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Nonlinear flows in nondissipative dispersive hydrodynamics are examined. It is shown that the 
description of such flows requires the introduction of a new concept, namely, a discontinuity of a 
special kind, called self-similar. This is a nondissipative shock wave and replaces the strong discon- 
tinuity of ordinary hydrodynamics. The self-similar discontinuity expands linearly in time. It is 
shown that it can be inscribed into the solution of the Euler equations. Conditions formulated for 
the boundaries of the self-similar discontinuity permit the closure of the Euler equations of disper- 
sive hydrodynamics, i.e., they replace the shock adiabat of ordinary dissipative hydrodynamics. A 
classification is carried out, and a complete solution is given, for the decay or arbitrary initial 
discontinuities in the hydrodynamics of highly nonisothermal plasmas. 

The development of a finite-amplitude perturbation in 
the hydrodynamics of perfect fluids described by the Euler 
equations usually leads to the appearance of a singularity 
(Ref. 1, $94). A strong discontinuity appears behind the sin- 
gular point, and is the origin of a shock wave. It is important 
to note that this shock front is followed by an expanding 
region in which a change of entropy has taken place, i.e., a 
change in the equation of state of the gas. The dissipation 
responsible for this change occurs in the region of the discon- 
tinuity. The nondissipative equations of a perfect fluid must 
therefore be augmented on the discontinuity by a special 
condition in the form of a shock adiabat that matches the 
thermodynamic quantities on the two sides of the discontin- 
uity surface. The shock adiabat does not depend on the rate 
of dissipation: the latter determines only the width of the 
region of discontinuity. 

The picture changes radically in the absence of dissipa- 
tion, when all the higher-order corrections to the Euler equa- 
tions are purely dispersive in character. Such conditions oc- 
cur, for example, in collisionless plasma, in waves on water, 
in electroacoustics, and in other Undamped oscil- 
lations develop in dispersive hydrodynamics. In the region 
behind the singularity, where their amplitude is at a maxi- 
mum, they form a nondissipative shock wave.4 The basic 
properties of this type of wave when its amplitude is small 
were determined by Pitaevskii and one of the present auth- 
o r ~ , ~  who obtained rigorous asymptotic solutions for the 
case of a weak nonlinearity for which the equations of disper- 
sive hydrodynamics degenerate to the Korteweg-de Vries 
(KdV) equation. It turns out that the initial discontinuity in 
the system described by the KdV equations spreads into the 
oscillation region that expands rapidly in time. The expan- 
sion process is determined by oscillations that have the fol- 
lowing structure. They begin with a nonstationary chain of 
solitons whose separation grows logarithmically with time. 
The solitons gradually degenerate into a quasistationary 
wave. The amplitude of oscillations in this wave decreases 
with increasing distance from the soliton front, and their 
shape becomes nearly sinusoidal. The average (over the os- 
cillations) densities and velocities on the leading wavefront 

have a weak rather than a strong discontinuity with infinite 
derivative, named singular discontinuity in Ref. 5. The sin- 
gular discontinuity moves with ultrasonic velocity. This par- 
ticular form of discontinuity appears only in dispersive hy- 
drodynamics. Ultrasonic weak discontinuities are 
impossible in ordinary dissipative hydrodynamics.' 

One can now understand the fundamental difficulties 
that arise when an attempt is made to solve nonstationary 
problems in dispersive hydrodynamics when the nonlinear- 
ity is not small. In ordinary hydrodynamics, the situation 
reduces to the solution of only the Euler equations augment- 
ed by the shock-adiabat condition, whereas in dispersive hy- 
drodynamics there is a region of nonlinear oscillations in 
which the Euler equations are not valid. In its general form, 
the asymptotic set of equations describing the oscillatory 
part was formulated by whitham6 on the assumption that 
the wave picture was quasistationary as a whole, but it actu- 
ally turned out to be too complex and has not been used in 
practice to solve nonlinear problems." Dubrovin and Novi- 
kov7 have put forward a general method that can be used to 
write down the average equations in Hamiltonian form. As 
for direct numerical calculations, it is important to note that 
the presence of a small dispersive parameter governing the 
scale of the resulting oscillations leads to an essential limita- 
tion on the temporal and spatial dimensions of the region to 
be computed, and this complicates the determination of the 
asymptotic properties of the solutions. 

