
Theory of impurity states in a zero-gap semiconductor 
B. L. Gel'mont and A. L. ~ f r o s  

A. F. Zoffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad 
(Submitted 19 April 1984) 
Zh. Eksp. Teor. Fiz. 87, 1423-1431 (October 1984) 

It is shown that the electron-electron interaction plays an important role in the description of the 
state of a neutral acceptor in a zero-gap semiconductor. This interaction causes strong localiza- 
tion of the wave function of the lowest state of the acceptor and makes its energy discrete. All this 
is true if we ignore the existence of a positively charged acceptor. However, if the energy repre- 
senting the binding of an acceptor to two holes is negative, then the ground state of the system is a 
positive acceptor with an electron bound to it. The problem of the scattering of an electron by a 
neutral acceptor in the resonance and nonresonance regions is considered. It is shown that the line 
width describing the resonance scattering can be calculated in the one-electron approximation. 

1. INTRODUCTION 

In zero-gap semiconductors such as HgTe or a - Sn 
the states of impurities are within the continuous spectrum: 
acceptor states are in the conduction band and the donor 
states are in the valence band. Gel'mont and D'yakonovl 
considered acceptor states in the one-electron approxima- 
tion describing them by the eigenfunctions of the Luttinger 
Hamiltonian, which includes the potential of the interaction 
of a particle with a Coulomb center. In the case of a zero-gap 
semiconductor all these functions correspond to the contin- 
uous spectrum. However, since the mass of a hole m, is 
usually much greater than the mass of an electron me, we 
can say that these functions describe quasidiscrete levels ly- 
ing against the background of the conduction band and the 
width of these levels is smaller than the binding energy by the 
factor (me/mh )312.  The same logic leads to the conclusion 
that donor states are wide and, consequently, donors should 
be always ionized in a zero-gap semiconductor. This one- 
particle approximation, which ignores the exchange interac- 
tion, has made it possible to determine the positions of ac- 
ceptor levels and their widths. 

We shall show that in describing the ground state of an 
acceptor and the process of nonresonant scattering of an 
electron by a neutral acceptor we have to allow for the elec- 
tron-electron interaction. In the one-electron treatment the 
virtual transitions creating electron-hole pairs give rise to a 
finite level width, whereas an allowance for the electron- 
electron interaction makes the lowest state of a neutral ac- 
ceptor discrete, i.e., this level has no width at all at absolute 
zero, because it is the ground state of the whole system. This 
is justified if we ignore the possibility of formation of a positi- 
vely charged acceptor to which two holes are bound. The 
possibility of formation of such a complex has the effect that 
the ground state of the system is a positive acceptor to which 
an electron is bound. All this cannot be deduced from the 
one-electron Hamiltonian, because in the Luttinger case the 
electron states can be as low as we please. An excited state of 
a neutral acceptor has a finite width, but this is not due to a 
transition to the continuous spectrum, but due to a transi- 
tion to the ground state accompanied by the emission of an 
electron-hole pair. Therefore, for example, the line width in 
the case of optical excitation of a neutral acceptor should be 

different from the line width obtained in Ref. 1. We shall also 
assume that the presence of a continuous spectrum does not 
hinder the existence of a neutral donor. 

We shall show later that the state of a charged acceptor 
splits into a neutral acceptor and an electron, and the width 
of a charged-acceptor level corresponding to such decay cor- 
responds to the width obtained in Ref. 1 using the one-elec- 
tron approximation. 

The wave function describing the scattering of an elec- 
tron by a neutral acceptor, obtained below, is identical at 
large distances with the wave function found using the one- 
electron approximation provided the electron energy is close 
to the acceptor energy, so that the scattering is of resonant 
nature. We shall find the cross section for such scattering 
and its angular dependence. However, far from a resonance 
the one-electron approximation fails to describe the scatter- 
ing of an electron by a neutral acceptor because of the simul- 
taneous interaction of an electron with a negatively charged 
center and with a hole, so that an acceptor behaves as a neu- 
tral particle. We shall estimate the order of magnitude of the 
cross section for nonresonant scattering of an electron by a 
neutral acceptor. 

