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A theory of the resonant tunneling of electrons is constructed with allowance for the vibrational 
degrees of freedom of the scattering centers. It is shown that under the conditions of greatest 
physical interest the tunneling occurs through the formation and destruction of a long-lived 
electron-vibrational complex and can be accompanied by interesting multiquantum vibrational 
transitions. For the vibrational subsystem of the complex an equation of motion is found which 
generalizes the Born-Oppenheimer method to the case of electron resonances of the potential 
type. The limits of applicability are determined for the model of complex terms and the fixed- 
scatterers approximation. It is established that absolute transparency of barriers containing im- 
purities is also possible for inelastic, including multiquantum, tunneling. The theory is used to 
evaluate the tunnel conductance of metal-insulator-metal junctions and the energy distributions 
of the field-emission electrons from metals containing absorbed atoms of light elements. 

1. INTRODUCTION 

Resonant tunneling, in particular the fact that under 
certain conditions particles can pass unimpeded through po- 
tential barriers of arbitrarily great height and width but hav- 
ing a depression in the central part with a quasistationary 
level E, = E0 - i r ,  is one of the clearest manifestations of 
quantum effects. As we know, the explanation of this effect 
draws upon many physical phenomena-tunneling transi- 
tions of electrons in solids,' field emission of electrons by 
metals containing adsorbed  particle^,^ etc. 

In resonant tunneling, particles with energies E close to 
EO(IE - EO1 Sr)aretrappedforalongtimet- l/Tbylocal 
centers (e = m = h = 1). These particles accumulate in the 
below-barrier region, and their subsequent breakaway from 
the centers gives rise to characteristic features (resonance 
peaks) in the tunneling spectra. 

The resonance features in the tunneling spectra are ob- 
served in measurements of the conductance of metal-insula- 
tor-metal (or metal-semiconductor-metal) and 
in measurements of the energy distributions of field-emis- 
sion  electron^.^,'^^ 

There is by now a broad literature (see, e.g., Refs. 9-16) 
on the theory of resonant tunneling of electrons. However, in 
all the studies known to the author the resonant tunneling 
has been treated only in the approximation of fixed scat- 
terers. Such an approach is justified if the characteristic time 
spent by the electron at the center is sufficiently small, i.e., if, 
during the lifetime of the intermediate quasistationary state, 
the center which has trapped the electron and which is con- 
sequently moving in a new field of forces does not have time 
to move from its initial position. For this we must have'' 

where w,  is the characteristic frequency of the local vibra- 
tions of the center. 

Condition (1) obviously does not hold in the case of 
rather wide (or high) potential barriers, i.e., when the effects 
of resonant tunneling should be most clearly manifested. 

In systems with metal-insulator-metal (MIM) junctions 
condition (1) fails at insulator thicknesses d > dm,, where 

dmi,- I Eo I -'Iz ln ( 1 E0 1 lo,). 

Under typical experimental conditions (E '-4 eV, wu -0.1- 
0.01 eV) one has dm;, -4-5A, whereas for systems of practi- 
cal interest d 2 10 A (Ref. 1). 

Condition (1) may also fail in field-emission processes, 
where the role of the resonant-scattering centers for tunnel- 
ing electrons is played by adsorbed particles2 When light 
elements are adsorbed, r-0.1-0.7 eV (Ref. 2 )  and w ,  -0.1- 
0.3 eV (Ref. 17). 

For describing the resonant tunneling of electrons 
through wide potential barriers in which the intracenter 
electron-vibrational coupling is important it is necessary to 
go outside the framework of the fixed-scatterer approxima- 
tion. A solution to this problem is proposed in the present 
paper, where we shall develop a method which constitutes 
the adiabatic (in the small parameter w ,  /we, where we is the 
characteristic frequency of electronic transitions within the 
center) generalization of the pole approximation of Refs. 12- 
15. The method leads to an equation of motion for a center in 
a quasistationary electronic state which is coupled to the 
continuum by tunneling transitions. (We shall call such sys- 
tems electron-vibrational complexes, or EVCs). The deriva- 
tion of Eq. (15) solves the problem of generalizing the Born- 
Oppenheimer approximation to electron resonances of the 
potential type. Here it must be stressed that the solution 
obtained is of interest not only for the theory of resonant 
tunneling; states of the EVC type are also known in other 
physical systems. They are formed, for example, in the reso- 
nant scattering of slow electrons by molecules (the "shape" 
resonances of negative molecular  ion^'^.'^), in the interac- 
tion of molecules with electric fields and metal surfaces, etc. 
At the present time such systems are frequently described 
using the phenomenological model of complex terms,20 
which at first glance is the most natural generalization of the 
adiabatic approximation to the case of decaying states of the 
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electronic subsystem. With a suitable choice of parameters 
this model gives results consistent with the experimental 
data on the resonant scattering of slow electrons by mole- 
cules. However, up till now there has been no consistent jus- 
tification for such an approach, and the region of applicabi- 
lity of the model of complex terms remains unknown." The 
unfinished state of the present-day theory of electron poten- 
tial resonances is obvious from the lively discussion that has 
recently appeared in papers on the resonant scattering of 
electrons by rn~lecules .~~- '~ 

