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The Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) theory is generalized to the case in which 
the electron state density has an energy fine structure and the Anderson theorem is violated. The 
changes in the electron spectrum in a nonideal sample cause the critical field Hc2 to behave quite 
differently as a function of the concentration in the dirty limit than predicted by the GLAG 
theory with a constant state density. Specifically, Hc2 (0) may go through a maximum as a function 
of the concentration, and - (dHc2 /dT)Tc may increase more slowly than linearly. The energy 
dependence of the electron velocity near the Fermi level in a superconductor with a fine structure 
in the electron density disrupts the relationship between Hc2 (0) and (dHc, /dT),< predicted by the 
GLAG theory. Samples of Nb3Sn have been irradiated in a reactor, and Hc2 ( T )  has been measured 
down to liquid-helium temperatures. Direct measurements reveal that the dose dependence of 
Hc2 at 4.2 K is nonmonotonic (it has a maximum) and that the dose dependence of (dHc2 /dT),c is 
nonlinear, in agreement with the theoretical predictions. 

INTRODUCTION 

The anomalous properties of high-temperature super- 
conductors with the A-15 structure are evidence that the 
electron state density No({ ) has a fine structure with a typical 
peak width y-0.01 eV (Ref. 1). The existence of a fine struc- 
ture is supported by one-electron numerical calculations2 
and by models3 of the band spectrum. A strong electron- 
phonon interaction promotes a localization of d electrons 
and increases the height of the peaks in the state d e n ~ i t y . ~  At 
a certain strength, this interaction may be the sole reason for 
the appearance of fine structure, through a polaron band 
contraction. On the other hand, the interaction with defects 
at low concentrations tends to smooth out the structural fea- 
tures in No(g ), causing a violation of the Anderson theorem 
in high-temperature superconductors.5~6 Our purpose in the 
present study was to derive and experimentally test electro- 
dynamic equations incorporating a fine structure in No({) 
and a deviation from the Anderson theorem. 

As a rule,' the Ginzburg-Landau-Abrikosov-Gor'kov 
(GLAG) theory ignores any energy dependence of the state 
density: 

No(E)=lV(O).  (1) 

Assumption ( I )  means that the state density, the velocity at 
the Fermi surface (v,), and Tc itself are not affected by the 
introduction of a small number of defects, and such charac- 
teristics as the residual resistance and the upper critical field 
Hc, (in the dirty limit) depend linearly on the concentration. 

If we introduce an energy dependence of No({ ) with a 
scale value y, we cause a substantial renormalization5 of 
No(c ) at a defect concentration corresponding to the condi- 
tion 

y.c<l, (2) 
where r is the scale time between collisions. As a result, Tc, 
the magnetic su~ceptibility,~.~ and the electron heat capac- 
ity8 become strong functions of the concentration, and the 
concentration dependence of the residual resistance be- 
comes n~n l inea r .~  

A renormalization of the electron spectrum by defects 
should also change the concentration dependence of the co- 
efficients in the GLAG equations. The first attempt to incor- 
porate a renormalization of the electron spectrum in the 
GLAG equations was made by Fahnle and Kronmiiller," 
who restricted their analysis to the one-dimensional approx- 
imation of linear chains for A- 15 (the Labbe-Friedel model) 
and used standard expressions for the coefficients, found 
without allowance for the renormalization of the spec- 
trum," into which they substituted the renormalized values 
of Tc and the one-dimensional value of N (0). 

The systematic analysis below makes it possible to go 
beyond the scope of the one-dimensional approximation and 
also to correctly carry out an energy averaging in the coeffi- 
cients. It is shown in particular that when there is a fine 
structure in No({ ) we must abandon the well-known relation 
between the critical field and its temperature derivative in 
the dirty limit," 

Picz (0) =-0,69Tc (dH, z /dT)  n, (3) 
and the concentration dependence of (dHC2/dT),= and 
Hc2 (0) in the dirty limit becomes nonlinear. The field Hc2 (0) 
may go through a maximum at a certain concentration. 

