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An investigation is reported of the influence of the dispersion of a phonon spectrum on the ground 
state and spin excitations of a charge density wave in the Peierls-Frohlich model. States with split 
electron energy bands, of the kind predicted by the theory of many quasi-one-dimensional com- 
pounds (for example TaS,), are considered as a problem of behavior of a system of this kind in a 
strong magnetic field. It is shown that these states form a soliton lattice with a half-filled central 
energy band. The dispersion of the phonon spectrum causes the soliton profile to deviate from the 
pure amplitude type and gives rise to a fractional local electric charge. 

I. INTRODUCTION acts in the same way as a magnetic field and the quantity 

It is known that the states in a Peierls insulator, which 
appear as a result of formation of charge density waves in 
quasione-dimensional substances, have many remarkable 
properties (for reviews see Refs. 1 and 2). Electron-hole exci- 
tations near the edges of the spectrum at + A  are unstable 
and can be observed only in the optical absorption effects 
and in some transport phenomena. Stationary elementary 
excitations are solitons with anomalous quantum numbers. 
In the case of a doubly commensurate charge density wave 
formed in a metal with p = 1 electrons per atom there are 
zero-spin solitons with a charge f e and uncharged solitons 
with a spin 1/2. I f p Z  1, the pattern of elementary excita- 
tions differs even more from the situation encountered in 
conventional semi-conductors. In this case there are no 
charge excitations with a gap and charge is transported only 
by the collective motion of charge density waves (Frohlich 
conduction) and spin excitations are, as before, amplitude 
solitons with an energy W, = 24 /n and zero charge.,s4 
These predictions are supported by the experimental results 
obtained for materials such as TaS, (Ref. 5). Compounds of 
this type are characterized byp = 1/2 and the energy of non- 
stationary electron excitations is A  =: 800 K when the effec- 
tive mass ism* = O.O1me, whereas the energy of spin excita- 
tions6 is A  ' ~ 6 4 0  K is qualitative agreement with the 
formula W, = 24 /n. The mass of a soliton is estimated to be 
m, z 5m*, which can be explained by the theoretical rela- 
tionship4 

m*/ms=La2/4A2, 

where .Z is the frequency of photons with a wave vector 2kF 
and A is the dimensionless form of the electron-phonon in- 
teraction constant. It is important to note that at low tem- 
peratures the activation energy of the longitudinal conduc- 
tivity E, ~ 2 0 0  K is much less than the half-width of the 
band gap A z 800 K, which can be explained by the small 
activation of the Frijlich conduction process. 

However, the interest in amplitude solitons is not sim- 
ply confined to the problem of spin excitations. As pointed 
out briefly in Ref. 7, objects equivalent to amplitude spin 
solitons can appear in any system which exhibits weak split- 
ting of the electron energy bands. In this case the splitting 

m = n, - n,, where n, and n, are the electron densities in the 
split bands, is equivalent to the spin moment. This formula- 
tion of the problem is particularly appropriate to systems of 
the MX, type (where M = Nb, Ta; X = S, Se) that exhibit 
periodically modulated charge density waves (NbSe,) or 
coexisting charge density waves with similar periods (TaS,). 
The splitting of the electron energy bands appears either be- 
cause of the inequivalence of the two types of conducting 
chains. In the latter case we can also expect a periodically 
modulated charge density wave formed by domain walls rep- 
resenting coalescence of spin  soliton^.^.^ 

It is therefore clear that there are several physical situa- 
tions in which an important role is played by the existence 
either of a low-density gas or of a periodic structure of ob- 
jects equivalent to amplitude spin solitons in the one-dimen- 
sional Peierls-Frohlich model. Clearly, the physical proper- 
ties of such systems depend strongly on whether solitons 
have an electric charge q,. It was shown first in Ref. 3 that 
the spin soliton charge is zero in the simple Peierls-Frohlich 
model applicable to systems withp far from the integers 0, 1, 
or 2. However, it was shown in Ref. 7 that the appearance of 
a small charge is possible because of the influence of the 
doubly commensurate point. As the value ofp  moves away 
from unity, the charge decreases as follows 

qaWe exp (--2/h)l(p-1)2. 