It is shown in the present paper that for describing 
EVCs one can introduce a hierarchy of adiabatic approxima- 
tions. The most general of these is the approximation of a 
nonlocal optical potential, which is applicable under the two 
relatively mild conditions 

O,BO,, ~ , > r .  
The optical potential, which allows for the influence of 

the decays of the electronic subsystem on the vibrational 
degrees of freedom of the EVC, is expressed in terms of the 
parameters of the vibrational subsystem of the center and the 
electronic interactions. By analyzing the resulting expres- 
sions one can obtain as limiting cases both the model of com- 
plex terms2' and the fixed-scatterer appro~imation.~-'~ Here 
it becomes clear that, in contrast to the prevailing view, the 
region of applicability of the model of complex terms de- 
pends not only on the energy parameters (we, w,, r ,  and E ) 
but also on the tunneling timer. For w, r 2 1 (this case corre- 
sponds to a long-lived state of the EVC) the model of com- 
plex terms does not apply. The applicability region of the 
fixed-scatterer approximation, in turn, is fcrnd to depend 
not only on the parameter w , / r  but also on the electron- 
vibrational interaction constant a. Here the situation is anal- 
ogous to that for the resonant scattering of slow electrons by 
molecules, considered earlier.26 

In the following sections it will be shown that in the 
cases of greatest practical interest, when a 2 1 and r 5 w, , 
the resonant tunneling of electrons should be accompanied 
by interesting multiquantum vibrational transitions of the 
centers. Another, rather general consequence of the theory 
developed here is the conclusion that absolute transparency 
of barriers containing impurities is also possible for inelastic, 
including multiquantum, tunneling. 

In this paper the theory of inelastic resonant tunneling 
is used to describe the features of the differential spectra 
measured in experiments on the tunneling of electrons in 
MIM  junction^^-^ and in experiments on the field emission 
of electrons by metals containing adsorbed atoms of light 
 element^.^.^ Analysis of the influence of the vibrational de- 
grees of freedom of the centers on the integrated tunnel cur- 
rents-in particular, analysis of temperature effects due to 
multiquantum transitions-is of independent interest and 
would appropriately be done separately. 

2. RESONANT TUNNELING WITH ALLOWANCE FOR THE 
VIBRATIONAL DEGREES OF FREEDOM OF BELOW- 
BARRIER SCATTERING CENTERS (THE BORN- 
OPPENHEIMER APPROXIMATION) 

Let us formulate and outline the solution to the problem 
of the resonant tunneling of electrons through a one-dimen- 

sional potential barrier U (z) containing a center of three-di- 
mensional resonant interaction described by a potential u(r, 
R ). (Here and below, r is the coordinate of the electron, and R 
represents the internal variables of the center.) The Hamil- 
tonian of the system is 

H (r, R )  =-A,/2+ U ( z )  +in+ u (r, R )  . 
Here fi, is the Hamiltonian of the center; here it will incor- 
pprate only the vibrational degrees of freedom 
[hR,yu (R ) = E(U)X, (R )I. We stress that the "shape" reson- 
ances of negative molecular ions's.'9 and the other metasta- 
ble systems mentioned in the Introduction are described by 
just this type of Hamiltonian. Therefore, the main results of 
the present section will extend to these systems as well. 

Electron tunneling transitions between two half-spaces 
separated by a barrier U + u will be described by solutions of 
the Lippmann-Schwinger equation 

(+) yk,yz) ,,,, = I kt  Ez, n, V)+G:'' ( E ( k ,  Ez, u) u y r , ~ ~  ,nZu.  (2) 
Here 

~k, E,, n, v > =  (2n)-'eikrfE';L(z)~,(R), k=(kx, kvy 0) .  

n is the index of the half-space, f g,', (z) are the regular solu- 
tions of the one-dimensional Schrodinger equation with po- 
tential U (z): 

fj,T'(z) -Siz exp( i (2  (E-Uo+)) ' l s z )  for z + + w ,  

fE(,~d(~)-SZlexp{-i(2(E-Uo-))'"z) for z + - w .  