The aim of this work is to investigate essentially nonlin- 
ear nonstationary flows in dispersive hydrodynamics, mak- 
ing simultaneous use of analytic and numerical methods. We 
shall demonstrate the necessity for introducing a new con- 
cept, namely, that of a special type of singularity, which we 
refer to as self-similar and which replaces the strong discon- 
tinuity of ordinary hydrodynamics. Nonlinear problems of 
dispersive hydrodynamics are then found to become in prin- 
ciple much simpler and reduce to the solution of the Euler 
equations augmented by special conditions on the boundar- 
ies of the self-similar discontinuity. As a specific example, 
we shall consider the decay of arbitrary initial discontinui- 
ties in the hydrodynamics of nonisothermal plasmas. 
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Section 1 investigates the general structure of nonlinear 
flows in the hydrodynamics of a nonisothermal plasma. 
Analysis of oscillating components in the region of the rar- 
efaction wave, in the region of weak discontinuities, and in 
the region of the plateau has shown that they all decay in 
time in a power-law manner (in proportion to t -", where 
a = 1/3, 1/2, and 2/3) because of dispersive effects. The 
only exception is the singular region where there is eventual- 
ly established a quasistationary wave whose parameters, i.e., 
amplitude, wavelength, and so on, depend only on T = x/tc,, 
wherec, is the velocity of sound. The asymptotic form of the 
solution as t-cc in terms of the self-similar variables T is 
thus identical with the solution obtained in Euler hydrodyn- 
amics, except for the region of the quasistationary wave. 

The quasistationary-wave region T-<T<T+ is dis- 
cussed in $2. It is shown that the structure of the quasista- 
tionary wave is completely analogous to that investigated in 
Ref. 5. In particular, the leading wavefront TZT+ always 
has soliton properties, and the distance between the solitons 
increases logarithmically with time. The average density E(T) 
and average velocity F(T) undergo a large change in the re- 
gion of the quasistationary wave. This change is particularly 
large on the leading wavefront where these two quantities 
have a singular discontinuity: E,F a (lnlr, - 71)- '. Since the 
self-similar solutions of the Euler equations contain only the 
rarefaction wave or the plateau (n and u are constants), the 
transition from the plateau to undisturbed gas in the absence 
of the rarefaction wave can occur only in the region of the 
quasistationary wave. The quasistationary wave thus re- 
places the shock wave of ordinary hydrodynamics. It can 
naturally be referred to as the nondissipative shock wave 
(NSW). 

Thus, the Euler equations are asymptotically valid in 
dispersive hydrodynamics of nonisothermal plasmas every- 
where except for the self-similar expansion region 
T- < T < T+. We shall refer to this region as the self-similar 
discontinuity. It is shown in $3 that a transition across the 
self-similar discontinuity leads to a fully defined change in 
the gas velocity v, which depends only on the density discon- 
tinuity: 

In the hydrodynamics of nonisothermal plasmas, 
P(n)  = In n. The relation (1) assures the closure of the Euler 
equations. In dispersive hydrodynamics, it plays the same 
role as the shock-adiabat condition on a strong discontinuity 
in ordinary hydrodynamics. The important point is, how- 
ever, that there is no change in entropy in the region behind 
the self-similar discontinuity, i.e., behind the NSW. This is 
the fundamental distinction between the self-similar discon- 
tinuity and the strong discontinuity of ordinary hydrodyna- 
mics. 

Thus, when asymptotic solutions are obtained in dis- 
persive hydrodynamics, we can proceed as in ordinary hy- 
drodynamics by confining our attention to the Euler equa- 
tions augmented by the conditions (1) on the self-similar 
discontinuity. This enables us to perform a classification, 

and to construct a complete solution, for the decay of an 
arbitrary initial dicontinuity (94) 

§I.  STRUCTURE OF ONE-DIMENSIONAL FLOWS 

Consider the structure of nonstationary one-dimen- 
sional flows in dispersive hydrodynamics of a highly noni- 
sothermal plasma described by the equationss 

an a d v  dv e dcp -+- (nv)=O, -+v-+--=0; 
dt ax dt dx M dx (2) 

where n is the ion density, v is the hydrodynamic velocity of 
the ions, M is their mass, q, is the electric potential, e and T, 
are the charge and temperature of the electrons, and no is the 
density of undisturbed plasma. The initial conditions corre- 
sponding to the decay of an arbitrary initial discontinuity at 
t = 0 are of the form 

n,,~=n~, n.,,=n,; v,,,=O, v,,,=v,. (4) 

