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Because of the isotropic character of the exchange interaction in a Heisenberg ferromagnet, the 
total spin (magnetic moment) vector is conserved. If allowance is made for the relativistic dipole- 
dipole interaction, which is anisotropic with respect to rotations in spin space, this conservation 
law breaks down. In this case, however, the Hamiltonian of the ferromagnet is invariant with 
respect to transformations which include rotations in both spin and coordinate space. In the 
present paper we construct the corresponding integral of motion. 

THE LAGRANGIAN 

The classical description of a ferromagnet in the long- 
wavelength approximation is based on the Landau-Lifshitz 
equation1 

Here M = M(r, t ) is the magnetization vector (M2 = const), 
g is the gyromagnetic ratio, and He, is the effective magnetic 
field, given by the variational derivative 

where E is the energy of the system. In the case under consi- 
deration, the expression for E is of the form1 

The first term in braces is the density of the inhomogeneous 
exchange energy. The other two terms describe the magnetic 
dipole interaction; here the field h satisfies the magnetostatic 
equations 

curl h=O, div h=-4n div M. (4) 

Expression (3) does not contain terms corresponding to oth- 
er interactions (such as the anisotropy energy or the Zeeman 
interaction with a constant external field). We shall later 
elucidate the effect of such terms on the conservation of the 
angular momentum of the system. 

It is easy to see that the projection m, of the angular- 
momentum density vector m = M/g onto an arbitrary axis z 
and the corresponding aziumuthal angle p = arctan(m,/ 
m, ) are the canonical conjugates of the momentum and co- 
ordinate: 

(on the left is the classical Poisson bracket). Relation (5) fol- 
lows from 

( )  7 + ( f ) } = - i + ( t )  6 ( r - r )  m+=rn=+im,, 

which is the classical limit obtained from the Poisson 

bracket for the spin components. 
The Hamilton equations obtained from (3) with such a 

choice of canonical variables coincides with the equations 
form, and q, obtained from (1). This was pointed out in Ref. 
2. The Lagrangian of the system is defined in the usual way': 

where the energy density (3) is 

h2 
-g{(m2-m,2)'"(hZ cos cp+h, sin 9)  +m,h,}- -. (7) 

8n 

Here we have used the relation 

As the "true" Lagrangian variables in (6 )  one should take the 
generalized coordinate p and generalized velocity 4. The 
momentum m, is eliminated with the aid of the equation 

Here the system is described, as it should be, by a single 
Lagrange's equation of second order in time and by Eqs. (4). 
If one chooses as the generalized coordinate for the field h 
the scalar potential 

h=V$, (9) 

then the first of Eqs. (4) is satisfied identically, while the 
second is the Lagrange's equation with respect to the varia- 
bles $, *, V $. 

Actually, it may be difficult to eliminate one of the ca- 
nonical variables, m, or p, if the coupling between them is 
nonlocal. In the case under consideration the nonlocality 
will be independent of which variable is eliminated. Substan- 
tially simpler in this respect is the continuum Ising model, in 
which the expression for the energy contains spatial deriva- 
tives only of m, : 

ag2 am, ' 
 sing = J { (%) +f(mc, p)} dv, 
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where the second term in braces includes any interactions 
which contain the field m(r, t ) but not its derivatives (this 
would include the dipole interaction). Using the equation 

one can express q, in terms of m, and m,, after which the 
equation Q, = SE /am, becomes a Lagrange's equation with 
m, and m, as the generalized coordinate and velocity, re- 
spectively. 

Returning to Lagrangian (6), let us treat the variables 
m, and q, as independent generalized coordinates. Then the 
Lagrange's equations are the same as the Hamilton's equa- 
tions for a system whose energy is given by (3). Thus, the 
description of the system by means of a Lagrange's equation 
of second order in time for one generalized coordinate is 
equivalent to the description by means of two first-order 
equations for m, and e, treated as independent functions. In 
this respect a magnet described by a magnetization field M is 
no way different from any classical mechanical system. In 
fact, let us take the example of a one-dimensional system 
with Hamiltonian X(p, q). If the corresponding Lagrangian 
2 =pq - Z ( p ,  q) is treated formally as a function of the 
generalized coordinates p and q and velocities p and q, then 
the Lagrange's equations are the same as the Hamilton's 
equations for the initial one-dimensional system. An anal- 
gous possibility is used to obtain the Schrodinger equation 
from a Lagrangian3 in which the wavefunctions +and +* are 
treated as independent even though they are canonical con- 
jugates. 

ANGULAR MOMENTUM OF THE MAGNETIC SYSTEM OF A 
FERROMAGNET 

Starting from Lagrangian (6), let us construct the ener- 
gy-momentum tensor by the standard rules4: 

(i, k = 1,2,3,4; x ,,,,, = x,  y, z; x, = t ). This tensor yields 
conserved energy and momentum owing to the invariance of 
the action with respect to space-time translations. The stress 
tensor 

T,, , , - -d {mZ.%* + ( m l - d )  -- 
mz-mSz a ~ ,  axv ax, axv a, 1 

in the presence of a magnetic dipole interaction is nonsym- 
metric, with the result that the orbital angular momentum 

is not conserved: 

However, since the magnetic system under study, including 
the field h, is isotropic, an integral of motion should exist. To 
construct this integral of motion one usually uses Noether's 

t h e ~ r e m , ~  according to which an invariance of the action 
with respect to some transformation implies that the corre- 
sponding physical quantity is conserved. In the present case 
the transformation in question is a spatial rotation of the 
system. For an infinitesimal transformation we have 

where Sw,, = - Sw, are the parameters of the rotation. 
Energy (3) is invariant with respect to arbitrary trans- 

formations (13), whereas the part of the integral of motion 
that is due to the "kinetic" term m, QI in (6) is invariant only 
under rotations about the z axis, which has no physical dis- 
tinction whatsoever. 