2. STATE OF A NEUTRAL ACCEPTOR 

An acceptor impurity in a semiconductor captures an 
electron which joins an inner orbit and the acceptor becomes 
negatively charged. A hole which then appears in the va- 
lence band may be localized by the acceptor potential or it 
may be in a delocalized state. In the former state an acceptor 
is neutral, whereas as in the latter it is charged. The Hamil- 
tonian of the system can be written down in the second quan- 
tization representation, in which it is convenient to allow for 
the Fermi occupancy: 

Here, $+(r) and $(r) are the creation and annihilation opera- 
tors for electrons, each of which represents a four-compo- 
nent vector, and H, is the Luttinger Hamiltonian 

where 6 = ifiV; yl and yare the Luttinger parameters; m, is 
the mass of a free electron; the components of the vector J, , 
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J,, , and J, represent a 4 x 4 matrix which describes an angu- 
lar momentum 3/2. The Hamiltonian is written down in the 
spherical approximation. The quantity V = e2/xr is the po- 
tential of a negatively charged acceptor which is at the origin 
of the coordinate system, x is the permittivity, and He, is the 
usual four-fermion Hamiltonian of the electron-electron in- 
teraction. 

The four-component spinorsx, ( p, p) which are the ei- 
genfunctions of the Hamiltonian (2) are characterized by a 
wave vectorp and a helicity p. The helicity p = + 1/2 cor- 
responds to an electron energy E, ( p )  =p2/2m,, where 
me = m,(y, + 2y)-', whereas thehelicityp = + 3/2corre- 
sponds to holes: 

E~ (p) =p2/2mh, mh=mO (2y-yi)-'. 

We shall now introduce the operators of the projection 
on electron and hole states: 

We can use them to introduce the creation and annihilation 
operators for electrons $(') + , $Ie) and holes $'h + , $(h : 

The new operators satisfy the following commutation rela- 
tionships: 

where (a,  b ) = ab + ba. 
In the new basis the Luttinger Hamiltonian becomes 

P ' p2 H,==S d3r [$le)+(r)-- he I$') (r) +I)(")+ ( ~ ) _ $ ~ ( r ) ]  ~ m h  . (8) 

We shall define the vacuum state 10) so that 

$ c e )  10>=0, $ ( h )  jO)=O. (9)  
In the occupation number representation the wave function 
of a neutral state of an acceptor is $(h ) + 10). Substituting 
Eqs. (5) and (6) into Eq. (I), we find that, without allowance 
for the electron-electron interaction, the Schrodinger equa- 
tion for this function contains the Hamiltonian 

HA= d3rq,(h)+ (r) [eh(p) -V(r) I$(') b". ( 10) 

The state of a hole at an acceptor is described by the total 
momentum F, the projection of this momentum M, the par- 
ity I, and an analog of the principal quantum number n. We 
shall denote the set of numbers FMI by v and represent the 
hole creation operator in the form 

Y n  

where b ,t, is the operator for the creation of a hole in a state 

vn related to the annihilation operator bvn by the usual 
expression 

{b,,+, b v , n , ) ~ 6 9 v , 6 7 L , , , ,  

where p,, (r) satisfies the equation 

Here, p' = ifid/dr' and Evn is the required energy of an ac- 
ceptor center. This energy is negative in the case of bound 
states. Substituting Eq. (1 1) into Eq. (lo), we obtain 

It should be noted that these states have no width associated 
with a transition to the continuous spectrum. 

We shall now turn to the electron-electron interaction. 
The states of energy lower than E g' = me e4/2fi2x2 are 
strongly renormalized in a zero-gap semiconductor because 
of creation of electron-hole pairs. We shall be interested only 
in large energies of the order of the binding energy of an 
acceptor mh e4/2ii2x2. At such energies the creation of pairs 
is not favored by the energy considerations. Renormaliza- 
tion of the static permittivity (electron screening) is strong 
only at distances large compared with a, = fi2x/me e2. The 
effective radius of an acceptor is of the order of ah  = fi2x/ 
mh e2 and if me (m, , it is considerably less than a,. There- 
fore, in studies of the ground state of a neutral acceptor there 
is no need to allow for the permittivity renormalization. Ex- 
cited states of a neutral acceptor have a finite width because 
of a transition to the ground state accompanied by the cre- 
ation of a pair. However, this width is small compared with 
the ground-state energy expressed in terms of the parameter 
me /mh . We shall not calculate this width. The operator He= 
is important in the acceptor problem only because it renor- 
malizes strongly the spectrum of  hole^.^,^ Moreover, the 
electron-electron interaction should be allowed for in a 
study of nonresonant scattering of electrons by a neutral ac- 
ceptor. 