Numerical integration of (2) and (3) subject to the initial 
conditions (4) yields the results shown in Fig. 1. It is clear 
that nonlinear flow is accompanied by efficient excitation of 
oscillations. The scale of these oscillations is determined by a 
parameter with the dimensions of length, which is contained 
in (3) viz., the Debye length: 

D ( n )  = (T./4ne2n)". ( 5 )  

Letting D-0, i.e., neglecting the term containing the princi- 
pal derivative in (3), we arrive at the quasineutral limit in 
which (2) and (3) assume the form of the Euler equations of 
isothermal hydrodynamics: 

I n '  n 4 4 1  n y 

ff,z 

FIG. 1.  Distribution of the potential $ = ep /T,,  velocity v, and density n  
as plasma flows into plasma (n ,  = 0.5n0, u,  = u, = 0)  at time t = 80 0 - I ,  

f2 = (4~e*n ,JM)"~ .  Dashed line-solution of the equations of dissipative 
isothermal hydrodynamics (6). 
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Thus, in the Euler limit, the equations of dispersive hydro- 
dynamics become identical with the equations of ordinary 
dissipative hydrodynamics, as should indeed be the case. 
The solution of (6) with initial conditions (4), obtained by the 
standard method in ordinary hydrodynamics (Ref. 1, §85), is 
shown in Fig. 1 by the dashed line. 

When we compare the solution in Fig. 1 with the solu- 
tion obtained in ordinary hydrodynamics, we cannot but 
note the first considerable qualitative similarity between the 
structures. This is particularly evident in the self-similar var- 
iables T = x/tc,. There are well-defined regions on all these 
curves: the region of unperturbed dense plasma (I), the self- 
similar expansion (11), the plateau (111), the shock wave (IV), 
and the unperturbed rarefied plasma (V). An analogous cor- 
respondence arises when we compare the other solutions of 
(2), (3), and (6) under the same initial conditions. It follows 
hence that the overall structure of nonlinear one-dimension- 
a1 flows in dispersive hydrodynamics of nonisothermal plas- 
mas is determined by the Euler equations, just as it is in 
ordinary hydrodynamics. 

We emphasize that the rigorous procedure of eliminat- 
ing the small parameter with dimension of length from the 
equations of dispersive hydrodynamics does not lead at all to 
the Euler equations but to the very complex chain of nonlin- 
ear equations obtained by Whitham.6 Despite this, we see 
that the exact (numerical) solutions of the equations of dis- 
persive hydrodynamics remain very similar in their struc- 
ture to the solutions of the Euler equations. 

It is important to note that it is only within the frame- 
work of the Euler equations without parameters having the 
dimension of length that we can distinguish unequivocally 
between the singularities that arise in nonlinear flows, name- 
ly, the strong and weak discontinuities that are the most 
important qualitative characteristics of the process. The sin- 
gularities are smoothed out in equations in which the small 
dimensional parameters are retained. The following singu- 
larities are well known to arise in ordinary Euler hydrodyna- 
mics: weak discontinuities, tangential discontinuities, and 
strong discontinuities. They can be seen in the example illus- 
trated in Fig. 1. The character of these discontinuities is sub- 
stantially transformed when we pass to dispersive hydrodyn- 
amics. Let us therefore perform a detailed investigation of 
the structure of the solution of (2) and (3), using analytic 
approximations. 

Weak discontinuity on the boundary of the unperturbed 
region. The equations (6) of isothermal hydrodynamics have 
the following self-similar solution: 

A weak discontinuity appears on the boundary of the region 
of unperturbed plasma (7a) and rarefaction wave (7b). The 
departure of the exact numerical solution of (2) and (3) from 
(7) is illustrated in Fig. 2. It is clear that it falls rapidly with 
time. To estimate the rate of this decrease, we recognize that 
the dimensionless potential P changes little in the region of 
the weak discontinuity: $< 1. We can therefore confine our 

FIG. 2. Difference between the exact numerical solution and the approxi- 
mation (7) in the region of the rarefaction wave 1 - t = 700/f2; 
2 - t =  loo/f2. 