To simplify the notation in the intermediate expressions we 
have assumed 

lim U ( z )  = Uo*. 
z+*m 

The final expressions will not depend on this assumption. In 
Eq. (2) E (k,E, ,u) = k '/2 + E, + ~ ( v )  is the total energy of 
the state under consideration, and 

&+'(E) = (E-H+U+ E ( k ,  E,, v )  <U(O) =O. 
To evaluate the tunneling currents along the positive z 

direction it is sufficient to know the asymptotic behavior of 
the solutions !P'+'. It is not hard to show that the asymptotic 
behavior for z+ + co is of the form 

y !+) i dk' 
k , ~ ~  J,V= 1 k ,  Ez,  1, v ) +  -z -xu!' ( R )  

2n kz+ 

X exp ( iklr+ik,+z)  Ai, ( E )  . 
Here 

1 
A, ( E )  =- -( (f) I u I yi"') 

2n 
is the scattering amplitude of the tunneling electron, 
i = (k,E,,l,v); f = (kl,E :,2,vf);E (k,Ez,u) = E. 

The resonant interaction of an electron with a center 
qualitatively alters the shape of the wavefunction in the be- 
low-barrier and above-barrier regions. This interaction 
clearly cannot be taken into account by the perturbation- 
theory methods usually used to describe nonresonant inelas- 
tic tunneling (see, e.g., Ref. 27). Calculating the amplitudes 
Ag(E  ) is the central problem of resonant-tunneling theory. 
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A 

To solve this problem we use the scattering-operator (T) 
method. 

A 

We define the operator ( T )  by the equation 
(+) T l i > = u Y i  . (5) 

It is easy to show (se%the analogous derivation in Refs. 
28-30) that the operator ( T )  can be found from the system of 
equations 

~ = t * , + t * ,  ( ~ r j + )  -&' ) T ,  (6)  

A 

where G b+)  can be any convenient Green function. 
Resonant tunneling proceeds by means of the formation 

and destruction of an intermediate quasistationary state 
which is similar in many respects to a bound state in the field 
~f potential u(r, R ). !t is therefore convenient to choose 
Gb+) = (E + Ar/2 - h,  + i7)-', i.e., to take the operator 
io to be the scattering operator for the scattering of free elec- 
trons by the center. (Here we are in fact assuming that the 
potentials u and U do not overlap in space. This, however, is 
not a fundamental limitation, since any interaction can be 
written as a sum of nonoverlapping terms by introducing a 
suitable set of projection  operator^.'^ For constructing a the- 
ory it is sufficient that the interaction U be concentrated in 
the asymptotic region of the coordinate r and, consequently, 
cause exponentially small changes in the states correspond- 
ing to the field u.) 

In the investigated energy interval (E (0) the free-elec- 
tron scattering operators 

-(+) f o = u f  uG, u, G:+'= ( E S . A , / ~ - ~ ~ - U S ~ ~ ) - '  

have only real poles E (v), which correspond to stationary 
levels of a complex separated from regions of infinite motion 
by potential barriers of unbounded width. These levels and 
the corresponding wavefunctions Q, (r, R ) for the main 
range of variation of the variables r and R can be found by 
the Born-Oppenheimer method: 

%(r, R )  =(F. (r, H ) F v ( R ) ,  (7) 

Using functions (7) an9 including in the spectral repre- 
sentation of the function G L+ ) only a single energetically 
isolated term E '(R ), we obtain 

lv><vl  
"=" C E-E(v)  

A 

V U = U ~ ~  (E-hR-Eo ( R )  ) -'Tu, 

I v )=Fv ( R )  . (9) 

Here IE - E '(R ) I  <we, R zR,, whereR'represents theequi- 
librium values of the variables R for the vibrational subsys- 
tem of the complex. 

Expression (9) differs from the pole approximation of 
Refs. 12-15 by the presen5e of a "small" (in the sense of 
condition w, (we) operator h ,  in the resonant denominator. 
This small operator must be introduced in order to take into 
account the motion of the system over the vibrational de- 

grees of freedom. Operator (9) takes into account the adiaba- 
tic dependence of state g, on R but ignores tunnling effects. 
In order to take tunneJng effects into consideration one 
must find the operator T, i.e., solve Eq. (6) .  Let us give the 
final result. One can verify by direct substitution that the 
necessary solution is of the form 

T=UV [E-K, -EO ( R )  -fiR ( E )  ] -lcpu, 
A 

(10) 
where 0, (E ) is an integral operator which acts only on the 
variable R: 

Q ( E ,  R , R ~ ) = ( ~ ~ u ( G : + '  (E)-G:+' ( E ) ) U I ~ ~ ) , .  (12) 

Here and below the symbol ( ), denotes an integration 
over r. 

Having found the solution, we can write the amplitude 
Ax(E ) in the form 

1 EVC 
A ~ , ( E ) = - - - ( ( ~ ) I U I Y ~  ), 

2s 
where 

Y ,EVC(r, R )  =(P (r, R )  Fi (a) (141 
is the wavefunction of the EVC. 