We shall define a normal operator product 

N[$(ri) . . .$+ ( r ~ ) l  

as a sequence in which all the operators $Ie) + , $Ih ) + are on 
the left of $('I, $(h).  Applying Eqs. (5)-(7), we can easily show 
that 

I " )  
+ r r = +  r i b  I r - r  . (14) 

Application of the Wick theorem4 transforms He, to 

Equation (15) is derived assuming that the terms containing 
A I h )  (0) should be dropped from the neutrality conditions. 
The second term of Eq. (15) results in renormalization of 
both the hole and electron spectra. We must bear in mind 
that it contains integrals which diverge in the effective mass 
method. They should be normalized by altering the point 
from which energy is measured, i.e., by adding to the Hamil- 
tonian the following counter-term which commutes with the 
Hamiltonian: 
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where the integration with respect to q is limited to the first 
Brillouin zone. After this normalization the energies of elec- 
tron and hole excitations are measured from the pointp = 0 .  
When Eq. (16) is added to the second term of Eq. (15), both 
the electron and hole spectra become renormalized. In parti- 
cular, ~ ~ ( p )  in the Hamiltonian of Eq. (10) should be re- 
placed with 

E~ (p) =p2/2mh+3nZeZp/32~A. (17) 
Such renormalization of the hole spectrum was first ob- 
tained in Refs. 2 and 3. The process of renormalization of the 
electron spectrum is very similar, but in the range of energies 
of interest to us it is a small effect. 

We can expand formally in respect of the parameter 
me /mh provided we assume that I $('I I g I $(h ) 1 .  In fact, aver- 
aging over a quantity containing $(') gives rise to an electron 
density of states containing m:". Therefore, the main term 
in the normal product of Eq. (15) contains only the operators 
$(h ) and $(h ) + . However, such a term gives zero result when 
it is applied to the neutral acceptor function. The other terms 
contain $('I and $('I+ and we shall ignore them. 

The ground state of an acceptor corresponds to the mo- 
mentum 3/2.  The wave function of this state po(r) can be 
represented in the form5 

1 * 
(4'' (r) = ----- 

( 9 ~ ) ' ' ~  
d3qeiq'l(q) A(h) (q) X M .  

The function f (q) depends only on the modulus of q, andx, 
is the eigenfunction of the momentum projection operator 
J,xM = Mx,. The ground state is quadruply degenerate in 
respect ofM. The function f (q) and the energy Eo are given by 
the equation 

which is obtained on substitution of Eqs. (17) and (18) in Eq. 
(12). This equation was first obtained and solved by Gel- 
'monte5 A variational calculation gives Eo = - 0.085mh e4/ 
x2#. 

The conclusion that a neutral acceptor represents the 
ground state of a system is valid only if we ignore the exis- 
tence of a positively charged acceptor, i.e., an acceptor 
which binds two holes. If a state of this kind does exist, then a 
neutral acceptor may decay into a positive acceptor and an 
electron. The ground state of the system is then represented 
by a positive acceptor and the associated electron. If the elec- 
tron mass is very small, a positive acceptor can be regarded 
as a point nucleus. If the acceptor concentration is finite, 
then an increase in this concentration causes the electron 
states to overlap so that a Fermi occupancy of the conduc- 
tion band is established. The number of electrons is equal to 
the number of acceptors. However, as soon as the Fermi 
energy exceeds the binding energy of a positive acceptor, the 
formation of such acceptors and, consequently, an increase 

in the acceptor concentration becomes undesirable and the 
state of a neutral stabilizes. Unfortunately, the binding ener- 
gy of a positive acceptor in a complex energy band is not yet 
known. If we assume, by analogy with a negative hydrogen 
ion, that it is O.lIEol, then the effects discussed here can 
hardly be important under modern experimental conditions. 
For this reason we shall ignore the existence of a positive 
acceptor and assume that the ground state is represented by 
a neutral acceptor. 