Another source of the soliton charge may be the phonon 
dispersion, as shown qualitatively in Ref. 4. 

We shall investigate the influence of the phonon disper- 
sion on the form of a periodic structure of spin solitons and of 
isolated solitons, and we shall find the magnitude and distri- 
bution of the electric charge due to the dispersion. In parti- 
cular, we shall show that in the presence of the phonon dis- 
persion a soliton is not purely of the amplitude type, i.e., the 
change in the phase of a charge density wave due to the pas- 
sage of a soliton differs from n by an amount 

6q~=8ncA/o g2 ,  o (2kF+k) =a+ ck, 

where c is the velocity of sound corresponding to q = 2kF; 
iS = w(2kF); vF is the Fermi velocity . An electron then ac- 
quires a charge related to the phase by4 q, = e6p /n. 
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By way of example, we shall consider a system consist- 
ing of two inequivalent conducting chains. The energy func- 
tional of the system is 

W=W ( A , )  + W ( A z ) + A ( A i A , ' + A z * A i ) ,  

where W(Ai) are the energies of the individual chains given 
by Eq. (2) below; the last term allows for the interaction 
between the chains. We can readily show that in the case of a 
strong coupling between the chains, corresponding to 
rvFA>l, the deformations A, and A, are related by 
A, =. - A,. Therefore, a system of this kind is equivalent to a 
single chain subjected to a magnetic field, which is discussed 
below. 

We shall now investigate a model describing the case of 
a strong coupling between the chains when the deformations 
are linked strictly by A ,(x)= - A2(x)=A (x). We shall con- 
sider this limit in terms of the Peierls-Frohlich problem in a 
magnetic field. 

2. EXACT SOLUTION OF THE PERIODIC PROBLEM 

We shall consider a system of noninteracting electrons 
in a deformable chain. The wave functions of the electrons 
and the lattice deformation can be described by 

9 ( x )  ( x )  exp ( i p F x )  +Q2 exp ( - i p F x ) ,  

p ( x )  =g-' [ A  ( x )  exp ( 2 ipFx)  +A* ( x )  exp ( - 2 i p , x ) ] ,  
(1) 

where p, is the Fermi momentum and g is the electron- 
phonon interaction constant (A = g2/vF). 

Any stationary state of the system can be found from 
the condition for an extremum of the energy functional of 
the system W [A (x), $(x)J . If we assume that the electron 
spectrum near the Fermi surface is linear, we can find by 
analogy with Ref. 4 that 

+ C - i v .  (rpi*rp1-~2.$2) + A  ( x )  r p i * $ 2 + ~ * p 2 . y l  }. (2) 
B-=P 

wherep is the chemical potential and the prime denotes dif- 
ferentiation with respect of x. The first two terms in Eq. (2) 
represent the lattice deformation energy written down al- 
lowing for the phonon dispersion near 2pF. 

Variation of Eq. (2) with respect to $, and $, gives the 
following equations for the eigenfunctions $, and $, corre- 
sponding to the energy E: 

Variation of Eq. (2) with respect to A (x) and A *(x) gives the 
matching conditions 

It readily follows from Eq. (3) that 

J ( E ) = I $ , ( x ) l 2 - I * ( x )  l 2  
is independent ofx. Eliminating &(x) from Eq. (3), we obtain 
the following equation for $,(x): 

We shall describe the quasimomentum p for the function 
$,(XI by 

where L is the length of the system. In the vicinity ofE+co, 
Eq. (6) gives the following expansion for the quasimomen- 
tump in powers of the energy E: 

where 

1 I A l Z  i 
Ii = - J- dx, z~=- - (A'A1-A"A)  dx. 

L . 2  8 L  

It should be noted that the lattice deformation energy in Eq. 
(2) can be written in the form 

We shall need later also a different form of Eq. (5). Making 
the substitution $ =A '"(x) (x), we find from Eq. (5) that 

For a system of great length L we can, without loss of genera- 
lity, introduce periodic boundary conditions for the function 
A (x). Then, a solution of Eq. (10) can be sought in the form of 
a Bloch function: 

A ( x + L )  = A  ( x ) ,  cp ( x + L )  = e i p L q  ( x )  , cp ( 0 )  =I. 

