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An antiferromagnet in a near-critical magnetic field can be regarded as an low-density assembly 
of Bose particles, so that the well-developed gas approximation can be used. This is demonstrated 
with spin-1/2 as the example. In the simplest cases it is easy to obtain an expression for the 
particle-scattering amplitude in terms of the initial exchange interaction, after which the known 
results for the Bose gas can yield the ground-state energy and other characteristics. The periods 
and the type of the spin structure are also determined. The dependence of the transition tempera- 
ture on the magnetic field is found to be given by T, -(Hc - H ) ~ ' ~ .  

I. INTRODUCTION 

The following approach is used in theory of antiferro- 
magnets to determine the ground state.' In the zeroth ap- 
proximation the spins are regarded as classical vectors and 
the corresponding expression for the energy is minimized. 
This procedure leads to a state with several sublattices hav- 
ing different spin directions. Excited states are considered in 
the next approximation; both the magnon spectrum and the 
correction to the energy to account for quantum fluctuations 
are obtained. This correction is usually small, thus attesting 
to the applicability of this scheme. In a magnetic field, the 
sublattice picture is preserved up to a critical field H, above 
which all the spins are aligned parallel; the calculation meth- 
od remains accordingly likewise unchanged. 

Near Hc , however, another more consistent approach 
to the problem is possible, using the analogy with a Bose gas. 
The present paper is devoted to this question. Although the 
main idea was described by us earlier,2 it makes sense to 
repeat it here. 

First, the model. We confine ourselves to spin 1/2. Con- 
sider a system with a Hamiltonian 

where S, is the spin operator of site n and H is the magnetic 
field in energy units. We transform to Pauli operators: 

where N is the number of sites in the lattice. We have 
grouped here the various contributions to the Hamiltonian. 
The energy 8, (H ) of the state with maximum spin (magnetic 
moment in terms of the spin) does not depend on the opera- 
tors p and p +; we can use this quantity to write down the 
antiferromagnetism condition: 

In Eq. (4), Zo is the Hamiltonian component quadratic in 
the operators; the first term gives the band energy of a single 
particle. This energy can be found in the usual manner: the 
eigenfunctions $p and the eigenenergy ~ ( p )  of the single-par- 
ticle problem are: 

where p is the quasimomentum, R, is the radius vector of 
site n, and summation over n ' f n  is implied in the last sum 
(and in all similar sums). 

The second term of Zo adds to the particle energy a 

Sn+=pnf, Sn-=p ,,, S,*=Snx+iSnll. quasi-momentum-independent contribution Z which we ex- 
Snr=Pn+Pn-i12, ,-, press in the form 

tL\ 
E=--E~+ (H-H,) , ~,=rnin  E ( p ) ,  

These operators commute at different sites, and on the same 
(7) 

where E, is the minimum value of ~ ( p ) ;  we have introduced site they satisfy the relations 
here the critical magnetic field Hc : 

p n P n f  +pn+pn=l ,  pnZ=(pn+)'=O. (3) 
HC='/2 ~ I ~ ~ - - & ,  

Having transformed to Pauli operators, we can refer to parti- n ' 
(8) 

cles instead of spins, and this we shall do. (the meaning of this definition will be made clear presently). 
Substitution of (2) in (1) gives We note that E, < 0 for an antiferromagnet; this follows from 

condition (5) and from the obvious identity 
%=8, ( H )  +%,+%;. 
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(the summation is over p, as usual, is within the limits of the 
Brillouin cell). The energy w(p) of a single particle with qua- 
simomentum p is thus the sum of (6) and (7), i.e., 

OI (PI = [E (PI - 8 0 1  + (H-Hc). (10) 

Finally, %', is the particle interaction; this operator de- 
termined jointly with conditions (3) the number of particles 
at H<H, .  

We proceed now to an exposition of the main basic idea 
of the paper. In a field H >  H, all the spins are parallel; the 
elementary excitation of such a state is a ferromagnetic mag- 
non with energy w(p) [Eq. (lo)]. Its energy is positive and its 
state stable so long as H > Hc [this clears up the meaning of 
the definition (g)]. We consider now H < Hc; the state with 
parallel spins becomes unstable, since accumulation of nega- 
tive energies is energywise favored [near the minimum of 
w(p)]. Of course, the number of particles at Hc - H 4 H, is 
small, i.e., we have a gas and we can use the gas approxima- 
tion for the solution. 

