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The effect of many-particle spin interference on the electron tunneling probability is examined in 
the region of variable-range hopping conductivity. It is shown that, depending on the form of the 
wave functions of the impurities and the degree of doping, the many-particle interference can lead 
to either a positive or a negative giant magnetoresistance. 

1. INTRODUCTION same-they are quantum-mechanically distinguishable- 

In the region of variable-range hopping (VRH) conduc- and the desired probability is therefore 

tivity the electrons execute tunneling hops over distances 231 
much larger than the average distance between impurities.' W2 =- ii ( IA+-+31 IA2+3,1+Z 1 '). 

The influence of impurity scattering of the tunneling 
electron on the asymptotic behavior of the electron wave 
function was studied in Refs. 2 and 3, where the single-parti- 
cle problem was solved. In real semiconductor impurity 
bands, however, the population of the energy levels is always 
finite, and the many-particle nature of the quantum mechan- 
ical problem must be taken into account, particularly since it 
leads to qualitatively new effects. 

The primary purpose of the present paper is to propose 
a new spin mechanism, which arises upon incorporation of 
many-particle effects, for the magnetoresistance in the VRH 
region in weak magnetic fields. 

This mechanism can be understood qualitatively with 
the aid of Fig. 1, which shows three impurities. Suppose we 
are interested in the probability of an electron tunneling 
from impurity 1 to impurity 3. If impurity 1 is vacant (Fig. 
la) there are two tunneling paths: a direct hop from impurity 
1 to impurity 3, with a probability amplitude of A,,, , and a 
compound hop involving an intermediate virtual state of the 
electron at impurity 2, with a probability amplitude of 
A,,,,, . The total probability for the hop is 

The probabilities W, and W, thus differ by the interfer- 
ence term 2A,,,A ,*,,,,,, . A magnetic field alters the prob- 
ability of the different spin configurations and thus affects 
the electron hopping probability, i.e., the conductivity. 

The magnetoresistance mechanism outlined above is of 
a general nature for hopping conductivity, but it is manifest- 
ed most clearly in the VRH region, where the conductivity is 
governed by tunneling hops over distances r which are much 
greater than the average distance between impurities, N - ' I 3  

(Nis the impurity concentration). It was shown in Ref. 3 that 
for VRH the optimum number n of virtual electron hops 
and, hence, the number M of optimum tunneling trajector- 
ies are larger (see Fig. 2). In the absence of magnetic field the 
spins are disordered, and in an impurity band with finite 
compensation the different trajectories lead, with an over- 
whelming probability, to different final spin states, i.e., they 
do not interfere. The imposition of a magnetic field aligns the 

Let us now consider the case in which impurity 2 is 
occupied (Fig. lb); we shall assume that because of the Hub- 
bard repulsion an impurity can be occupied by only a single 
electron. In addition, we shall for simplicity neglect the ex- 
change interaction of the electrons at different impurities. 
The probability of the hop in question depends on the spin 
configuration of the two electrons in the initial state. 

In fact, if the electron spins in the initial state are paral- 
lel, then the final spin states corresponding to the trajectories 
(1-+3) and (2-3, 1+2) coincide (case 1 in Fig. lb), and the 
total probability for the hop is again W,. (Here the trajector- 
ies (2-3, 1-2) correspond to successive electron hops from 
impurity 2 to impurity 3 and then from 1 to 2.) 

On the other hand, if the electron spins in the initial 
state are antiparallel (case 2 in Fig. lb), the final spin configu- 
rations for trajectories (1-3) and (2-3, 1-2) are not the 

FIG. 1. The filled and open circles correspond to occupied and vacant 
donors. 
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FIG. 2. 

spins and increases the relative importance of the interfering 
paths. As a result, the hopping probability changes exponen- 
tially. In fact, in this region one speaks of a dependence of the 
localization radius on the magnetic field H. 

Significantly, in the region of weak magnetic fields and 
low temperatures the magnetic-field dependence of the lo- 
calization radius 6 (H) is due entirely to spin effects, and the 
influence of the magnetic field on the orbital part of the wave 
functions can be neglected. 