Following the method of finite-band potentials (see, for 
example, Ref. lo), we can obtain the expression for the func- 
tion p(x) and for the variational derivative of the quasimo- 
mentum Sp/SA (x). The function p(x) is a single-valued mer- 
omorphic function on a Riemann surface 

where Ei are the terminal points of the spectrum, so that the 
allowed bands correspond to the intervals ( - CO, El), (E,, 
E3), . . . , (E2n + co ). We shall use q, + and q,- to denote the 
values of the function q,(x) on the upper and lower sheets of 
the Riemann surface. We shall define the functions x + - by 
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lo 

The following Riccati equation forx , follows from Eq. (1 1): 

where the function q = q(x) is defined by Eq. (10a). We can 
readily showlo that the Wronskian of Eq. (10) has the follow- 
ing form for the allowed bands: 

where the functionx, is found from the relationship 

and the functions yi (x) satisfy the equations 

Using Eqs. (13) and (14), we obtain the following expression 
for the wave function: 

Equations (10) and (16) yield the trace identities: 

Equations (16) and (17) were obtained earlier by Its1' in 
connection with the solution of the nonlinear Schrodinger 
equation 

i A t +  A , , -2 )A12A=0.  (18) 

It is found that all the finite-band solutions A (x,t ) of Eq. (1 8) 
are also s$utions of the equations for the eigenvalues of the 
operator H of Eq. (3) for an arbitrary value of the parameter 
t. A general solutiond (x,t ) of Eq. ( 18) is found in Ref. 1 1 for a 
spectrum with an arbitrary number of the allowed bands and 
we shall use this solution later. We note that the relationship 
between the solution of the nonlinear Schrodinger equation 
(18) and the problem of finding an extremum of the func- 
tional of the type (2) was first pointed out by Fateev12 in a 
study of the Gross-Neveu chiral model. 

We shall now write down the equation for the variation- 

al derivative of the quasimomentump(E ) with respect to the 
potential A (x) for a fixed period T: 

1 
6 p = - -  

k 

T 2R'" ( E )  (19) 
Xa j-0 

We can obtaine Eq. (18) in the conventional wave, such as 
that described in Ref. 10. 

Comparing Eqs. (1 8) and (19), we find the relationship 
between the coefficients 4 and 81, : 

Next, using Eq. (19) we can write the condition for an extre- 
mum of the functional (2) in the form 

Equating to zero the coefficients for independent variations 
SI,, we obtain the following system of algebraic equations: 

The variation of Eq. (2 1) is incomplete, because it is assumed 
in Eq. (19) that the numbers of states mj are constant for each 
of the n + 1 allowed bands. It is shown in Refs. 13 and 14 
that the variation of the parameters mj leads to a condition 
that the chemical potential should always lie within an al- 
lowed band. 

A method similar to that described in Ref. 13 makes it 
easy to show that the system of equations (22a) is solvable 
only if n(3. Moreover, we can show that, in the case of low 
values of B, Eq. (22b) cannot be solved for n = 2 or 3. There- 
fore, at low values of B the only possible case is n = 1 (we 
shall give later the criterion of smallness of B ). If n = 1, it 
readily follows from Eqs. (lo), (15), and (17) that the lattice 
deformation and the electron spectrum are described by 
L\ (x) =peisx, p=' / ,  ( E 2 - E l ) ,  s=El+E2, p=l/,s+R'"(E). 

(23) 
The formulas in Eq. (23) can be used to calculate quite easily 
the total energy of the system. The levels E, and E, are found 
by minimization of the energy allowing for the fact that the 
total number of particles in a system is conserved. We can 
easily show that if B is small, then the total energy of the 
system has a minimum at s  = 0. The derivative d  W / d s  is 
given by 

We can use Eq. (24) to determinec,,, which is the maximum 
value of the velocity of sound below which the system is in 
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the ground state with a homogeneous charge density wave. 
We then find that 

so that 

It follows from Eq. (25) that in systems with A > 1 we always 
have c < c,,, . If A - 1, our continuum model ceases to be 
valid. 