attention to the weak-nonlinearity approximation, i.e., we 
can use the KdV equation to which (2) and (3) reduce at $4 1 
(Ref. 2). The structure of the weak discontinuities in the KdV 
approximation is examined in Ref. 9, where it is shown that a 
weak discontinuity is described the function 

qI=t-'"f (p) , p=x'/t"*, xt=x-cot, (8) 

where c, = c, + v is the velocity of the weak discontinuity. 
On the whole, this formula agrees with the numerical calcu- 
lation illustrated in Figs. 1 and 2. However, it is found that 
the solution does not reach the asymptotic form (8) even for 
the longest computation time t = 1000/f2, a =  (4n-e2nd 
M ) ' / ~ .  

Rarefaction wave. It is clear from Figs. 1 and 2 that, in 
the region of the rarefaction wave, the numerical solution 
rapidly approaches the self-similar limit (7). Deviations from 
it decrease with time in proportion to l/t. 

Weak discontinuity on the boundary of the rarefaction 
wave and the region of theplateau. It is clear from Fig. 1 that 
this discontinuity is accompanied by oscillations in the re- 
gion of the plateau. The general structure of the oscillations 
in the region of the discontinuity takes the form of the Airy 
function; their amplitude decreases with time in proportion 
to l/t 'I3 and the wavelength increases at t 'I3. The properties 
of this weak discontinuity are not consistent with the discon- 
tinuities established in Ref. 9 on the basis of the KdV equa- 
tion. The reason for this discrepancy is that the analysis giv- 
en in Ref. 9 does not take into account oscillations excited in 
the region of the plateau which, as will be shown later, have a 
dominating influence on the structure of the discontinuity. 

Plateau region. For sufficiently long t, the average (i.e., 
the average over the oscillations) numerical values of E, ij and 
$ turn out to be constant throughout the plateau region 
between T = T~ = - 1 + E/c, and T = T- to within the 
maximum precision of the numerical calculation. For exam- 
ple, in the case shown in Fig. 1, (n, = 0.5n0, v, = v, = O), the 
average values E, 5, $are related to the values n, ,up ,$p on the 
plateau as follows: 

OsciIlations on the plateau. It is clear from Fig. 1 that 
oscillations on the plateau have a distinctive structure: the 
amplitude and wavelength vanish at the point x, z0.346cSt. 
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This property persists for all t. Consequently, T, is a con- /DO 
stant: d 1 

with T, equal to the average velocity E/c, of the gas on the 
plateau. The point x, must therefore coincide with the point 
of degenerate tangential discontinuity of ordinary hydro- 
dynamics (Ref. 1, $81). This is a singular point relative to 
which the medium is immobile and through which there is 
no flow of material. The region to the left of it contains the 
gas that occupied the left half-space prior to the start of de- 
cay, and the region to the right contains the gas that occu- L 

-0,s 
~ i e d  the right half-space. - 

We shall use Eqs. (2) and (3) linearized in terms of 
FIG. 3. Wavelength1 of potential oscillations on the plateau as a function 

n ~ , v ~ y $ ~  the the On the of r ,  The curve is a plot of ,131, pointsnumerical solution, , , -  

plateau. We then have Do = (~,/4?re~n,)'/~. 

+- 
the plateau signifies simultaneously the vanishing of the tan- 

n- (,, t )  = no (k) ei(U-w" dk, n.=n--np, 
- ca 

(lo) gential discontinuity. Consequently, in the asymptotic limit 
as t + ~ ,  there is no degenerate tangential discontinuity in 

where n,(k ) is the Fourier transform of the initial perturbs- the hydrodynamics of nonisothermal plasmas. 
tion. Similar expressions can be obtained for v-, $-. The It is clear from Fig. 1 that the oscillation amplitude 
frequency w = w(k ) is defined by the dispersion relation increases sharply near the boundary between the plateau re- 

gion and the rarefaction wave. This should indeed by the 
o (k) =kvp+kc,l[l+ (kDP)'l5 , ( ) case since this boundary is defined by 

where D, is the Debye length (5) for n = n,. It is clear from t=-l+v,lc,, 
(2) and (3) that the initial perturbation n -(x,O) is produced 
nearx=:O. Formula (10) describes its spreading over the pla- i.e., ~T*I = 1, and, as is clear from (12) and (131, the wave- 
teau region. Using the method of steepest descent to evaluate length A and the oscillation amplitude a increase sharply as 
the integral (lo), we find that IT* 1-1. This is the region of the caustic for the oscillations 

on the plateau. It follows from (13) that their structure near 
the caustic is described by the equation 

exp[i(kSx-o (k') t) +in/4], (12) a 

where k *(x,t ) is determined by the equation 

do (k') /dk=x/t. 