The gas approximation was developed for both Fermi 
and Bose particles. In our case there are neither, so that a 
reformulation of the problem is necessary. 

Flipped spins cannot be regarded as Bose particles be- 
cause of condition (3), which excludes centers occupied by 
two (and more) particles. This hindrance, however, can be 
taken into account differently by introducing infinite repul- 
sion at the center: 

after which restriction (3) can be lifted andp andp + regard- 
ed as Bose operators. 

We add thus to the Hamiltonian (4) the interaction (1 1) 
and obtain the initial Hamiltonian of our problem, but now 
for Bose particles. Transforming to quasimomenta [see Eq. 
(6)] we have 

a - OI (p) pPtg, + $- c [ U+E (P.-P.) I BP.+P.+PP~BP~.  
P *I 

(12) 

We have left out of %' the inessential constant $, (H),  and 
the usual quansimomentum conservation law is implied in 
the second sum. 

Close to H, , an antiferromagnet can thus be regarded as 
a weakly ideal Bose gas, so that the known results of Refs. 3 
and 4 can be used. 

We emphasize that we are forgoing the use of the sublat- 
tice state as the starting point. It is clear from the preceding 
that the particle concept and the analogy with a gas are more 
natural. What this leads to will be shown in Sec. 3. In the 
next section we discuss briefly certain problems not consid- 
ered in the preceding ones. 

2. GROUND STATE, EXCITATION SPECTRUM 

The fullest analogy with the usual Bose gas takes place 
in the case of one minimum of ~ ( p )  in the band; we confine 
ourselves to this case. 

A single minimum must be located at the boundary of 

the Brillouin zone at equivalent points that differ from one 
another by the reciprocal-lattice vector. It suffices therefore 
to introduce the coordinate p, of one of these points 

E (po) =zo=min E (p) . 
By analogy with a Bose gas, the ground state of the 

system considered is a state with a Bose-Einstein conden- 
sate.34 Of course, the particles accumulate to form a con- 
densate at the minimum of the band, i.e., at p = p,, and not 
with zero momentum as in the usual Bose gas (this difference 
is of no importance). 

An important role is played in a gas by pair collisions, so 
that to determine the ground-state energy and other charac- 
teristics it suffices, in the lowest-order approximations in 
density, to find only one solitary constant-the scattering 
amplitude of two particles with energy at the minimum of 
the band and without taking the other particles into account. 
The latter means that the corresponding vertex part T is 
calculated with the aid of zeroth Green's functions, i.e., we 
have for it the so-called "ladder" 

The summary frequency of the function T i s  chosen in accor- 
dance with the foregoing. We are interested in the value of T 
(p,). The analytic form of Eq. (13) is 

1 U+E (p-k) 
r (p)  =U+E (p-pl)- ly (k) ~ ( k )  (14) 

k 

(integration was carried out here with respect to the inner 
frequency). 

In the limit as U + a, it is convenient to transform to a 
different function: 

The operation ( a  -) is defined by Eq. (9); To is the vertex part 
for the XY model. As a result we get in lieu of (14) 

These equations define T,(p) and (T,). 
Solution of this system entails in the simplest cases no 

difficulty. In actual calculations and estimates we shall have 
in mind mainly a simple cubic (SC) lattice with nearest- 
neighbor interaction. For this lattice, 

E (p) = I  (cos p,+cos p,+cos p,) , po=n (1, 1, 1) , m=llZ, 

(17) 
where I> 0 is the interaction between the nearest neighbors, 
the distance between which is taken to be unity; the coordi- 
nates of the band minimum and the effective mass m at the 
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minimum are also given. 
We seek the solution of (16) in the form 

As a result we get 

where Y is the number of nearest neighbors (in this form, the 
solution is valid also for a bcc lattice). Adding Eq. (18) at the 
point p, to r, (1 S), we obtain the quantity of interest to us: 

(a special symbol was introduced for it). The constant T is 
expressed in terms of a Watson integral5; for a SC lattice we 
shall use hereafter in the estimates the approximate value 

We can now use the known First the energy. 
We express the interaction energy gi for a given number of 
particles as follows: 

where p g 1 is the number of particles per site (the small 
parameter of the problem); we disregard henceforth the cor- 
rection term in (21). We obtain the number of particles to- 
gether with the energy from the condition for the minimum 
of expression for the total energy 

wherep is the energy of a single particle at the minimum of 
the band [see (lo)]. The condition for the minimum of (22) 
yields 