The function Fi (R ) describing the vibrational subsys- 
tem of the complex ~atisfies the Schrodinger equation with 
an optical potential 0, (E ) and a source: 

[E-hR-E0 ( R )  -hR ( E )  IF, ( R )  =ai. ( R )  y,, ( R )  . (15) 
Here 

a , , (R)  =(cpluli,), 

is the probability amplitude for the formation of an EVC and 
i, = (k, E,, 1). Expression (14) and Eq. (15) generalize for- 
mula (7) and Eq. (8) to the case of electron resonances of the 
potential type. 

Here we should stress that it is possible to approximate 
the solutions !Pi+'(r, R ) by the EVC wavefunction only in 
the main range of the coordinates [the region which gives the 
main contribution to matrix element (4)]. In this region the 
improbable decays have only a slight effect on the electron 
density. The small parameter here is clearly r /we , where r 
is the probability (per unit time) for the electron to break 
away from the complex (a rather general analytical expres- 
sion for r will be obtained below). In the asymptotic region 
of the coordinate r (a region which, however, gives an expon- 
entially small contribution to the transition matrix element), 
expression (14) does not apply. The method of adiabatic sep- 
aration of variables and the method of unnormalized quasi- 
stationary states [these methods are unified by solution (lo)] 
give approximations which are inhomogeneous with respect 
to r. At large distances neither of these methods applies. This 
situation is manifested formally in certain mathematical dif- 
ficulties such as the appearance of divergent matrix elements 
in the theory, preventing the direct application of standard 
perturbation-theory techniques (including the method of 
perturbed stationary states) in the case of decaying systems. 
The approach set forth above is free from these difficulties. 
The integral expressions with which this method operates 
contain the unknown functions Y I+ and (E - H )-' only in 
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combination with the interaction u. The latter is localized, 
and in the integration over r it singles out the finite region of 
space in which the EVC wave functions can be used. 

Using the equalities 

e;+)-e;+)=&:f) u&p, eb+,)u(p=(p[~+~ ( o , / o ~ )  1, 
we can write the optical potential in the form 

~ , ( E ) = ( ~ ~ U G ~ + ' ( E ) U I ( ~ ) ~ ~  (16) 
which we shall use in analyzing the conditions of applicabi- 
lity of the model of complex terms. Suppose the conditions 

E>E ( v ) ,  E ( u ) T ~ , ~ K ~  (I7) 

hold, indicating that the formation and destruction of the 
EVCs can be considered instantaneous acts with respect to 
the vibrations. (Here T, = dS, (E )/dE is the modulus of the 
imaginary tunneling time of the electron through the poten- 
tial barrier separating the center from the nth half-space, 
and S, (E ) is the modulus of the imaginary action along the 
extremal below-barrier trajectory). Then in expression (16) 
we can neglect the energies ~ ( v )  and use the completeness of 
the system of functions X, (R ). We have 

=A (E ,  R )  6 (R-R')  . (18) 

Here 

g:+' ( E )  = ( E f  A,/2-U+iq)-', 

A ( E ,  R )  =(rp 1 ug?' ( E )  UI cp),. 
(19) 

In approximation (18) Eq. (15) assumes the form postu- 
lated in the model of complex  term^,'^.^'.^^ the term of a state 
coupled to the continuum by tunneling transitions being giv- 
en by 

E,(R) =Eo ( R )  +A ( E ,  R )  xE"R) +A ( E Y R )  , R )  . 
The function A (E, R ) gives the complex shift of the dis- 

crete level E '(R ) upon allowance for electron tunneling tran- 
sitions to the continuum. The problem of evaluating this 
function is discussed in many papers dealing with special 
and general questions in the theory of potential resonances 
(see, e.g., Refs. 3 1-33). For the case of one-dimensional mo- 
tion this problem was solved recently in Ref. 34, in which the 
evolution of the wave packet in the field of a potential having 
a general form of the "well with barrier" shape. Expression 
(19) generalizes the result of Ref. 34 to the case of three di- 
mensions. 

h 

Let us now find the relationship of operator 0, (E ) to 
the decay probability (per unit time) of the complex. Let us 
treat the evolution of the wave packet cP (r, R ) = q, (r, 
R ) = F(R  ) using Eq. (15). We find 

h h 

(Here H ,  = A, + E '(R ) + a, (E )is the Hamiltonian of the 
vibrational subsystem of the EVC.) 

Let us now use expression (12) and the spectral repre- 
sentation of the Green function G ($ ) and take into account 

A 

that ImG bf = 0 in the energy interval under consideration. 
Wehthen find a relation between the damping operator 
ImR, (E) and the source functions appearing in Eq. (15): 

X aje ( R )  I V>(U (aj ;  (R ' ) ,  (21) 

The optical potential given by formulas (1 I), (12), and 
(1 6) is analytic in the upper half of the energy plane. It can be 
shown that its real and imaginary parts are related to each 
other by dispersion relations which, unlike those of Ref. 21, 
do not contain divergent integrals. 