The material in this article is organized as follows. In 
Sec. 2 the case of light doping is considered, and it is shown 
that in the case when the impurities are described by a small- 
radius potential, the spin-interference correction to the lo- 
calization radius has an H dependence which corresponds to 
a positive magnetoresistance. In Sec. 3 the case of intermedi- 
ate doping is considered, and it is shown that in the critical 
region of the metal-insulator transition, the magnetoresis- 
tance due to spin interference changes sign and becomes neg- 
ative. 

We shall proceed from the impurity-band Hamiltonian 
of a doped semiconductor: 

& = oiaia,.++ x ~ ~ ~ a $ a , , , + ~  ai,ai,+aiiai,+. ( I )  

Here a: and a, are the creation and annihilation oper- 
ators for electrons at the ith impurity, Vi, is the matrix ele- 
ment for a transition between impurities i and j, U is the 
Hubbard repulsion energy at a single site, and ci is the energy 
of the single-particle state. 

2. LIGHT DOPING CASE 

For light doping, Na; (1 (a, is the Bohr radius of an 
isolated impurity) the overlap of the wave functions of differ- 
ent impurities is small, and ) Vi, ) g - cj ). We shall assume 
that the E, are random quantities distributed uniformly over 
the interval ( - A, A ), where 24 is the width of the impurity 
band. In addition, we shall neglect spin exchange: JgkT; 
here J- vt/U is the exchange integral and T is the tempera- 
ture. 

We shall show that the results depend rather strongly 
on the form of VU; let us begin with the case when the impuri- 
ties are described by a small-radius potential, and 

Here C-a,E,, where E, is the Bohr energy, and 

rU = Iri - rj I ,  where ri is the coordinate of the impurity. 
This case corresponds, for example, to a conductivity due to 
hopping via deep impurities in semiconductors. 

a) The simplest case to consider is that of low compensa- 
tion K = NA/ND (N, and ND are the acceptor and donor 
concentrations), when the majority of the impurities are oc- 
cupied by a single electron and the conductivity is governed 
by the hopping of the rare holes (by "hole" we mean a vacant 
impurity). If @H>kT dg is the Bohr magneton) and all the 
electron spins are parallel, the problem of evaluating Aa (by 
definition, ( = a, + Aa) reduces to the single-particle prob- 
lem. Introducing the hole creation and annihilation opera- 
tors b if = a, and b, = a+ and using the commutation rela- 
tions for a+ and ai from (I), we obtain an iteration series for 
the wave function of a hole localized at impurity 1:'' 

where the !Pp are the unperturbed wave functions of the 
holes at impurity i, E, is the energy of the system with a hole - 
at impurity i, and Vi, = - VU. 

The scattering amplitude for a hole at impurity i is thus 
pi = C/(E1 - E,) < 0 (because Ei > E l  in the VRH region 
for the majority of the intermediate states). Each term in 
series (3) corresponds to a trajectory for the motion of a hole 
via impurities (see Fig. 2). It was shown in Ref. 2 (see also 
Ref. 3) that the result depends strongly on the value of the 
parameter B = ji2adV. 

Let us begin with the case B( 1, for which2 

The quantity Aa = (H = CO) corresponds to a complete 
alignment of the spins along the magnetic field. 

It was shown in Ref. 3 that for B(l the main contribu- 
tion to (3) is from trajectories with n -rl@)aJV scattering 
events @ - - C /A ) and with a deflection of the trajectory of 
the order of x-(lp I N ) - ' "  at each hop (see Fig. 2). In this 
case the number of scattering impurities in the "scattering 
cylinder" with base radius x and height r/n is B -') 1. This 
inequality ensures that the fluctuations of the wavefunction 
are relatively small (the continuum regime3) and makes it 
inconsequential whether it is the wavefunction itself or its 
logarithm that is averaged. (To evaluate the hopping con- 
ductivity it is necessary to know (lnl !P 12), where (...) de- 
notes an average over impurity  configuration^.^) 

For OH 5 k T  the electron spins are disordered, and dif- 
ferent trajectories correspond to different final spin configu- 
rations. Here the total hopping probability is 

All the trajectories can be divided in groups, identified 
by index a, such that within each group all the trajectories 
correspond to the same final spin configuration. The index@ 
enumerates the trajectories within a group. Examples of 
such groups are illustrated in Fig. 2; AD, is the probability 
amplitude corresponding to the given trajectory. 