The excitation spectrum is determined in the usual 
manner. We present the result for an excitation energy E (k ); 
the spectrum takes near the minimum the form 

and coincides with (E - E ~ )  far from the minimum. The 
quantity k is the quasimomentum reckoned from the value 
p, at the minimum; it has the meaning of the excitation qua- 
simomentum. The spectrum is linear at small k, as is usual in 
an antiferromagnet. In the present case the physical meaning 
of such a dependence is understandable: long-wave excita- 
tions correspond to acoustic oscillations of the considered 
magnon gas (with the "bare" spectrum (10)). We note that 
owing to the condition (23) on the density the interactionil is 
not contained at all in the result (24). 

We now consider a state with a particle flux, i.e., a mov- 
ing condensate, wherein the particles are accumulated not at 
the band minimum p,, but at another point q + p,. In this 
case the expression (22) for the energy is changed because the 
energy of a single particle is not - p but - p + q/2m; we 
must accordingly put in (23)p -p - q2/2m. The excitation 
spectrum E near the minimum is given by 

and far from the .minimum it coincides as before with 
(E - E,) .  Naturally, (25) is reminiscent of the spectrum of an 
ordinary Bose gas with a flux, the only difference is the ap- 
pearance of a dependence on q under the square root in (25). 
The reason is that the quantity specified in our problem is 
not the number of particles but the quantity p ,  which as- 
sumes the role of the chemical potential. 

The excitation spectrum remains thus stable (g>  0) at 
sufficiently low velocities. If furthermore the system energy 
is independent of the phase of the condensate wave function, 
as in (22), we can speak of superfluidity. We shall return to 
this question in Sec. 4. 

Now concerning the spin structure. One might seem- 
ingly be able to conclude that the system is not divided into 
sublattices, since the mean values of the operators Snx and 
Sny over a state with a fixed number of particles are zero. 
This is actually not so. A perturbation linear in fl and fl + 

alters this conclusion6 (such a perturbation is apparently al- 
ways present because of crystal-lattice imperfections). As a 
result, the mean values of Snx and Sny differ from zero. They 
are expressed in terms of the mean values of the operatorsfl, 
and0  ,+ [Eq. (2)], which are determined in the principal ap- 
proximation, just as in an ideal Bose gase, by the operators 
Dp0 and 0; replaced by the numbers 

pp.+ (Np) li2eiQ 

(p is an arbitrary phase). Thus, in the considered case of one 
minimum of ~ ( p )  in the band we obtain a state with two sub- 
lattices. It might seem that we have returned to the classical 
picture. The angle between the spin and the magnetic field, 
however, is given by the value (23) ofp as specified by us and 
differs greatly from the classical result (see the next section). 

We note that the spin structure is actually included in 
the condensate wave functions (details in Sec. 4). 

3. COMPARISON WITH THE QUASICLASSICAL APPROACH 

We compare here our results with those obtained by the 
traditional approach.' We recall briefly the procedure and 
the results of each stage (classical approach, quadratic Ha- 
miltonian) and take also the interaction into account. 

We consider an antiferromagnet with two sublattices, 
and perform the calculations for SC and bbc lattices with 
nearest-neighbor interaction. 

We begin, as usual by rewriting the Hamiltonian (I), 
introducing explicitly for each sublattice its own quantiza- 
tion axis. We transform to a new coordinate frame 1,2, 3 by 
rotating the x ,  y, z frame about the axis through an angle 
f 8, depending on the sublattice (the 2 axis coincides with 

y). In the new coordinates, the Hamiltonian (1) takes the 
form 

+(sin 20.-sin 20.) S.,Sn~3} +H (S.3 cos 0-S., sin On), 
n 
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where 9, = + 9, depending on the sublattice, and the oper- 
ators S,, , S,,, , and S,, are, as before, Pauli matrices multi- 
plied by 1/2. 

The first stage is the classical approximation: we re- 
place in (26) the operators by numbers, S,, -t - 1/2, 
S,, = S,, -+ 0 (independently ofthe number of the site), and 
find the minimum with respect to 9. This yields 

cos 0=HIH,. (27) 
We express the energy in a form that can be compared with 
(23), i.e., subtracting E ~ ( H ) ,  see (4), we obtain 

Z1/N=-p2/2h', h1=2vI. (28) 

It is easy to verify that R '>A; thus, for an SC lattice, taking 
(20) into account, we have R ' z U .  