Using this together with (1 I), we find that 

The numerical calculations are compared with (13) in Fig. 3. 
As can be seen, there is complete agreement. 

We emphasize that the initial perturbation of the poten- -0,ZJ 
tial and of the electron density, determined in accordance 
with (2) and (3), does not resemble a sharp discontinuity such 
as (4), but is spread out with a scale - D  over the region near 
xzO. The oscillations on the plateau are the result of the 0 O,O> 0,f ( t a ~ v z  
decay of this initial perturbation. They vanish in the limit as 
t+w, and, as is clear from (12), their amplitude a tends to 
zero: a cc t - I / *  (Fig. 4). This result is then an obvious conse- 
quence of energy conservation in nondissipative media: the D J f l  

energy density of the oscillations is proportional to a2 and 
the region of the plateau occupied by them expands in time in 0 

proportion to t. FIG. 4. Time dependence of the potential oscillation amplitude a on the 
We empashize that the vanishing of the oscillations on plateau for different values of 7. 
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wherex, = t (c, - up) is a point of weak discontinuity on the 
boundary of the plateau region. It follows from (14) that os- 
cillations near the discontinuity are described by the Airy 
function, their wavelength increases with time in proportion 
to t 'I3, and their amplitude decreases as a t - 'I2. This is in 
agreement with numerical calculations (Fig. 3, and dot-dash 
curve in Fig. 4). 

52. QUASISTATIONARY WAVE 

Consider the region T > T ~ .  It is clear from Fig. 1 that 
the oscillations in this region grow with increasing T. More- 
over, their asymptotic behavior changes radically near the 
point T-. Whereas at T < T-, their amplitude decreases with 
time as t -'I2, it tends to a stationary, t-independent level 
(Fig. 4), at T > 7-. The quasistationary wave will thus begin 
at T > T-. It fills the self-similarly expanding region from the 
trailing edge T = T-, on which the generation of oscillations 
takes place, to the leading front T = T+ on which these oscil- 
lations assume the form of individual solitons. In the case 
shown in Fig. 1, for example, T- = x-/c, t z 0.84 and 
T+ = x+/c,t =: 1.24. 

The quasistationary wave is an almost stationary non- 
linear wave with slowly (in comparison with wavelength and 
the oscillation frequency) varying parameters, namely, the 
amplitude, velocity, and wavelength. The stationary wave 
itself is readily found as the stationary oscillating solution of 
(2) and (3). It is described by 

where W,, and W,,, are, respectively, the maximum and 
minimum values of the function W ($), uc, is the phase veloc- 
ity of the wave, ands2 is a parameter characterizing the oscil- 
lations (it varies from zero to 1). W h e n s Z 4 ,  the oscillations 
have a small amplitude and sinusoidal shape. When s2 = 1, 
they take the form of individual solitons whose velocity is 
known4 to be uniquely related to the amplitude $, : 

u,'= (eWm-l) '12 (eh-qm-l) .  (16) 

As s2-+1, the solution (1 5) takes the form of a chain of soli- 
tons whose separation A increases logarithmically with de- 
creasing 1 - s2: 

The other parameters, for example the wavelength, remain 
finite as s2-+ 1 : 

u=u,-C2 (1-s2). (18) 

The quantities C ,  and C2 are determined by the parameters 
of the stationary wave. 

Let us now examine in greater detail the structure of the 
quasistationary wave in the neighborhood of its leading 
T ZT+ and trailing TZ T- edges. 