Let us first consider a rotation about the z axis. In this 
case Sm, = 0, Sq, = Sw-Sw, , and the variation of Lagran- 
gian (6) under such a rotation is equal to zero. On the other 
hand, using the Lagrange's equations 

we obtain 

Here Sq = Sq - q ,  Sx, is a variation of the form of the gen- 
eralized coordinates, a commutation with differentiation 
with respect to the coordinates and time.5 It follows from 
(13) that under rotation we have 

which gives a conservation law for the projection of the an- 
gular momentum onto the z axis: 

where 

is the density of thez component of the total angular momen- 
tum, and 

is the corresponding flux density. The second term in (17) is 
the density of the z projection of the orbital anguIar momen- 
tum (1 I), and the first term can be regarded as the density of 
the spin angular momentum. In our case the latter density 
coincides with the density of the magnetic moment of the 
ferromagnet (to within a factor ofg). Equation (16) is thus the 
generalization of the conservation law for the angular mo- 
mentum of the magnetic system of a ferromagnet having a 
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magnetic dipole-dipole interaction in addition to isotropic 
exchange. If we neglect the dipole-dipole interaction, the 
continuity equation (16) is valid for each term of (17) sepa- 
rately. In this case the flux density of the spin angular mo- 
mentum is equal to the first term in (18), while the remaining 
terms (for $ r O )  give the density of the orbital angular mo- 
mentum. Equation (16) for the spin density in this case, as is 
easily seen, coincides with the Landau-Lifshitz equation for 
m,. Conservation of the spin and orbital angular momenta 
separately when only the exchange interaction is taken into 
account is a consequence of the invariance of the system 
energy with respect to independent rotations in spin and co- 
ordinate space.2 As we have already mentioned, Lagrangian 
(6) is not invariant with respect to rotations about the X and 
Y axes, so that one cannot use Noether's theorem directly. 
One can, however, use a modification of this theorem to con- 
struct the corresponding integrals of motion. 

Under a rotation about the X axis the variation Sm, is 
given by formula (13), and 

m, sin cp &=- [ ( ~ ~ ~ z ~ s *  m, + . ( m z - m ~ )  .@I 60-  

Direct evaluation of the variation of the Lagrangian then 
gives 

(Sw is the rotation angle), i.e., although SL? #O, it does re- 
duce to a total time derivative. Therefore, subtracting the 
resulting expression from (15), we obtain the conservation 
law 

a,, 81, o, -+-= 
at  ax, 

where the angular momentum density is 

and the flux density is 

aT m2 a m, 
J ~ , = ~ ~ ~  (m2-mZ2) %m, cos - -ag2 $in cp - 

ax, (m2-m2) ax, 
8 9  [r, Vlp],+agz(m2-m:) - [r, Vqli -gmJr, V'1,- -- 

4n ax, ax, 
mz dm, 

+ag2-- [r, Vm,]r+s?ewxr. 
mz-m,2 axl, 

Expressions for J,,, and Jyp are found in an analogous man- 
ner. 

As a result, we obtain a conservation law for the total 
angular momentum vector3 

Angular momentum (19) is not conserved as a vector if the 
Zeeman interaction with an external magnetic field and the 
anisotropy energy are incorporated in addition to the ex- 

change and dipole interactions. If the anisotropy is uniaxial 
and the field is directed along the preferred axis, then the 
projection of J onto this axis is conserved. If the field is di- 
rected at an angle to the anisotropy axis or if the anisotropy 
is biaxial, then none of the angular momentum projections is 
conserved. 

On the other hand, if one neglects the dipole interaction 
then the orbital angular momentum vector, but not the spin, 
will be conserved for any configuration of the field and an- 
isotropy axis. This is a consequence of the symmetry of the 
system with respect to rotations in coordinate space and the 
lack of symmetry in spin space. In this case the stress tensor, 
as it should be, is symmetric. 

Finally, for a magnet with an exchange interaction 
which is anisotropic in configuration space, i.e., when 

the orbital angular momentum is not conserved (the stress 
tensor in nonsymmetric) but the total spin is conserved (we 
have isotropy in spin space). 

Expression (19) for angular momentum J is not sym- 
metric in the projections of angular momentum m. One can 
easily see, however, that going over from m, and cp = arc- 
tan (my /m, ) to other corresponding pairs will change the 
integrand in (1 9) by derivatives of some function with respect 
to the coordinates. Therefore J is, as it should be, indepen- 
dent of the choice of axes. 

I1Lagrangian (6) corresponds to choosing q, as the generalized coordinate. 
If m, is taken for the generalized coordinate, then 5! = m,q, - &4 

"The term gmV$ in the energy density "intermingles" these spaces. 
3'The analogous integral of motion in the linear spin-wave approximation 
is found in Ref. 6. An expression for the second term in the integral in (19) 
is given in the monograph of Ref. 7. 
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