We have thus established that in the ground state at 
T = 0 the deformation A (x) is homogeneous: A (x) = const, 
whereas the electron spectrum is E =p2 + A 2. Using the 
matching condition in the form of Eq. (4a) and (4b), we readi- 
ly obtain the following expression for the charge distribution 
in a chain4: 

P ( x ) - p = - ' / 2 ~ ( ~ ( ~ 1 2 - ( 1 ~ 1 2 ) ) .  (26) 

In the case under consideration we find that p(x) = p. 
We shall now tackle the problem of the ground state of a 

system with split bands formulated in the Introduction. As 
demonstrated above, this problem can be described most 
naturally in terms of the Peierls-Frohlich model7 in a mag- 
netic field h. The state of the system can be studied most 
conveniently for a fixed "spin concentration" m. As usual, 
the value of m is defined in terms of the magnetic field: 
h = aw/am,  where W = W(m) is the ground-state energy. 
We recall that in the problem oftwo types of chain the initial 
splitting of the spectrum equivalent to h is specified. 

In contrast to the m = 0 case discussed above, we now 
have two Fermi levels of the system:p,, = p h, so that the 
bands located in the range E < p ,  are doubly filled, whereas 
those lying in the range p+ < E < p ,  are singly filled. The 
self-consistency conditions of the system in question are still 
given by Eq. (22), expect that the integral over the singly 
filled energy bands should have the coefficient 1/2 in front of 
it. We can show that in this case the system (22) is solvable 
only for n = 2 and the equations in this system become 

Then, the energy band ( - EF, E,) is doubly filled, whereas 
the band (E2, E,) is singly filled (see Fig. 1 below). Another 
equation is obtained by equating the number of states in the 
(E,, E,) band to the spin concentration m: 

FIG. 1. 

The fourth self-consistency condition reflects conservation 
of the total particle concentration n = n, + n, when the dif- 
ference m = n, - n, is established: 

p (E , )  =-'lznm. (30) 

We recall that the differential dp is of the form 

EZ+ME +N 
d p  = dE, (31) 

R'" ( E )  

where the coefficients M and N are found from the condi- 
tions 

We shall also give an explicit expression for the field 
A (x) consisting of the general formula form Eq. (1 1) when 
n = 2  

where 2945 )=Q2(f 19) is the 29 Jacobi function 

, [ (EL-E,) (Es-Eij I"' 
%=-L 

2K ( k )  3 

and F, K, and 17 are elliptic integrals. 
Using the expression foir the wave function $, of Eq. 

(1 6), we obtain the following general expression for the qua- 
simomentum: 

Substituting Eq. (36) into Eq. (30) and applying Eq. (34), we 
obtain the equivalent condition: 

4nri+s-2Kl=-n. (37) 

3. PROPERTIES OF AN ISOLATED SOLITON 

We shall now consider the case of a low concentration 
m. It follows from Eqs. (27)-(30) and (37) that 
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n-4 arctg Ao+Eo =-nB (Ao2-Eo2)  'Ir. 
(Ao2-Eo2) '" 

Equation (37) describes the position of a local level E,. If B is 
small, it follows from Eq. (37) that 

Ilo=nBA,2/4>0. (40) 

In the limit m-0, i.e., when E,-+E,+E, the general 
expression for the deformation (33) gives the isolated soliton 
profile: 

A ( x )  =-e'a1Z{Eo-i(A,2-Eo2)'h th[ ( A 0 2 - E 0 2 ) ' 1 1 ~ ] ) ,  (41) 

I A ( x )  1 '=A:- (AO2-EO2) /ch2[  (AO2-Eo2)  (42) 

where 
a=4 arcsin[ (~,+ E , )  / 2 A 0 ]  '"an. (424 

It is clear from Eq. (39) that A (x) varies along a chord of a 
circle of radius A,; we then have 

A (x) +Aor x - t - m ;  A (x) +Aoeia, x - t m .  

Figure 2 shows the complete path representing variation of 
the complex function A (x) in the case of a lattice of relatively 
few solitons; here, 8 = P - a/2. 