3. ANALYSIS OF PARTICULAR AND LIMITING CASES. 
ABSOLUTE TRANSPARENCY IN INELASTIC TUNNELING 

Here we consider several limiting and particular cases 
which illustrate the role of the vibrational degrees of free- 
dom of the centers in the resonant tunneling of electrons. 

Let us suppose that the potential barriers separating the 
EVC from the regions of infinite motion have rather low 
permeabilities and that 

(E-E(v )  j~ ( < V ( ~ ~ ( E )  (Y)<<\@-E(vl)  1, vgtvl. 

Then expressions (14) and ( 15) imply 

EVC 
'(i) ('1 ')= 

E-E ( v )  ( E )  

In the approximation under discussion decays do not 
affect the motion of the complex over the vibrational degrees 
of freedom. The resonant-tunneling amplitudes in this case 
assume the form of composite matrix elements: 

l ((f) l ~ l @ ~ ) ( Q ~ l u l i )  
A, ( E )  =- - 

2n E-E(v)  f i r ( v )  ' 
E ( v )  =E (v) +He 4, ( E ) ,  r ( v )  =-Im 

Accordingly, the resonant-tunneling probabilities 
Wif = IAifI2 can be evaluated by the Breit-Wigner formula: 

wi t=r i (v ) r f  (v) { [ E - E W  12+rZ(v) I-', (23) 
where 

are the partial widths corresponding to the formation and 
decay of the EVCs. In the present limiting case these events 
can be considered independent, i.e., an EVC is a long-lived 
electron-vibrational compound state. (A rigorous applicabi- 
lity criterion for the compound-state approximation is given 
below.) 

Using Eq. (2 l), we find a relation between y(v) and r (v): 

In the Condon approximation 
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yk, Ez, n, .(v)=yn0(k) ( ~ j v ) ~  exp (2(E(v)-E(O) - E  (u ) )  ~ n ) ,  

(26) 
where 

are the electron particle widths calculated in the fixed-scat- 
terer model, 

, , 

M, ( T ~ )  = exp (2 (E (v) -23 (0) ) T ~ )  ( u  1 v)' exp (-2e (u) m) . 

The factors M, take into account the influence of the 
electron-vibrational exchange of energy on the rate of de- 
struction of the EVC. For a harmonic vibration model these 
factors have been calculated and analyzed in Refs. 35-37. It 
is easy to se that for IE (v) - E (0) 17, (1, E(U)T, (1, M, zz 1, 
i.e., at small values of T, , the electron-vibrational coupling is 
unimportant. At sufficiently large T, [- l/~(v)], however, 
the electron-vibrational exchange of energy has a strong ef- 
fect on the probabilities of formation and destruction of 
EVC states. 

According to formulas (23) and (26) the relative proba- 
bilities of resonant tunneling via different channels is deter- 
mined by the factor (~Iu ' )~exp(  - E(u')T~).  It follows that for 
v #O, a +0, &(v)r2 > 1, resonant tunneling always takes place 
via superelastic channels, i.e., is accompanied by an increase 
in the electron energy. For v = 0, (vl v) - (vl u'), E(u')T, S 1 
the elastic and inelastic resonant-tunneling probabilities are 
of the same order, and for (vlv) > (vlO), &(v1)r2 S 1 the most 
probable channels for resonant tunneling correspond to a 
loss of electron energy. It is important that in all these cases 
an appreciable change in the energy of the vibrational sub- 
system is possible, i.e., resonant tunneling can be accompa- 
nied by intense multiquantum transitions. 

The expressions we have obtained also enable us to con- 
clude that, under certain conditions, inelastic resonant tun- 
neling occurs without damping. In fact, let us suppose that 
S,(E ) = S2(E ).ThenforE = (v),[E(u) + k *IT, ( 1 theproba- 
bilities (23) do not contain an exponentially small factor. In 
other words, absolute transparency, which has previously 
been discussed only for elastic p r o ~ e s s e s , ' ~ ~ ~ ~ ~ ~ ' ~  is also possi- 
ble during inelastic tunneling. We shall show below that it is 
this effect that makes for observable inelastic-resonance 
anomalies in the tunnel conductance of MIM  system^.^-^ 

Let us now consider the opposite case-that of short- 
lived EVC states-and take the limiting transition to the 
fixed-scatterer app rox ima t i~n .~ -~  Suppose that condition 
(1) is satisfied. Then the operator hR appearing in expression 
(10) can be considerg small, and, using the Condon approxi- 
mation to evaluate f2, and a,< one can expand the operator 

h 

(E  - HR ) - I  in a series in terms proportional to f i R  and R.  