It should be noted that without an allowance for the 
electron-electron interaction the lowest state of a neutral ac- 
ceptor has a finite width even if we ignore the possibility of a 
positively charged acceptor. This finite width appears be- 
cause of creation of a pair: a second hole with an energy Eo 
and a different value of M, bound to the acceptor, and an 
electron of energy IEoI. This is exactly the origin of the width 
of one-electron solutions of the Luttinger Hamiltonian. In 
fact, this width exists only because of the possibility of the 
positive acceptor and it is of different order of magnitude. 

3. RESONANT SCATTERING OF ELECTRONS BY NEUTRAL 
ACCEPTORS 

If the positive energy of a free electron is close to the 
binding energy of an acceptor I Eo 1 ,  the system formed by an 
electron and a neutral acceptor has an energy close to the 
energy of the vacuum state, which we shall call the state of a 
charged acceptor. The terms of the Hamiltonian ( 1 )  describ- 
ing creation of electron-hole pairs provide the coupling 
between these states. It therefore follows that we can expect 
processes resulting in decay of a charged acceptor into an 
electron and a neutral acceptor or in resonant scattering of 
an electron by a neutral acceptor. 

The main term of the Hamiltonian ( 1 )  relating the states 
in resonance is 

J d3rV (r) [I+("+ (r) $(*Ii (r) +$"' (r) $"' (r) I .  (20) 

We shall expand the operator $(')+ in terms of the wave 
functions of a free electron cp!)(r,~) in the form 

I$")+ (r) = J &av+ (E)  piei'  (r, E )  , (21) 

where a,f ( E )  is the electron creation operator in a state Y with 
an energy E ,  and 

The quantity I, assumes the value F - 3/2 ,  F + 1/2 for one 
parity I and the value F - 1/2, F + 3/2 for the other pari- 
ties; p = (2me E)"'; Y,, are spherical functions; j ,  + ,,, are 
Bessel functions; X, are the eigenvectors of the operator J, . 
The 3j Wigner symbols are used in the expansion. Equation 
(22) can be derived using Eqs. (2.2), (2.6), (2.7), and (2.12) 
from Ref. 6. The functions (22) are normalized by the condi- 
tion 

d3rp:"*(r, E )  CPY' (r, E') = b r , b  (8-E') . (23) 
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The Hamiltonian H, describing the resonance scattering 
consists of the neutral acceptor Hamiltonian (1 3), the Hamil- 
tonian of free electrons [representing the first term in Eq. 
(8)], and the binding Hamiltonian (20). Using Eqs. (1 1) and 
(21) we obtain 

where 

The eigenfunction @, of the Hamiltonian of Eq. (24) repre- 
sents a superposition of resonant states, and the quantities F, 
M, and I are-as before-good quantum numbers: 

We find from the equation H, @ = E@ that 

n 

We shall show later that the width of a resonance is less than 
the separation between the acceptor levels. Therefore, we 
can assume that an electron interacts only with one level and 
we shall assume that this is the ground state with the energy 
E,. The corresponding matrix element Vvn will be denoted 
by V,,. Its energy dependence can be ignored. 

The system of equations (27) can be solved by a method 
suggested by Fano7 for the problem of self-detachment of an 
electron when it is scattered by a negative ion. The results are 
of the form: 

sin A 
Co(&)=  (E-E0-&) -COS A6 (E-Eo-s), 

A,=sin A/nlro.  (29) 

Here, A is the electron scattering phase found from the 
asymptotic behavior of the wave function at large distances 
from an acceptor. This phase is 

A=-arctg ( I ' /2E) ,  (30) 

where 
I'=Znl V,12. (31) 

The formula (30) describes resonant scattering of an electron 
by a neutral acceptor. A resonance appears when the energy 
of the incident electron is equal to the binding energy of the 
acceptor E = E + Eo = 0 [we are ignoring here a slight shift 
of the acceptor level as a result of the system of equations 
(27)l. Substituting Eq. (30) into Eq. (29), we obtain 

We can see from Eqs. (30) and (32) that the quantity r repre- 
sents the width of the resonant scattering, whereas the quan- 
tity fi/T is the lifetime of a charged acceptor which decays 
into an electron and a neutral acceptor. 