It is important that the leading contribution to (5) is 
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from groups of paths over impurities having the same spin 
direction (group a in Fig. 2). In fact, the probability ampli- 
tude corresponding to a single trajectory with n scattering 
events is of order3 

where x is the characteristic deflection of the trajectory 
in one hop (see Fig. 2): A ,  - e  r'ao is the probability ampli- 
tude of a forward hop, x2n2/r is the elongation (in compari- 
son with a straight trajectory) of a trajectory having n scat- 
tering events with an average deflection of x.  

The contribution to (5) from paths with n scattering 
evenst on impurities having parallel spins is 

Zn 

f l t z ~ o z  exp { -2 e} I p I zn  (F) , 
where A"-, = B 1 is the number of paths which pass over 
identical spins and have n scattering events with an average 
deflection of x; here B ; ' = (r/n)x2N, ) 1 is the number of 
impurities with parallel spins in the scattering cylinder, and 
N, is the concentration of electrons with spins up, for exam- 
ple. This expression has a maximum of the order 

A,' exp (2rAa+/ao2)  with Aa,="?+p.n," 

Here B, = ,G2N, a,. If N ,  = N, we arrive at (4). 
Paths over completely different spins do not (with an 

overwhelming probability) interfere, and their contribution 
to (5) is of the order of 

where 

Thus, the contribution from such trajectories is small, 
characterized by the parameter2' 

f l / f l i 2 =  (B,VB) " < <  I. 

One can, of course, have intermediate situations in 
which, for example, the first m scattering events occur at 
impurities with the same spins and all the rest at impurities 
with different spins (Fig. 2, group b ). However, the contribu- 
tion to (5) from such trajectories is also small. 

Considering only trajectories over identical spins, we 
again arrive at the single-particle problem, and in analogy 
with Refs. 2 and 3 we obtain 

Here 

N+,=N[ l f  exp (*2PHIkT) I-' (7) 

is the concentration of up or down spins. 

The large number of impurities in the scattering cylin- 
der ensures3 that the relative fluctuations of the wavefunc- 
tion will be small at large values of r: SY/Y-B,( 1. At 
H+ CG formula (6) goes over to (4). 

As we have said, at low compensations we have ji <O 
and Aa(H) < 0. Aligning the spins increases the modulus of 
Aa, thereby leading to a positive magnetoresistance. This 
result is a consequence of the competition of two factors: 
first, aligning the spins leads to interference of the ampli- 
tudes corresponding to paths with the same n, and, second, 
because 6 is negative, paths with different n begin to cancel 
one another. 

Let us now turn to the case B> 1. ForpH>kT the prob- 
lem again reduces to the single-particle problem considered 
in Ref. 3. In this case it is necessary that a typical scattering 
cylinder contain at least one or a few impurities, i.e., 

and that the number of trajectories giving the main contribu- 
tion to (5) be of the order of z", where z X 1. The contribution 
to (5) from all trajectories with n scattering events is of the 
order of 

xZnz Zn 

A.zp2nz2n exp ( - 2 -&-) ( :) 
Seeking the maximum of this expression under condition (8), 
we find that it is reached at n - r ( z ~ a , ) ' / ~ l n ' / ~ ~  and 

Aa ( H = w )  -ao (zNao3)  '" In" B. (10) 

Significantly, allowance for the large number of optimal 
paths gives only a factor z X 1 in (lo), and the fluctuations of 
the wavefunction at large r turns out to be large: SY/ 
Y- B> 1 (the fluctuation regime3). 