(Here the equilibrium values of R for the vibrational subsys- 
tem of the center are taken to be zero.) Finally, we get 

Here, r (0) = - I d D  (0), 

The fixed-scatterer approximati~n,~- '~ which obvious- 
ly admits only elastic tunneling, gives the first term in expan- 
sion (3 1). The corrections which arise upon allowance for the 
vibrational degrees of freedom of the center contain not only 
the energy ~ ( v )  but also the force f acting on the nucleus of a 
center in a quasistationary state. The applicability region of 
the fixed-scatterer model is thus limited by the conditions 
w, (r, a m ,  (r (a - fa,,, /w, ), which can be combined as 
r>w,  (1 + a). 

This is probably an appropriate place to emphasize that 
the fixed-scatterer approximation (30), (31), the model of 
complex terms (17)-(19), and the optical potential method 
(10)-(12) form a hierarchy of adiabatic approximations. This 
hierarchy is possible because the decaying electronic states 
are characterized not only by frequencies we but also by sub- 
stantially smaller parameters r and 7-'. The values of we, 
w, , r ,  and T are limited only by the conditions w, (we, 
T,(w,, and r r (1 .  The relationship between the decay pa- 
rameters and the vibrational frequencies can be arbitrary. 

In the Condon approximation under conditions (17) the 
rate of destrucson of the EVCs is constant. In this case the 
operator (E - HR ) - I  appearing in (10) can be written in the 
spectral representation 

which is valid for arbitrary values of the parameter w/T. 
Then it follows from (13)-(15) and (28) that 

where r = r, (0) + r2(0), and 

K,, (I.) =c (vlv>(v(v'> 
s-x (v) f i 

v 

are vibrational factors which take into account the displace- 
ment of the center during the lifetime of the EVC, x = E / r ,  
and X(V) = E (v) /r .  For the harmonic vibrational model 

the factors K , ,  (x) have been evaluated and analyzed in Ref. 
26. Using the results of that study, one can determine rigor- 
ous applicability criteria for the various limiting cases and 
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elucidate the dependence of Wg on E for T- w. 
Under the condition 

ae-= MoRQZ I E - B ( v )  f i r  1 < - ( l + a 2 )  a', a = - 
v !  2 

(35) 

the model of an electron-vibrational compound state is valid: 

We note that the applicability regions of formulas (36) and 
(23) overlap. The more general expressions (23)-(29) allow 
one to escape the restriction E(U)T, 4 1. 

For r>w,  r > a o ( l  + Iv - v'l) 

E (0) max z(0) =- , v > =  
< min (v, 4. 

In this limiting case the resonant tunneling takes place main- 
ly via elastic channels. The inelastic-tunneling probabilities 
are proportional to the small factor (aw2/r  2)1" - "'I and have 
a non-Lorentzian energy dependence. 

At r - w  the factors K,,. (x) for Iv - v' I 5 a ,  0 < x  5 a 
have values a e - a and undergo regular oscillations with a 
common period Sx- 1 (see Fig. 1 of Ref. 26). 

Finally, we note that in expression (32) the exponential- 
ly small quantities appear only in combinations of electronic 
widths. ForS,(E ) = S2(E ), k 'r,(l,k "r2( 1 theexponential- 
ly small factors (proportional to the permeability factors of 
the potential barriers separating the EVCs from the regions 
of infinite motion) exactly cancel, i.e., absolute transparency 
is possible at any values of o /F .  

4. RESONANCE FEATURES IN THE TUNNELING SPECTRA. 
COMPARISON OF THEORY AND EXPERIMENT 

Here we use the results obtained for the purpose of ana- 
lyzing the features of the tunnel conductance of MIM junc- 
tions3" and energy distributions of field-emission elec- 
tron~.'.~ 

Differential conductance of MIM systems 

In the single-particle approximation the tunneling cur- 
rent of electrons passing through an MIM contact and un- 
dergoing single scattering in the below-barrier region by an 
impurity atom (or defect) can be evaluated by the formula 

Here E = k '/2 + E, , V>O is the potential difference applied 
to the contact, n(u) is the bulk concentration of centers in 
state u, f ,,, (E ) are the Fermi distributions of the electrons for 
the emitter metal and second metal, respectively, A,/(E,z) are 
the scattering amplitudes for tunneling electrons, andz is the 
coordinate of the center. In the derivation of formula (37) we 
used Eq. (2) of Ref. 38 and the asymptotic formula (37) of the 
present paper and called for a summation over vibrational 

quantum numbers and an averaging over random spatial dis- 
tribution of centers in the barrier. 