Since we are considering the interaction with the 
ground state of an acceptor, Eq. (30) corresponds to the 
phase of a partial wave with the momentum F = 3/2 and the 
parity I = 1. All other phases vanish in this approximation. 
An expression for the scattering amplitude expressed in 
terms of phases is obtained in Ref. 6 for a zero-gap semicon- 
ductor. In the case under discussion we have 

1 
f,,, I -. (e' '-1) e'"'lZ ( i i -4k~p '  cos 0)  " (I-12pp' cos O ) ,  

2"'zip 
(33) 

where f,,, is the amplitude of the scattering of an electron 
from a state with a helicity p to a state with a helicity p', 
whereas q, and 13 are the scattering angles. The integral scat- 
tering cross section is 

The value of r for an acceptor in its ground state can be 
expressed in terms of the function f (p)  which satisfies Eq. 
(19). This can be done by substituting Eq. (18) into Eqs. (22) 
and (25) and by assuming that F = 3/2 and I = 1. Since the 
electron wavelength is considerably greater than the radius 
of an acceptor state, it follows that we can simplify the func- 
tion q, t )(r ,~)  by substituting r = 0. This gives 

where Y includes F = 3/2, I = 1, as well as the number M 
which is the same as for X, . Using Eq. (19), we obtain 

The variational function f obtained in Ref. 5 yields 

I'l2 1 Eoj =4 (m,lmh)"l'. (37) 

We shall show in the Appendix that quasidiscrete one- 
electron states representing a solution of the Luttinger Ha- 
miltonian with a Coulomb center have a width r which is 
identical with Eq. (36). 

4. NONRESONANT SCATTERING OF ELECTRONS BY A 
NEUTRAL ACCEPTORS 

When nonresonant scattering is considered, it is neces- 
sary to include in the Hamiltonian the term $('I+ V$Ie) 
which describes the interaction of an electron with a charged 
acceptor, the term 

describing the direct Coulomb interaction of an electron 
with a hole, and the term 

describing the exchange interaction. The operators $'h' 

should be substituted in the form of an expansion given by 
Eq. (1 1) and an allowance should be made for the fact that an 
acceptor is in the ground state. Then, if the electron energy is 
not affected by the scattering, Eq. (1 1) consists only of the 
sum over M. 
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As a rough approximation the effective potential acting 
on an electron is equivalent to a potential well of size of the 
acceptor radius a, and of depth of the order of the binding 
energy IEo/. We shall confine ourselves to an estimate of the 
cross section for the scattering of slow electrons, which is 
characterized by pa, fi-'(1. This estimate can be obtained 
within the framework of the Born approximation or from the 
results of Ref. 6. We thus obtain 

o=cah2 (m,/mh) ', (38) 

where c is a numerical factor which requires detailed calcu- 
lation. 

We are grateful to M. I. D'yakonov and V. I. Perel' for 
very valuable discussions of the topics dealt with above. 

APPENDIX 

We shall consider the problem of determination of the 
width of resonance levels of an acceptor in the one-electron 
approximation. The Schrodinger equation for two energy 
bands differing in respect of the sign of the mass is 

When the mass ratio is me /m, ( 1, the width of a resonance 
level can be explained in terms of the wave function of a hole 
at an acceptor, obtained in the limit me /m, -0. We shall do 
this by representing the wave function in the form 

g = g ( h ) + g ( e i  g(h)=A(h)g rg(e), , \ (r)g,  (A.2) 

The equations for g', and gl') are 
ez 

( e h  (p) tE) g(hi -A(h)  ( P I _  g=o, 
xr 

(-4.3) 

e2 
g'e)+A'e' ( p )  - g=O. 

r.r 

If m,/m, < 1, we have g(') (g(,). In the zeroth order with 
respect to me /m, , the functiongIh ) is identical with the func- 
tion cp"' which was determined earlier and which can be 
found from Eq. (12) (in the same way as the resonance level 

position). The functiongl') can be found from Eq. (A.4). Sub- 
stituting it in Eq. (A.3), we can deduce the width from the 
imaginary part of the equation: 

( '4 .5 )  
According to Eq. (1 8), the function cp"' can be expressed in 
terms of the function f (g), which satisfies Eq. (19). In this way 
we obtain 

In the integral with Eq. (A.6), we have p,-p,-fi/a, >p- 
-(me I E ~ ~ ) " ~ .  Ignoringp compared withp, orp,, we obtain 

(A.7) 
The integral in Eq. (A.7) is related to f (0) by 

Substitution in Eq. (A.7) gives Eq. (36). 
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