ForpH- kT the spins are disordered, and the outcome 
of the competition between the two factors discussed above 
remains unclear, i.e., for B)1 neither the magnitude nor 
even the sign of the magnetoresistance is known. From the 
physical standpoint this is due to the strong fluctuations of 
the wavefunction at large r, while from the formal stand- 
point it is due to the difficulties in averaging the logarithm of 
the wavefunction. 

b) The case of arbitrary compensation. Below the Fermi 
energy all the impurity states are singly occupied, while 
above it they are all vacant. Now a trajectory can contain 
both an electron part (when an electron travels along vacant 
impurities) and a hole part (when a hole travels along occu- 
pied impurities). An example of such a trajectory is illustrat- 
ed in Fig. 3. 

FIG. 3. 

789 Sov. Phys. JETP 60 (4), October 1984 B. Z. Spivak 789 



The conductivity in the VRH region is governed by 
hops of electrons in a narrow energy band &<A, whereas 
the corrections to the localization radius are determined by 
all the states of the impurity band, and therefore one can 
assume that E~ is near the Fermi level and Ei is practically 
always greater than El  (Ei is the energy of the intermediate 
state). 

By analogy with the above, one can see that each virtual 
hop of an electron to a vacant impurity having an energy 
higher than the Fermi level corresponds to a positive factor 
VU(E, - E,) in the amplitude, while each virtual hop of a 
hole to an initially occupied impurity corresponds to a nega- 
tive factor K,/(E, - Ej). As we have said, the additional fac- 
tor of - 1 stems from the anticommutation of Fermi opera- 
t o r ~ . ~ , ~  

If B(1, then the governing contribution to (5) is from 
trajectories containing hole parts moving via impurities with 
parallel spins, and the expression for Aa(H) in this case is 
obtained from (6) by the substitution N,,@+v,, , where 

C 
V + + - N ~  - { K - ( I - K )  [ l+exp ( * 2 $ ) 1 1 )  (1 1) A 

is the amplitude, averaged over the scattering cylinder, when 
the scattering on either only up spins or only down spins is 
taken into account. 

Formula (1 1) is suitable for arbitrary degree of compen- 
sation and corresponds to a positive magnetoresistance. 

The influence of a magnetic field on the orbital part of 
the wavefunction becomes important if H 2(e2/c2fi2)3ao > 1 
(Ref. 6), where r cc T - 'I4 is the length of a hop in the VRH 
region. This effect can be neglected in comparison with the 
effect considered above at temperatures sufficiently low that 
N a i ( ~ / r ) ~ ( E , / k T ) ~  > 1. If the opposite inequality holds, the 
spin effect in the magnetoresistance can nevertheless be dis- 
tinguished with the aid of electron paramagnetic resonance. 

3. INTERMEDIATE DOPING Na: - 1 AND THE CRITICAL 
REGION 

1) The majority of experiments in the VRH regime have 
been done in the region Nai - 1, where the resistance of the 
sample is not too large. The most important thing is that in 
this region the spin exchange J is greater than k T  and the 
spins are ordered. 

For a qualitative understanding of this case it is useful 
to consider another case: Nai ( 1, kT(J. The characteristic 
time for the tunneling of an electron a distance r is in order of 
magnitude T, - r ( r n / ~ , ) ' / ~ ,  while the spin-flip time for the 
neighboring spins on account of exchange is T, -fi/J. 

If T, (T,, then during the tunneling time the spin will 
not flip on account of exchange, and expression (6) is valid. 
However, N, and N, must now be defined in terms of the 
total magnetic moment per unit volume, M(H), which is de- 
termined by the magnetic order of the spin subsystem at low 
temperatures and depends on the sign of J. For Nai 5 1, it is 
most likely that J <  0 and the system forms a spin glass. In- 
creasing H leads to an increase in M, and we thus conclude 
that allowance for exchange in the case B < 1 will not alter 
the sign of the magnetoresistance-it will remain positive. 

At larger, when T, > T,, many spin flips due to exchange 
will occur in the course of the tunneling. The magnetoresis- 
tance in this case evidently remains positive, but its magni- 
tude is an open question. 