The most effective method for causing controllable 
changes in the electron spectrum of A-1 5 is bombardment by 
neutrons and charged particles, which introduces a control- 
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lable number of isoelectronic defects. Experiments by this 
approach have revealed a degradation of the critical cur- 
rent'' and of Tc (Ref. 13) in A- 15 due to a broadening of the 
density ~ e a k . ~ . ~  

The upper critical field of irradiated samples has been 
measured in several studies. l4 As a rule, Hc2 has been found 
either by extrapolating the Jc (H) dependence to a zero cur- 
rent or by using (3) and the measured values of 
(dHc2 /dT),, Tc and Tc . In the present study we bombarded 
Nb,Sn samples with neutrons in a reactor at a temperature of 
60 "C. We measured Hc2 (4.2 K) and (dHc2 /dT),, ,< in a 
pulsed magnetic field. The experimental results confirm the 
nonlinear concentration dependence of the derivative and 
furnish the first direct evidence for a nonmonotonic depen- 
dence of Hc2 (0) (with a maximum). We also show that these 
results mean that relation (3) breaks down. 

1. FINE STRUCTURE IN THE ELECTRON STATE DENSITY IN 
THE EQUATIONS OF THE GLAG THEORY 

Let us examine the Gor'kov equations, in which an 
average is taken over the coordinates of the defects by the 
generating-functional techniqueL5: 

where &= and 6, are the Pauli matrices, n, is the defect 
concentration, mr 2/2?r is the square of the scattering ampli- 
tudeofan individual defect, w = 277T (n + 1/2), 6 6 ( - id/ 
&,), and 6(p)  is the band spectrum (the polaron effect4 is 
taken into account). A magnetic field can be introduced in 
any stage by virtue of gradient invariance. 

Because of the fine structure in No(< ) in an ideal sample, 
the constant-energy surfaces may have a complicated shape, 
and the functional dependence 6 (p) will differ from an iso- 
tropic parabolic dependence. We will first solve system (4) in 
the spatially homogeneous case near Tc . After the standard 
transformations,' we find the following results for the Four- 
ier components: 

where 

and H satisfies the self-consistent equation 

Z ( i o )  =n,r2 N O ( 8  
J d g  io-g-2 ( i w )  

Substituting (5) into the equation for the order parameter,' 

we find an implicit expression for Tc : 

where Vo is the interaction constant. 
We can show that Eq. (8) is the same as the Bardeen- 

Cooper-Schrieffer equation with a state density renormal- 
ized by defects, which was used in Ref. 5 to describe Tc as a 
function of the concentration and the dose. Using expression 
(6) for 8 ,  we rewrite Eq. (8) as 

Using the relationship between the temperature Green's 
function with the retarded function GR (p, w) and the ad- 
vanced function GA (p, w) (Ref. 7), we can put (9) in the form 

p O>U w<o 

Replacing the discrete sums in (10) by contour integrals (Fig. 
I), deforming the contours to the real axis, and making use of 
the analytic properties of GR,A, we find 

where 

G R  (P, z) = [z-E (P) -Z (z) I -'. 
The self-energy part o f 8  (2) is found by analytically continu- 
i ng8  (iw) from the upper imaginary semiaxis to the real axis; 
it satisfies the equation5 

z (z) =ndr25 z-E-Z(z) N o ( f  ) ' 

Using the definition of the state density, 

FIG. 1.  Integration contours in Eq. (10). The crosses show 
io = ivT, (2n + 1). 
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we can reduce Eq. ( 1  1 )  to the Bardeen-Cooper-Schrieffer 
equation, 

As usual, we treat a spatial inhomogeneity in the semiclassi- 
cal approximation, assuming that the coherence length is 
much greater than the typical electron wavelength. In the 
case of a fine structure the latter assumption holds if 

which is satisfied in A- 15. 
Introducing the incomplete Fourier component of the 

Green's function in the coordinate of the relative motion 
( r ,  - r,) in the approximation linear in V, [ R  = ( r ,  + r , ) /2] ,  
we find from (4) an analog of the Eilenberger equation'? 

i v ( p )  V,g,( i<,  p) + [O, go (R ,  p ) ]  -=O, ( 16) 

where 

@ ( P )  - 
v ( P ) = -  , o=ioB,--A-ndr2 g, (R ,  p) , 

8~ - C 

2. THE DIRTY LIMIT; GENERAL EXPRESSION FOR H,(T) 

The complicated dispersion relation in a superconduc- 
tor in which the electron density has a fine structure makes it 
difficult to solve system (16). As Usadell'' has shown, the 
system (16) can be simplified considerably in the dirty limit 
because the constant-energy surface becomes isotropic. In 
the case with a fine structure, this effect makes it possible to 
reduce the momentum dependence& (R ,  p )  to the single en- 
ergy variable {. It is important to note that the region of the 
dirty limit is defined by the condition 

T,,.t<l, (17) 
which, by virtue of inequality ( l 5 ) ,  clearly holds in region (2),  
in which there are significant changes in Tc and the other 
parameters because of the change in the electron spectrum. 

