first decreases like - T2/A 
but for large T (A ( T g k ,  ) it assumes the form 

Comparison of o$ and 4 shows that the main contri- 
bution to ayy (at any rate, well away from the band extrema) 
is due to cf,, . It follows that the conductivity is highly aniso- 
tropic in this system and a,, (ayy. 

5. DlSCUSSlON OF RESULTS 

Conduction in the inversion layer on a semiconductor 
surface with high Miller indices is produced by two mecha- 
nisms. One of them is due to the migration of the center of 
the cyclotron orbit as a result of scattering by impurities, and 
contributes to both ax, and ayy . The other is due to classical 
scattering during the motion of an electron within a magnet- 
ic band, and contributes only to the conductivity ayy in the 
direction perpendicular to the superlattice axis. As scatter- 
ing is reduced, the conductivity due to the first mechanism is 
reduced, and +hat due to the second increased. The presence 
of two conduction mechanisms does not appear to be con- 
fined to this particular system. For example, similar contri- 
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butions are found in the 3 0  case. This was noted in Refs. 21 
and 23 where a study was reported of coherent magnetic 
breakdown. It is likely that they will also be found in inver- 
sion layers on ordinary (low Miller index) semiconductor 
surfaces. 

The width of the magnetic band increases exponentially 
with increasing B, so that strong magnetic fields are neces- 
sary for the experimental detection of the above effects. For 
an inversion layer on a surface at the angle 6 -  lo to the (100) 
plane of Si or the (1 1 1) plane of InSb in a field of B- 1.5 X lo5 
G, the width of the ground magnetic band exceeds 1 meV, 
and the conditions for the formation of the band may be 
satisfied in sufficiently pure specimens (r < 1 meV). 

There has been a report1.12 of measurements of interval- 
ley magnetic breakdown in inversion layers, but they were 
performed in relatively weak magnetic fields (2)A ) for 
which the conditions for the formation of the magnetic band 
were not satisfied. 

In magnetic fields that are strong enough for inequality 
(A.3) to be reversed, the overlap of wave functions is sharply 
reduced, and the degree of anisotropy in conductivity is in- 
creased still further. However, the conditions for the validity 
of our results [see, for example, (19)] may then no longer be 
satisfied. The necessity for including multicenter scattering 
is an indirect indication of the tendency of electronic states 
to localize. In actual fact, a system placed in sufficiently 
strongB constitutes a set of weakly coupled "filaments" run- 
ning along they axis. The possibility of localization in this 
quasi-one-dimensional case is well known.34 

In very pure specimens, the homogeneity of the spec- 
trum (3) and the associated "pointlike" Fermi surface may 
lead to an instability of the system to formation of a charge- 
density wave whose wave vector q, is commensurate with 
the separation between the "Fermi points" and, in particu- 
lar, with the period of the function ~ ( k  ). The nature of the 
ground state under these conditions requires separate analy- 
sis. Here we merely note that if the charge-density wave is in 
fact produced the spectrum becomes two-dimensional, and 
the conditions for the observation of the unusual quantiza- 
tion of g,, predicted in Ref. 35 may be satisfied. 

Effects typical of narrow allowed-band crystals may ap- 
pear in a strong electric field F (Ref. 36). For example, at 
F = (0,F) the electron will oscillate in the band with frequen- 
cy o = 27lcF/AB (the analog of the Wannier-Stark frequen- 
cy). This should be reflected in the properties of the transport 
coefficients (cf. Ref. 21). 

The above discussion indicates the potential productiv- 
ity of galvanomagnetic phenomena in the system that we 
have considered, and we hope will act as stimulus to experi- 
mental studies. 

The authors are grateful to V. B. Sandomirskii for his 
interest in this research and for valuable suggestions, and to 
M. I. Kaganov and R. A. Suris for fruitful discussions. 

APPENDIX 1 

The following two series are frequently encountered in 
calculations: 

P, ( 6 )  = 2 ( b f 2 n n ) '  esp {- A2(:::n)2 }, (A.1) 

where O<b < 27~. They can be transformed with the aid of the 
Poisson formula: 

4n2h2p" 2n2h2p2 
F, ( b )  = 

A3 

p=-m 

When 

we retain only terms withp = 0 in the above sums: 

F, ( b )  =4 ( 2 n )  '"n2h3/A3, (A.4) 

F2 ( b )  = (2n)"%/A. (A.5) 

It is clear that (A.3) and (A.4) are valid for (1). In the limit of 
very strong fields (U '/A '4 I), only the first few terms need 
be retained in (A. 1) and (A.2). In the intermediate region (1/ 
2 r2  <A */A < h) ,  the two asymptotic forms give very similar 
results. 

APPENDIX 2 

The precise scattering amplitude t,,. (E ) for an isolated 
impurity u = u,6 (r - ri ) has the form of the s e r i e ~ ' ~ , ~ ~  

tam' ( E )  =uaa*+ 
P 

which is readily summed: 
1 

tau. ( E )  =uoY,vkf (ri) 'P,v'k' ( r i )  
1 - K ( E )  ' 

where 

In the quant-um-mechanical limit, neglecting the entan- 
glement of the Landau levels for model (5), 

xz iexp [- A2(i:2";I")2] dt  (A.7) 
p = - m  -n 

E-A cos tf iO 

iu, 
m -  

2nhZ (d2-E') 'I* ' 

The sum in (A.7) was evaluated with the aid of (A.3). 
Substituting (A.7) in (A.6), we find that the Born ap- 

proximation is inadequate at I E I 2 I EF2 1, where EF2 is given 
by the condition ( K  (EF2 ) /  = 1. Hence, 
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FIG. 2. Diagrams for the cross term in (A.9). Dashed single lines and 
double lines correspond to respective interaction of u,,, and (du/dx)6,,. 
with the impurity. 

APPENDIX 3 

When (22) is substituted in the Kubo formula, the cross 
terms are proportional to 

In our scattering approximations, averaging over the impu- 
rity configurations in (A.9) leads to the diagrams shown in 
Fig. 2 (Refs. 33 and 37), where the solid lines correspond to - 
single-particle Green functions G,,, = G,,. S,,. in the Born 
approximation averaged over the impurities, and the vertex 
part r,,. = r,S,,. satisfies the Dyson equation in Fig. 3a. 
The contribution of these diagrams is equal to zero because 
the following expressions appear in the course of their eva- 
luation: 

APPENDIX 4 

Averaging over impurities in (26) within the framework 
of standard  approximation^^^ leads to the following expres- 
sion which corresponds to the diagram of Fig. 3b: 

(A. 10) 

where 7 is given by (17) and Tk is the vertex part satisfying 
the Dyson equation of Fig. 3a: 

de ( * )  + 
( 1 U.,,  IZ)Ch. (E)G,,  ( E ' )  Tk.  ( E .  E l ) .  r k ( E ,  E')  = - 

dk 
k' (A. 11) 

We now recognize that Gk in (A. 10) and (A. 1 I), to within ifi/ 
27, has poles at k = + k,  + (A /A  2 ) p , p  = 0, + 1 ,... . It fol- 
l o w ~ f r o m ( A . 1 1 ) t h a t ~ ~  +.,A~ = r k , L k  = - - r , )and  

(A. 12) 

a b 

FIG. 3. Dyson equation for the vertex part (a) and the band contribution 
4 (b). The wavy line represents the factor (d&,/dk pa,. . 

Here, we have taken into account the fact that 
AfU' 

J Ck (I?,+) Gk (EF-) dk 

By substituting (A. 12) in (A. lo), and using (A. 13), we obtain 
(27). 
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