2) A completely different situation arises in the critical 
region of the metal-insulator transition. The perturbation 
series (3) in this case is hard to sum. Nevertheless, one can 
make certain qualitative arguments concerning the nature of 
the wavefunction near the transition. 

We shall assume that K( 1, J <  0 and the ground state of 
the spin subsystem is a spin glass. 

The metal-insulator transition, generally speaking, oc- 
curs in different ways depending on the relationship between 
Vi,. and U in the critical region, and we will be discussing 
mainly the case Vu ( U, i.e., J- V i/U( Vi/ (the case Vi,. - U 
is discussed in the Conclusion). 

The disorder of the spin subsystem leads to additional 
scattering for holes, and at H = 0 even in the ordered Hub- 
bard model the hole wavefunction is localized and falls off at 
large distances as exp(rN - 113).7 This assertion is particularly 
true for a system of randomly distributed impurities. 

It should be kept in mind that at H = 0 and at small 
distances (but larger than N -'I3) the motion of a hole gives 
rise to a spin-disordered region of radius R%N -'I3. This 
phenomenon was studied in connection with the magnetic 
properties of antiferromagnetic s emicond~c to r s~~~  and crys- 
talline 3He.7 

In a disordered system of impurities the formation of 
such a spin polaron is possible either in the critical region 
I (N - Nc )/Nc I ( 1 or in the metallic region N)N,. Here N, is 
the critical concentration of impurities for the metal-insula- 
tor transition in the case when the spins are completely po- 
larized. 

The energy of formation of a spin polaron in a disor- 
dered system is 

8 = D f i / R 2 + N c ~  Jl R3, (12) 

where D is the coefficient of diffusion. The minimum of (12) 
is reached at 

R- (fiD,ao/N,l JI ) " B ;  DoNc-2'3Vij/fi. (1 3) 

Expressions (12) and (13) are meaningful if N - 113<~(60 ,  
where" 

to-N-'" I (N-N, )  /N,Iv 

is the correlation radius of the hole wavefunction in the criti- 
cal region under the condition that the spin subsystem is 
completely polarized. 

In this case at distances of the order of R the metallic 
state does not differ from the insulating state, and the diffu- 
sion coefficient at scales of the order ofD - Doao/R (Ref. lo), 
where 6 is the characteristic overlap integral in the critical 
region. The first term in (12) is the energy needed to localize a 
hole in a region of dimension R. Following Thouless," we 
can estimate this energy as fi/~,, where T, -R 2/D is the 
characteristic time for a hole to diffuse a distance R.3' The 
second term in (12) is the energy loss in the spin polarization 
of a volume R 3.4' 

The imposition of a magnetic field polarizes the spins 
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and decreases the first term in (12) by an amount of order 
NcR (PH)'/IJ 1, and as a result 

Expression ( 14) has meaning for pH( I J 1. 
Thus R (H) grows with increasing H, and at relatively 

high temperatures this dependence dictates a negative mag- 
netoresistance. However, at low temperatures in the VRH 
region a hole undergoes hops over distances r&R. At such 
distances the spins are completely disordered, and therefore, 
as we have said, the exponential decay of the hole wavefunc- 
tion at such distances is governed by the localization length 
{-N-"~<R. 

Increasing the magnetic field leads to polarization of 
the spins and decreases the degree of disorder of the spin 
subsystem, while the mean free path of a hole increases. This 
should lead to growth of the localization radius: 

E ( H )  - E  (H=O)  -ETpHIJ)' for pIf< 1 J I .  

The situation here is analogous to the single-particle Ander- 
son transition in a disordered system. In particular, there is a 
critical magnetic field Hc - IJ l/p such that for I(Hc - H)/ 
~ , I ( l o n e h a s { ( ~ ) - N - " ~ I ( ~ -  ~ ~ ) / ~ ~ ) ~ ~ I ~ , w h e r e y i s  
the critical exponent, as long as ( H ) .  If 
N > Nc, I (N - Nc)/Nc 1 ( 1, then for H > Hc there is a metal- 
insulator transition, the detailed description of which is be- 
yond the scope of this paper. 