We introduce a direct generalization of the Green's 
function averaged over angles on the constant-energy sur- 
face: 

where 

is the state density in the ideal crystal, and dS6 is an element 
of the constant-energy surface. We then have 

go (R ,  p )  =go0 (R ,  E )  + -- v'P' (R, E l ,  I v ( P )  I 
h 

where r, is small in comparison withgz. Taking the average 
of Eq. (16) and also the average of Eq. (1 6 )  after multiplica- 
tion by v(p)/lv(p)l over angles, we find, for a cubic lattice, 

where 

are the velocity, mean free path, and mean free time; and S6 
is the area of the constant-energy surface. 

Near the upper critical field we can restrict the analysis 
to the linear terms in A (Ref. 15) in Eqs. (20). For these terms 
we find from (20) and condition (7)  the following results, 
taking into account the vector potential A(R): 

ue2 (V-2ieA) 2F,*(R, E )  f oF,* (R,  E )  
12 Im 2 (io) 

A = V , T ~  J ~ E N ~ ( E ) F . *  (R .  5 ) .  (22) 
0 

If we also have T -  T ,  , the first term in (2 1 )  will be small7 and 
can be treated as a perturbation. Determining Fm from Eq. 
(21) in this manner, and substituting it into (22), we find a 
generalization of the Ginzburg-Landau equation for super- 
conductors with a fine structure in the electron state density 
in the approximation linear in A:  

(1+L)  A (R)  -D ( V -2ieA) 'A (R)  ==O, (23) 
where 

Making use of the analytic properties of the Green's func- 
tions, as above, we can put L in the form 

In contrast with the ordinary Ginzburg-Landau equa- 
tions, Eq. (26) contains a state density N (z) renormalized by 
the defects. The coefficient D cannot be reduced to an 
expression which depends on N (2) alone because of the ener- 
gy dependence of the average velocity u6 in (20). When we 
have a small parameter Tc / y  ( 1 [see ( 1  5 ) ] ,  expressions (25) 
and (26) can be simplified further. To achieve this simplifica- 
tion we use a general expression for H,, ( T ) ,  which holds for 
arbitrary temperatures. To find it, we expand F, and A in 
Eqs. (21) and (22) in the eigenfunctions of the operator18 
(V - 2ieA)2. Making use of the orthogonality of these eigen- 
functions, we find an implicit expression for Hc2 ( T ) :  

N (8 eHe2vE2 - I  I=V.TC j d ~ ; [ ~  1 5-ior 1 '  - ti ImZ(iw)  ] Re o'. (27) 
(0 

To improve the convergence of the series in (27), we add and 
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subtract the right side of (27) with Hc2 = 0. As a result we 
find 

No (E) vE2 Re o f  
X I E-io' 1-61 Im Z ( i o )  

(28) 

Making use of the small ratio T c / y  and the rapid conver- 
gence of the series on the right side of (28), we can ignore the 
frequency dependence in the functions wl(w), H (iw) and N (z), 
setting w = 0 and z = 0, respectively. As a result, Eq. (28) 
becomes 

where $(x) is the psi function. 
Assuming vi = v: = const, and using (12), we find that 

Eq. (29) has the same form as the Maki-de Gennes equa- 
tion," but with a temperature Tc renormalized by defects 
[see (14)l: 

where I = vOr, and T = ( 2 r r  2n,N (0))-' is the scale time 
between collisions (the renormalization of the state density 
has been taken into account). 

In general, according to definition (20), ve depends on < 
with a scale value y, so that Hc, should be determined from 
Eq. (29). Taking the limits T + 0 and T -+ T, in (29), we 
fine, respectively, 

H,, ( 0 )  =-12@,T,  Im E ( i 0 )  

where Go is the quantum of flux. As can be seen from a 
comparison of (31) and (32), the energy dependence of v6 
leads to a violation of relation (3). 