We shall now find the charge distribution in a soliton. 
Substituting Eq. (40) into Eq. (26), we find from Eq. (39) that 

B A,'-Eo" 
p (x) -p=e - 

2 ch2[ (A0z-E02)'h~I ' 

The soliton charge is 

q,=eB (Aa2-Eo2)  'Iz. 

Equations (42a) and (44) and the condition (39) yield an equi- 
valent expression q, = e(a - P)/P, which corresponds to a 
general formula for a chord soliton of Ref. 4. 

In the approximation of a strong coupling of the elec- 
tron and phonon spectra we can use the results of Ref. 13 and 
obtain from Eq. (42) the following approximate expression: 

8 sin (n 1 p- 1 1 / 2 )  e-'" 
q.=e- e-'Ii< 1 p - I  1 <i. 

nzeZ coss(nlp-11/2) Alp-11 ' 
(45) 

In the limit p+l, Eq. (45) gives q a e - /A. 
We shall compare the charge q, due to the phonon dis- 

persion with the residual charge qf of a spin soliton due to 
the influence of the umklapp processes,' i.e., we shall com- 
pare the former charge width 

FIG. 2. 

It follows from Eqs. (45) and (46) that in the range 
(p - 1 I >A ' I 2  we have q, > qf, i.e., the soliton charge is 
mainly due to the phonon dispersion near f 2pF In the limit 
p 4 ,  Eq. (45) becomes 

Following Ref. 4, we can obtain the soliton energy as a func- 
tion of the angle 8: 

w . = A { ( ~ - F ) c o s e + -  sin n " } +BA' (+ - 1 sin 2 0 )  

where 8 = P - a/2 is governed by the self-consistency con- 
dition (37), equivalent to the condition for a minimum of the 
function W, (8 ). 

4. CONCLUSIONS 

There are quasione-dimensional compounds (for exam- 
ple, those with the formula MX,) in which charge density 
waves with similar vectors propagate along chains. This situ- 
ation occurs if the Fermi surface can be divided into planar 
symmetric regions with different wave vectors. The follow- 
ing are examples: a) a system of two inequivalent chains; b) a 
system with a smooth dependence of the spectrum on k,, 
where k, is the wave vector perpendicular to the chain direc- 
t i o n ~ . ~  At low temperatures we can expect interference 
between similar charge density waves to produce modulated 
superstructures (soliton lattices). When the coupling 
between the chains is weak, the charge density waves are 
subject to a weak modulation of the 2~-phase soliton type; 
no significant changes take place in the electron spectrum. 
When the coupling is strong, modulation of the charge den- 
sity waves produces a lattice of solitons similar to amplitude 
solitons and it alters both electronic and optical properties. 
The problem which then arises is readily formulated and 
solved on the basis of Peierls theory with a magnetic field. 

It is known7 that amplitude solitons of the type of inter- 
est to us are characterized by a half-filled local level in the 
middle of the band gap and carry no electric charge. We 
solved exactly the problem of a soliton lattice allowing for 
the dispersion of the phonon spectrum near 2pF. We found 
that the dispersion produces the following effects: 1) a 
change in the topological nature of a soliton so that a change 
in the phase A ( x )  at one soliton differs from P; 2) appearance 
of a fractional electric charge q, a (A - 'e - )e; 3) a shift of 
the local level out of the middle of the band gap. All these 
effects are characterized by a smallness order Ao/EF, but in 
partice they need not be small if A, - EF. 

We shall conclude by noting that a fractional electric 
charge of solitons, discussed frequently in the literature, may 
be exhibited by various systems manifesting the Peierls effect 
(for a review see Ref. 1). In systems with a fractional occu- 
pancy of the electron energy bands p#O, 1, and 2, a frac- 
tional charge is either due to the dispersion of the phonon 
spectrum or due to second-order umklapp processes.' These 
two effects are discussed above and they may be comparable, 
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but they are characterized by different dependences onp. A 
special case of solitons with fractional charges is encoun- 
tered in the orthogonal case of a combined Peierls insulator 
which is known as the (AB ), polymer case. 

The authors are grateful to I. E. Dzyaloshinski: for 
valuable discussions. 
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