In the critical region of the metal-insulator transition 
the magnetoresistance is thus negative. The transition from 
a positive to a negative magnetoresistance occurs at Na: - 1. 

The results presented above are valid at degrees of com- 
pensation all the way to order unity. The influence of mag- 
netic field on the orbital part of the hole wavefunction can be 
neglected if I J I ( Ti,. in the critical region. 

4. CONCLUSION 

Allowance for spin interference effects thus leads to a 
dependence of the electron localization radius on the mag- 
netic field and, hence, to a magnetoresistance. The magni- 
tude and sign of the magnetoresistance in the VRH region is 
determined by the function f (H), i.e., 

Here p is the resistivity, and 7 can be equal to two or four 
depending on whether or not the Coulomb gap is important. 

In the case of deep impurities described by a short-range 
potential, the magnetoresistance turns out to be positive for 
light doping and B( 1. In the critical region I (N  - Nc)/Nc I 
< 1 the magnetoresistance turns out to be negative. It is pos- 
sible that the giant negative magnetoresistance observed in 
Ref. 12 is due to the mechanism considered in Sec. 3. 

In conclusion we note that, strictly speaking, the results 
presented above are relevant to deep impurities having the 
wavefunction (2). One is readily convinced that the wave- 
functions of shallow impurities for Nai ( 1 are strongly fluc- 
tuating at large distances, in complete analogy with the case 

B> 1 considered in Sec. 2, and therefore neither the magni- 
tude nor even the sign of the magnetoresistance for this case 
is known at the present time. 

Satisfaction of the inequality Vi,. ( U in the critical re- 
gion is also most realistic for a system of deep impurities. 

The spin susceptibility of SiC(N ) in the critical region 
near the metal-insulator transition was studied experimen- 
tally in Ref. 13. It had a Curie-Weiss character at all nitrogen 
concentrations clear up to the transition point. This circum- 
stance indirectly confirms the possibility of such a metal- 
insulator transition regime. 

In the case I J I - Ti,. the influence of magnetic field on 
the orbital part of the wavefunction is apparently every bit as 
important as its influence on the spin part. For this reason 
the magnitude and sign of the magnetoresistance in this case 
remain unclear. Nevertheless, in this case the effects studied 
above can be distinguished from orbital effects by studying 
the hopping magnetoresistance under conditions of electron 
paramagnetic resonance. In this case the electron spins are 
disordered, and this changes the value of 5, which, as we 
have said, depends on the magnetization M. The contribu- 
tion to the conductivity here turns out to be negative if the 
localization radius { (H ) calculated above increases with in- 
creasing H (corresponding to a negative magnetoresistance) 
and to be positive if 6 (H ) falls off with increasing H (corre- 
sponding to a positive magnetoresistance). 

Apparently only positive changes in the conductivity 
have been observed under conditions of the electron para- 
magnetic resonance in doped semiconductors (see, e.g., Ref. 
14). The detailed study of this phenomenon is beyond the 
scope of this paper. 

I am grateful to B. I. Shklovskii for assistance in this 
study and to A. G. Aronov, B. L. Al'tshuler, E. L. Ivchenko, 
and M. Ya. RaYkh for helpful discussions. 

"The change in the sign of V~ in comparison with V, for a single particle is 
due to the anticommutation of Fermi operators. This circumstance is 
also extremely important in considering the ordered Hubbard model 
with infinite repulsion at a single site, and its leads to the situation that 
for certain types of lattices the ground state of a system having one va- 
cancy, with the remaining sites singly occupied, corresponds to an un- 
saturated ferr~magnet .~ .~  

"It is easily verified that allowance for interfering paths of this type only 
will not change the localization radius from a, at all. 

"Interestingly, an estimate based on the assumption that the_spin-polar- 
ized state contains a hole energy band with a width of order V, gives the 
same result (in order of magnitude). 

4'Strictly speaking, in a disordered system the ground state of a spin-polar- 
ized region containing a hole is an incompletely saturated ferromag- 
net.4.5 For making order-of-magnitude estimates, however, this circum- 
stance is of no importance. 
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