Trailing edge. In the neighborhood of the trailing edge 

T ZT-, the amplitude a of the oscillations is small, so that it 
is natural to examine the solution by expanding it in powers 
of a: 

n=np (1+nia+n2az+ . . .) , v=vp+c. (uia+v2az+ . . .) , 

where np ,up ,$p are the constant density, velocity, and poten- 
tial on the plateau. Substituting this expansion in (2) and (3) 
we find that, in the linear approximation (lo), 

Here a is the amplitude of the oscillations of the field $. The 
wave frequency will, of course, satisfy the dispersion relation 
(1 1). We recognize also that, under quasistationary condi- 
tions, the number of waves is always con~erved:~ 

where V = w/k is the phase velocity of the wave. In terms of 
the self-similar variables T = x/tc,, this equation assumes 
the form 

dk du o 
( a - r ) - f k - = O ,  u=-. 

dz d~ kc. 

In the linear approximation, we obtain from (21) and (1 l), the 
relations (13) that define the wave vector k (T*) and hence the 
coefficients n, and v, in (20) as well: 

In the second approximation, we consider only the cor- 
rections n,, E,, $, averaged over the oscillations. After some 
simple algebra, we find from (2), (3), (19), and (22) that 

It is thus clear from (19) and (23) that all the quadratic cor- 
rections are negative, i.e., the mean density, the velocity, and 
the potential decrease in the region of the quasistationary 
wave in proportion to the square of the amplitude (aZ). The 
amplitude itself increases linearly with T near the point T-: 

a=C ( z - )  (7-T-) . (24) 

This result is obtained from (21) by taking into account qua- 
dratic corrections proportional to a2 in the expressions for u 
and k for stationary nonlinear waves. The function C (T-) is 
shown in Fig. 5. The derivation of (24) for small amplitude 
discontinuities corresponding to the lower branch of the 
curve C(T-) is given in the Appendix. It follows from (19), 
(22), and (24) that T- is the only free parameter characteriz- 
ing the structure of the solutoin in the region of the trailing 
edge. Equations (19), (23), and (24) are in complete agree- 
ment with numerical calculations. 

Leading (soliton) front. Our numerical calculations have 
shown that individual solitons whose separation increases 
slowly with time gradually appear on the leading wavefront. 
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FIG. 5. Potential-oscillation amplitude as a function of T near the point T- 
(for n ,  = 0.5n0, u,  = u, = 0) and the dependence of C = tan 0 on r- (24). 

To analyze the asymptotic structure of the soliton front, 
we shall use Eq. (21) which expresses the conservation of the 
number of waves. Substituting in (21) Eqs. (18) and (17) for u 
and k = 27~/jl we obtain 

This expression describes the variation in the parameter s2 
near the leading wavefront. Substituting (29) in (17), we see 
that solitons appear as we approach the wavefront, and the 
separation between them increases logarithmically with 
time: A - ln(~r ) - ' .  Accordingly, the mean density E - n,, 
potential $ - $,, and wave velocity i7 vanish near the wave- 
front in accordance with the logarithmic law. 

We note that this asymptotic behavior can be discerned 
in numerical calculations only for very long times t) 104/fl. 
It follows from (26) that a "singular" discontinuity is always 
present on the leading front of the quasistationary 

The velocity of the leading soliton is us = T+. Accord- 
ingly, its amplitude is $, = $,(T+) (16). When $, - $, 
2 1.3, i.e., 7,) 1.6, the soliton  break^,^ so that the structure 
of the quasistationary wave for T+ > 1.6 is no longer de- 
scribed by single-flow hydrodynamics. 

$3. SELF-SIMILAR DISCONTINUITY 

The above analysis has shown that as ~ + C O  the asymp- 
totic solution of the equations of dispersive hydrodynamics 
(2) and (3) is identical, except for the region T- <T<T+, with 
the solution of the Euler equations (6). For T-<T<T+, a 
transition occurs from the plateau n, to the unperturbed gas 
n,; the quasistationary wave is excited in this region. 

Thus, instead of the strong discontinuity of ordinary 
hydrodynamics, a relatively rapid self-similar transition oc- 
curs in dispersive hydrodynamics: the discontinuity appears 

FIG. 6. Velocity jump Au/c, = u,/c, and values of T+ and T- as functions 
of the relativejump A in density across the self-similar discontinuity. Inset 
shows the breaking of a simple wave; dashed line-multivalued solution. 

to spread out into the self-similar expanding oscillating re- 
gion. The precise structure of the solution in this region is 
not of particular interest, and we may confine our attention 
to the Euler equations, except that we introduce into them a 
discontinuity occupying the finite region between T- and T+ 

in terms of the self-similar variables. We shall call this the 
self-similar discontinuity. In dispersive hydrodynamics it re- 
places the strong discontinuity of ordinary dissipative hy- 
drodynamics. It is important to emphasize that, by calling 
this discontinuity self-similar we emphasize the fact that, in 
the problem defined by (4), it expands so that its boundaries 
are displaced linearly in time, i.e., they are immobile in terms 
of the self-similar variables T = x/t. This type of discontin- 
uity may also appear in other formulations of the problem 
(se, for example, Ref. 5), but the law of its expansion, i.e., the 
law of motion of its boundaries, may be different. 