3. CALCULATION OF H,(O) AND (H,/dT)Tc FOR A MODEL 
STATE DENSITY AND COMPARISON WITH THE GLAG 
THEORY 

Expressions (31) and (32) contain the quantity H (iO), 
which must be determined from Eq. (6). For a qualitative 
analysis of the concentration dependence of Hc2 we take 
No(< ) to be a Lorentzian peak with a half-width y and a ped- 
estal determined by the constant C: 

where No is the maximum value of the density, and p is the 
position of the Fermi level with respect to the peak. Substi- 
tuting (33) into Eq. (6), we find a quadratic equation for 8 ,  
whose solution is 

x=nndr2No/y  ( I S C ) ,  (34) 

where we have introduced the dimensionless defect concen- 
t ra t ion~,  whose value determines the extent of the change in 
T, (Ref. 5). 

Because of the deformation of the state density, the po- 
sition of the Fermi level, p, also depends on x. In the case of 
isoelectronic defects, in particular, radiation-induced de- 
fects, we should determine this position from the conserva- 
tion of the number of valence electrons5: 

where N (6 ) is found from Eqs. (12) and (13). Aleksandrov et 
al.19 give an explicit expression for N (< ) for a model state 
density of an ideal sample as in (33). In the particular case in 
which the Fermi level in the ideal sample (p,) coincides with 
the density peak (po = O), there is no shift of the peak:p = 0. 
We assume that the area of the constant-energy surface is 
independent of the energy: 

Ss=S=const. (36) 

This assumption is valid for A-15 in the one-dimensional 
approximation. We can use approximation (36) to derive an 
explicit energy dependence of the velocity: 

Substituting (37) into (32), and evaluating the integral, we 
find the concentration dependence of (dH,, /dT) ,= in ana- 
lytic form for p, = 0: 

a - [ C / ( C + I )  ] " { I - C X - [  ( I + c x ) ~ + ~ x ] ' ~ )  

X 2- [ ( C + I )  IC]'" {I-Cx-  [ ( I + c x ) ~ + ~ x ] ' ~ )  ' 
(38) 

FIG. 2. Nonlinear concentration dependence of (dH, / d T )  ,< for the pa- 
rameter value 7, = d2(1 + C ) ' / 2 4 4 N ;  yC. l-C = 0.4, po = 0 . 2 ~ ;  
2-C =0 .7 ,po=  1 . 5 ~ ; 3 - C = O . 7 , p ~ = O . 2 ~ .  
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FIG. 3. Nonlinear concentration dependence of He, (0) for the parameter 
value q2 = S2(1 + C)'exp[ - $(1/2) ] /12@0N~ yTco . 1-C = 0.2, 
po=0.2y;2-C =0 .4 ,po=0 .2y ;  3-C=O.4,p0= 1 . 5 ~ .  

Numerical calculations can be carried out for arbitrary p, 
from Eq. (35); expressions (31), (32), (34), and (37); and Eq. 
(14) for T,. Figure 2 shows the results of these calculations 
for certain values ofp, and C. The smearing of the fine struc- 
ture in the state density by the defects causes a nonlinear 
concentration dependence of H,, at x - 1. At certain values 
of po and C the concentration dependence of Hc2 (0) has a 
maximum, and (dHc2 /dT),c increases more slowly than in 
the case of a linear dependence (Figs. 2 and 3). 

It is important to note that, as follows from the GLAG 
theory in the dirty limit, the derivative does not depend on 
T, : 

(dH,, ldT) , - @ , l v o 2 ~ .  (39) 

Consequently, the nonlinear concentration dependence of 
this quantity can result only from a change in the electron 
spectrum. 

4. UPPER CRITICAL MAGNETIC FIELD IN NEUTRON- 
BOMBARDED Nb3Sn; CORRESPONDENCE BETWEEN THE 
EXPERIMENTAL AND THEORETICAL BEHAVIOR OF H, AS A 
FUNCTION OF THE CONCENTRATION 

The effect of bombardment by neutrons and charged 
particles on the upper critical field H,, of A-15 supercon- 
ductors was studied in Refs. 14, where the effect was mea- 
sured near T,. The experimental dose dependence 
(dH,, /dT),= ,< agrees qualitatively with the concentration 
dependence derived above (see Figs. 2 and 3) at high and 
intermediate integrated fluxes, at which the sample becomes 
dirty. At low fluxes the behavior of (dHc2 /dT),, ,< depends 

on the initial state of the sample. 
For a direct determination of the effect of neutrons on 