In what follows we are interested only in the resonant 
electrons, which for wide barriers represent the predomi- 
nant contribution not only in the total currentj( V) but also in 
the differential conductance G (V) = dj/d V. We use the har- 
monic model (34) and, following Refs. 12 and 13, incorporate 
the dependence of the electron parameters onz and V. Let us 
take 

E ( v )  =E (0) + V O ;  v=O,  1 ,  2 , .  . . (38) 

(0 ~x < d, where d is the thickness of the insulating layer), 
and 

r ( z )  =rl ( z )  +rz ( z ) ,  

rl ( z )  =rl (0) exp (--2Sl ( E ,  z )  ), 

r, ( z )  =r, ( d )  esp ( -2S2 ( E ,  z )  ) (39) 
and consider the low-temperature case, setting 
fi,2 (E) = 7(EF - E ) ,  where EF is the Fermi energy, q (E)  is 
the step function, and n(v) = nS,. Then it follows from ex- 
pressions (321, (37)-(39) that 

n 
G ( V ) = -  2 z1 ( ~ - & ( v ) )  [ (D . . (E~-v+E (u), v , z )  ). 

where 

Do, ( E ,  V ,  2 )  =4 r 1 ( z ) r 2 ( z )  1 & , ( x  ( E ,  V ,  z )  ) 1 ', rz (2) 
(41) 

It is easily seen that the main contribution to the inte- 
gral in (42) is from the neighborhood of the point zo for 
which the resonant tunneling occurs without damping: 
r,(z,) = r2(z0), z 0 z d  /2. 

Let us consider two limiting cases. Suppose d is suffi- 
ciently small that r (d /2)>aw,. Then, neglecting inelastic- 
tunneling currents and using formula (3), we obtain 

where 

E-E (0) +V/2 
, a =  

v E (E .  P) = ( d / Z )  
pdr ( d / 2 )  ' 
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FIG. 1 .  The dependence o f  J ( g ,  a )  on 6. Curve 1 )  the function 
y2(x)  = jJ(x,O); curve 2)  thefunctiony,(x) = (8/?r)'12aJ({, a) .  Herex = la, 
a s l .  

As a function off, integral (44) has a symmetric peak at zero, 
with a length and shape which depend on the parameter a 
(see Fig. 1). For a( 1 and a) 1 one easily obtains the asympto- 
tic expressions 

We see that in the present case the conductance of the con- 
tact as a function of V can have only one resonance peak, 
described by either the first or second term of expression 
(43). In the first case the resonant increase in the conduc- 
tance arises when the level E (0, V ,  d /2) passes through the 
Fermi level of the emitter metal; the corresponding reso- 
nance value of the voltage is Vp = 2(E (0) - EF). In the sec- 
ond case the peak arises when the level E (0, V, d /2) passes 
through the Fermi boundary of the metal having the larger 
electrostatic potential; here V, = 2 ( ~ ,  - E (o)j. 

Let us now consider the most interesting case-that of 
rather thick insulating layers, when the resonant tunneling 
of electrons should be accompanied by interesting multi- 
quantum vibrational transitions of the centers of interaction. 
Let r ( d  /2) be sufficiently small that condition (35) holds. 
Then, using formulas (40), (41), and (23), we obtain 

Here 

. . 

Comparison of expressions (43) and (45) shows that 
allowance for the vibrational degrees of freedom of the 
centers leads to a qualitative change in the spectrum of the 
features appearing in the tunnel conductance of the contact. 
First, jumps appear in the spectrum, corresponding to the 
opening of the inelastic-tunneling channels; here, in reso- 

nant tunneling, unlike the familiar case of the nonresonant 
intera~tion,~' one can also observe multiquantum features. 
Second, the resonance peaks are grouped into series obeying 
the combination relations 

The peaks of the first series correspond to a resonant in- 
crease in the probability of formation of an EVC upon passa- 
gae of the Fermi boundary of the emitter metal through the 
level (E (Y, V, d /2). The second group of peaks arises from 
EVC states which for V = 0 lie below the Fermi level of the 
emitter metal. These features correspond to resonance peaks 
of the energy distributions of the electrons released in the 
decay of the EVCs. 

The results of recently published experiments on elec- 
tron tunneling in the systems Mg-MgO-M, where M = Mg, 
Bi, Pb at T = 1.5K (Ref. 3), A1-A120,-M, where M = Ag, 
Au, Sn, Pb, Pd at T =  1.2-4.2 K, and Ag-Pg12-Ag at 
T = 4.2 K (Ref. 6) support this conclusion of the theory. 
These systems, whose insulating layers could, under the con- 
ditions of fabrication of the contacts, contain uncontrolled 
impurities (or defects), did in fact exhibit a series of inelastic- 
resonance features, which in certain cases were almost equi- 
distant and had half-widths - 1 mV. 

Resonant field emission 

In the single-particle approximation the current density 
of field-emission electrons scattered in the below-barrier re- 
gion by single adatoms and having energy E in the final state 
is described by the expression 

Here n(v) is the surface density of adatoms in vibrational 
state u, 

In deriving formula (46) we used the familiar expressions for 
the density of field-emission currents (given, e.g., in Ref. 2) 
and formula (3) of the present paper, called for the summa- 
tion and averaging of the field-emission current over the vi- 
brational quantum numbers of the adatoms, and averaged 
the current over the random position of the adatoms on the 
adsorption plane z = z, . 