The energy of the gas phase with the Bose condensate is 
thus substantially lower, and the magnetic susceptibility is 
higher (double for the SC lattice). This means that the classi- 
cal picture cannot reveal the main contribution to the energy 
near Hc . 

One might object that the principal quantity %', (H) is 
given by the classical approach with only a small error. The 
representation of the energy in the form (22), however, is in 
fact a Landau expansion in the small parameter p near a 
second-order phase transition (the transition point is 
H = H, ); a quantitative theory must of course, yield the co- 
efficients of this expansion. It should be noted that the classi- 
cal approach the usual calculation method in similar situa- 
tions. One example-displacive transitions in crystals when 
the phonon spectrum contains the so-called "soft mode." 
The role of the soft mode in an antiferromagnet is layed by 
the magnon spectrum (10) in the vicinity of the minimum. In 
the above-mentioned crystals the order parameter is chosen 
to be the classical sublattice displacement; the analog in an 
antiferromagnet is the deflection of the spins from the z axis. 
Nonetheless, the classical theory is found to be insufficient. 
The reason is clear: the classical approach is equivalent here 
to the self-consistent field approximation, which does not 
take the correlation effects into account (in our approach, see 
Sec. 2, the pair correlations are taken into account by a tran- 
sition to the total scattering amplitude). There is hope there- 
fore that allowance for the quantum fluctuations will im- 
prove matters, and so it does. 

The next stage is allowance for the quantum fluctu- 
ations within the framework of a quadratic Hamiltonian. 
The particle operators can be introduced by changing over in 
(25) to the Pauli operators (2) (where x ,  y, z must be taken to 
mean 1,2, 3). As usual, the terms linear in 0 and 0 + vanish 
because of condition (27). That part of the Hamiltonian (25) 
which is quadratic in these operators is of the form 

Near Hc,  the last term of (29) is small, so that conditions (3) 
can be disregarded and 0 and 0 + can be regarded as Bose 
operators. We transform in (29) to quasimomenta and dia- 

gonalize this operator. The contribution to the energy is 

(the angle brackets in this section denote averaging over the 
ground state of the Hamiltonian (29), i.e., over the quasipar- 
ticle vacuum). The sum of (28) and (30) is exactly (23). 

The quasiparticle spectrum obtained by diagonalizing 
(29) agrees near H, with the spectrum obtained in Sec. 2. 

The following must be noted here. The magnetic sus- 
ceptibility can be calculated using expression (23) for the 
energy. On the other hand, we can calculate first the mean 
value (S,, ) and from it the susceptibility; this turns out to be 
equivalent to calculating with the aid of expression (28) for 
the energy. The results are substantially different: this means 
that the state obtained in the traditional approach (classical 
treatment plus a quadratic Hamiltonian) is not an eigenstate 
and differs from it greatly (for an eigenstate we would have 
an equality, see Eqs. (1 1) and (16) of Ref. 7). This is not sur- 
prising, for an interaction that cannot be neglected in this 
case was not taken into account. 

To verify this, consider the unaccounted-for part (of 
third and fourth order i n 0  and0 +) of the Hamiltonian (26): 

1 
26' - - I,,.. ( p n + p n t )  p n r t p n ,  ( s in  20.-sin 2%) 

3 -  4 
n t n '  

For a rough estimate of the contribution of this operator we 
can simply average it over the vacuum of the quasiparticles. 
In this case only the second term of (3 1) operates, while the 
principal contribution near H, , i.e., the one proportional to 
p2, is made by the anomalous mean values: 

We present the final result: 

As for the contribution of the first term in (3 I), its estimated 
value in second-order perturbation theory yields the small 
value -p5I2 (in analogy with the correction term in (21)). 

The resultant energy, i.e., the sum of (28), (30), and (32), 
turns out thus to be higher than (23) for the gas phase with a 
Bose condensate (by approximately 25% for an SC lattice, 
see (20)). This to be expected, for there can be nothing but a 
gas in this situation. 