H,, (0), on (dHc2 /dT) near T = Tc and at T, , we bombarded 
ribbon samples of the superconductor Nb3Sn. The samples 
had a dumbbell pattern. The thickness of the Nb3Sn on the 
ribbon of niobium with an approximately 1.5% admixture of 
zirconium was 5 pm; the width of the neck in the dumbbell 
was -0.5 mm; the length of the dumbbell was 10 mm; and 
the thickness of the ribbon was - 50pm. The neutrons were 
provided by a reactor. The samples were placed in an alumi- 
num container, which was inserted into a water channel of 
the reactor. The temperature in the channel during the bom- 
bardment was 60 "C. The integrated flux of neutrons with 
En > 1 MeV through the sample was determined within 30% 
with the help of a threshold resistance detector. After bom- 
bardment, the containers were held at room temperature un- 
til their activity fell to an acceptable level for measurements. 
The measurements of Hc2(4.2 K) and (dH,,/dT) near 
T = Tc were carried out in a pulsed magnetic field. This field 
was produced in a Bitter solenoidz0: a one-piece helix of be- 
ryllium bronze with an inside diameter 35 mm and an out- 
side diameter 200 mm. The working part of the magnet was 
29 mm in diameter and - 100 mm long. The magnetic field 
pulse was a decaying sine half-wave with a length at the base - 6 ms and a maximum amplitude of 300 kOe. 

The measurements were carried out by a resistance 
method in a four-contact ac arrangement. The samples were 
oriented along the magnetic field. The upper critical mag- 
netic field was determined at a fixed sample temperature 
from the midpoint of the transition from the superconduct- 
ing state to the normal state, when the resistance reached 
0.5R0 (R, is the resistance of the sample in the normal state 
near Tc ). The amplitude of the magnetic field was chosen in 
the course of the measurements to arrange the transition of 
the sample to the normal state (the attainment of the resis- 
tance R,) at the crest of the pulse. In the measurements of 
Hc2 (4.2 K) the sample was immersed in liquid helium; in 
other cases the temperature was monitored within + 0.1 K. 
The statistical error in the determination of H,, (4.2 K) was 
1%, and that in the determination of (dH,, /dT),= ,< was 
5%. 

The experimental results are summarized in Table I. 
We see from this table that H,, (4.2 K)  varies nonmonotoni- 
cally with the dose, reaching a maximum at 2 1018 neutron/ 
cm2. The derivative ( - dH,, /dT) ,=  Tc increases nonlinear- 
ly with the dose, in agreement with the theoretical predic- 

TABLE I. 

@, n/cm2 

(Em > I MeV) 

0 18,2 -24f I 236*2 0,54 
1,3.1Ot7 18,l -28+1 238*2 0,47 
1,3.10t8 17,l -34&2 250*3 0,43 
1,2.10t8 12,6 

Note. The indicated errors are statistical; the possible systematic shift of all values of H ,  is no 
more than 3%. 
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tions. Since the relation Hc2 (4.2 K ) z H c 2  (0) holds within Moscow, 1976. 

lo%, the experimental ratio in the last column of this table 'H. B. Radousk~, T. Jarlborg, and G. S. K ~ ~ P P ,  Phys. Rev. B26, 1208- 
1222 (1982). 

shows that relation (3) does not hold over the entire dose ,L. K. Testardi, Russ. transl. in: Sverkhprovodyashchie soedineniya so 
interval. strukturoia-vol'frama (Superconducting Compounds with thea-Tung- 

We note in conclusion that the nonlinear concentration 
dependence of Hc2 is particularly noticeable in the region 

x - l l y ~ > l ,  (40) 

where the ladder approximation in the impurity ~cattering,~ 
used in the derivation of the original equations, (4), is not 
strictly valid (according to an estimate in Ref. 19, the value 
x -- 1 corresponds to a neutron flux of 1019 n/cm2). Physical- 
ly, this fact reflects a tendency of the electrons to localize in 
the random field of the defects. Consequently, at high fluxes 
the description of the nonlinear behavior of Hc, by these 
equations is more qualitative than quantitative. Another 
quantitative discrepancy is the shape of the structural fea- 
ture in the original state density, ~,,(l), which may be differ- 
ent from the Lorentzian shape in (33). The structure in No(l)  
may be complicated by a martensitic con~ersion,~ but a cor- 
responding analysis shows that the martensitic transition is 
suppressed by defects much more rapidly than a significant 
change in Tc occurs, and the shape of the state density is 
approximately Lorentzian at a sufficient defect concentra- 
tion. We also note that at very high fluxes, at which the 
uncertainty in the electron energy, 1/r, is on the order of the 
scale frequency of the phonons, the effects associated with 
the blurring of the density peak may be complicated by a 
direct effect of defects on the polaron band c~nt rac t ion .~  
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