In what follows we will only be interested in the case of 
resonant field emission, which is realized if the adatom has a 
quasistationary electronic term EO(R ) in the vicinity of 
EF .2J0-12 (The single-quantum excitation of the vibrations 
of the adatoms in nonresonant field emission has been con- 
sidered in Ref. 39). 
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We use the Condon approximation and consider the 
case of low temperatures, assuming that there are no vibra- 
tionally excited particles at the surface. Then expressions 
(32), (33), and (46) imply: 

Here T = r, + r , ,  where rn are the decay widths of the 
quasistationary level of the adatom for the cases when the 
electron escapes into the metal (r,) and vacuum (r,). Under 
typical experimental conditions one has alz, ) (p, where a is 
the strength of the electronic field and e, is the electronic 
work function of the emitter. Here 

where Cn are relatively unimportant pre-exponential factors 
which vary slowly with the energy. 

Formula (47) predicts two types of features in the field- 
emission spectra: threshold jumps [at E = EF - ~ ( v ) ,  v = 0, 
1,2, ...I and resonance peaks [at E = E (v) - ~ ( v ) ,  if T(w, ] or 
oscillations [if r- w, 1. 

To illustrate the effect of vibrational transitions of the 
adatoms on the resonance features of the field-emission spec- 
tra, we have calculated the enhancement factor R (E ) = dj/ 
d E  )/(dlQ/dE ), which is ordinarily separated out in the pro- 
cessing of experimental data.2 The distribution of @/dE 
corresponds to field emission from a metal surface without 
adatoms: 

The results of our calculations on the basis of formulas 
(47), (48), and (33) for the harmonic-vibration mode1 (34) are 

given in Fig. 2. The calculations were done using w = 0.1 eV 
(Ref. 17), EF - E (0) = 2w, r = 0.7~0, and a = 1. For com- 
parison, Fig. 2 also shows the experimental data obtained in 
Ref. 8 for the surface W(100), D and the results of calcula- 
tions done without allowance for the electron-vibrational 
coupling (for a = 0). One can see that the latter disagree 
qualitatively with experiment. Comparison of the theoreti- 
cal and experimental spectra permits estimation of the main 
parametes of the W(100), D system: r = 0.07 eV, a =: 1. One 
can also conclude that the feature observed at 
E, - E = 0.05 eV is oscillatory in character [this peak was 
reproduced in the calculations by an oscillatory vibrational 
factor Koo(E /r )I. 
5. CONCLUSION 

In the above calculations we have not considered the 
possibility of vibrational relaxation of the center, i.e., we 
have in fact assumed that the lifetime of the EVCs is shorter 
than the characteristic values for relaxational processes. At 
low temperatures the lowest excited states of the centers re- 
lax over a time t, - 10-11-10-12 sec; for v>3 the time t, is 
considerably larger.40 It follows that the need to include re- 
laxational processes can arise only for systems which can be 
described in the compound-state approximation. In this 
limiting case one can discern an analogy with the resonant 
scattering of light; this analogy is convenient for generaliz- 
ing the results obtained above. An exposition of the theory of 
resonant tunneling under conditions of rapid vibrational re- 
laxation of the centers of interaction is beyond the scope of 
this paper. We shall only remark that allowance for relaxa- 
tion is not important for describing the features that corre- 
spond to the formation of EVCs in the ground or highly 
excited states. The character of the changes in the features 
which correspond to decays of rapidly relaxing EVC states is 
also qualitatively clear. These changes can be taken into ac- 
count phenomenologically by replacing the decay width r 
by the sum r + t ; '. Experimentally, the influence of relax- 
ational processes on resonant tunneling can be studied by 
varying the thickness of the insulating layer. 

I am grateful to V. M. Agranovich and all the partici- 
pants of his seminar for discussing the results of this study. 

f ( f )  R(E), arb. units 
"A sufficient condition, which depends on the electron-vibrational inter- 

action constant a, will be obtained below. 
"To avoid misunderstandings we stress here that we are considering elec- 

tron resonances which decay by a tunneling mechanism. For such reson- 
ances the familiar Fano-Feshbach method does not apply. Attempts at a 
nonsystematic description of potential resonances in the framework of 
the configurational interaction method lead to divergences which can be 
eliminated by a cutoff." 

FIG. 2. The factor R ( E )  calculated according to formulas (33), (47), and 
(48) for a harmonic-vibration model with EF - E (0) = 20, r = 0.7w, 
a = 1. Peak (a) is an interference feature corresponding to oscillations of 
the current of elastically tunneling electrons. The threshold jumps labeled 
by the letters b, c, and d correspond to single-quantum (b ), two-quantum 
(c), and three-quantum ( d )  vibrational transitions of the adatoms. The 
dashed line is the theoretical curve for a = 0. The inset shows the experi- 
mental data of Ref. 8 for the surface W(100), D. 
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