It appears that if it were possible to solve rigorously the 
problem with the Hamiltonian 2YZ + 2Y3, as well as with 
condition (3), the state obtained would coincide with that 
considered in Sec. 2. It goes without saying that this ap- 
proach is not simple, whereas the analogy with the gas leads 
directly to the goal. 

6. DISCUSSION 

Let us summarize. The analogy with the gas permits a 
correct account to be taken of the correlation effects, or more 
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accurately, of pair correlations. The problem is reduced to 
calculation of the interaction constant A that determined the 
energy and the magnetic susceptibility. The exchange inter- 
action enters also via the effective mass m on which the exci- 
tation spectrum depends; in the general case m is a tensor. 

Knowing A we can find also other characteristics, e.g., 
the transition temperature T,. Let us consider a state above 
the transition point (without a condensate). The particle in- 
teraction energy 29,: in this phase is given by the expression 

This means that the particle energy shift due to the interac- 
tion is Up ;  this value (with opposite sign) can be regarded as 
an increment to the quantity p that plays the role of the 
chemical potential; the considered state is stable when the 
effective chemical potential (p - U p )  is negative: 

Its vanishing gives the Bose-condensation point. For the iso- 
tropic minimum we obtain hence 

This is the sought transition curve in the (T,H) plane in the 
case of a second-order transition. 

At the transition pointp = p / U ,  see (33). It is interest- 
ing to note that the number of particles from the transition 
point increases (the magnetization decreases) both with ris- 
ing and with dropping temperature Go = p/A ) at absolute 
zero, see (23)l. 

The analogy with the gas yields one other important 
characteristic-the periods of the spin structure. It is easily 
seen that these periods are determined by the coordinates of 
the minima of the function ~ ( p )  (6). Without touching on the 
case, trivial in this sense, of a single minimum (Fig. 2), let us 
explain this using another, likewise simple, example, the 
more so since it is of interest on its own. Namely, we consider 
the case of two minima of ~ ( p )  in the band; we denote the 
coordinates of the minima by + p, (now p, is not on the 
boundary of the band). This situation is possible in a uniaxial 
crystal. The system energy is written in the form 

wherep, andp, are the particle numbers per site in valleys 1 
and 2. In this case there are two types of interaction: between 
particles of the same valley, and between particles from dif- 
ferent valleys; accordingly, two interaction constants ap- 
pear, A ,  and A,. Equation (34) is a direct generalization of 
(22) to this case. 

Minimization of (34) is meaningful only under the con- 
dition 

h,>O, h,+h2>0. 

States of two types are possible: 
1) A ,  <A,;p, = p  =p/A,,pZ = 0 (or vice versa), 

We have here, as it were, a mixture of two gases, and the 
first case corresponds to stratification of the phases. Within 
the confines of one phase (domain) we obtain in the principal 
approximation 

- 
( P n ) = Y p  exp {+i(poRn+cp)), (S,,) 

=-'Iz+p, (~,,)=1'; cos (poR,+q), 

(s,,>=~l> sin (p,Rn+rp), 

where p is an arbitrary phase. The spin structure in this case 
is a right- or left-hand helix, depending on the type of do- 
main (the different signs in the expressions). 

In the second (one-domain) case we obtain a spin struc- 
ture of the fan type 

In this case the solution contains two arbitrary phases 
corresponding to two non-phased condensates. We note that 
the spin-structure periods are generally speaking incom- 
mensurate with the initial-lattice periods. 

It can be seen from the foregoing expression that both 
the periods and the type of the spin structure are determined. 
Something similar occurs also in the arbitrary case. This ex- 
ample is of interest also because it reveals a rare case of con- 
densates that are independent in phase. In the general case 
the phase differences are fixed by the minimum-energy con- 
ditions. 

So far we have considered an isotropic case. Uniaxial 
magnetic anisotropy does not change anything significantly 
if the magentic field is parallel to the axis. Actually, in this 
case there exists as before a good quantum number-the pro- 
jection of the total spin on the magnetic-field direction; the 
total number of particles is correspondingly preserved. The 
analogy with the Bose gas remains therefore in force. 

As for arbitrary directions of the magnetic field and of 
the anisotropy axis, we note only one thing: even at arbitrar- 
ily small anisotropy transverse to the field, the leeway in the 
condensate wave-function phase is lost (the so-called fixing 
of the phase takes place), and with it also the superfluidity 
property. 

We thank V. L. Pokrovskii for an interesting discussion 
and for support. 
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