Let us now formulate the conditions for matching the 
hydrodynamic variables on the two sides of the self-similar 
discontinuity. The first point to take into account is that 
there is no dissipation in the region of the self-similar discon- 
tinuity, i.e., the state of the gas does not change behind the 
discontinuity. It is also important that the self-similar dis- 
continuity arises in the region of a simple wave in place of the 
multivalued solution that appears after the break (see inset in 
Fig. 6) .  The hydrodynamics variables u and n in a simple 
wave are known to be related by (Ref. 1, $94) 

dv=kc ,  ( n )  dnln, 

where cs(n) is the velocity of sound. This relation is valid 
everywhere outside the region of mutlivalued solution or, 
more precisely, outside the region of the quasistationary 
wave. Integrating it, we obtain the following difference 
across the boundaries of the self-similar discontinuity: 

l l ( ~ . )  

In particular, in the case of isothermal hydrodynamics (6) 
considered here, 

The last two expressions establish the relationship between 
the velocity difference and the density difference across the 
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discontinuity. They constitute a closure of the Euler equa- 
tions and play the same role in dispersive hydrodynamics as 
the shock adiabat in ordinary dissipative hydrodynamics. It 
is very important to note that (27) and (28) are determined 
exclusively by Euler hydrodynamics and do not depend on 
the nature of dispersive effects, or on the structure of the 
quasistationary wave. Equation (1 8) is illustrated in Fig. 6. It 
is in complete agreement with numerical calculations. 

Figure 6 shows in addition the boundaries r+ and r-, of 
the self-similar discontinuity, which are also single-valued 
functions of the relative density jump A, given by (28). As for 
the structure of the solution in the region of the discontinuity 
i.e., the structure of the quasistationary wave, it also depends 
only on the jump A. More precisely, the functions 
[ii(r) - n(r+)]/n(r+) and [U(r) - u(T+)]/c, averaged over the 
oscillations turn out to be the same for discontinuities with 
the same density jumps A. For given A, the oscillations 
themselves either expand or contract with similarity param- 
eter n-1'2(r+) because of the change in the Debye length 
D (n) [Eq. ( 5 ) ] .  These conclusions follow from a general analy- 
sis of (2) and (3)" and are in complete agreement with nu- 
merical calculations. This can be seen, for example, from 
Fig. 7, which gives the numerical solution of two problems 
with different initial conditions, and shows the same jump 
A = n2/n, = 1.92 for equal values of n(r+). It can be seen 
that the structure of the oscillations in the region of the 
quasistationary wave is the same for the two solutions. 

We note that the self-similar discontinuity can be re- 
placed by an "equivalent" strong discontinuity by writing 
down the usual continuity conditions for the flux and mo- 
mentum across the discontinuity in the form (see Ref. 1, $8 1) 

Here uo is the velocity of the equivalent discontinuity, 
w(n) = cfln(n/n,) is the thermal function of isothermal hy- 
drodynamics (Ref. 1, §2), and 

is a correction to the thermal function and expresses the ef- 
fective momentum change due to the self-similar expansion 
of the discontinuity. It follows from (29) and (30) that 

which is in accord with (28). According to (3 I), the velocity 
vo is always greater than c, and less than c,r+. 

94. DECAY OF INITIAL DISCONTINUITIES 

The asymptotic solutions of dispersive hydrodynamics 
of nonisothermal plasmas can be constructed, as shown 
above, within the framework of the Euler equations. They 
differ from the usual dissipative hydrodynamics by the fol- 
lowing: (a) instead of a strong discontinuity, we now have an 
expanding self-similar discontinuity; (b) the equation of state 
of the gas in the region behind the self-similar discontinuity 
does not change; (c) there is no tangential discontinuity (by 
this, we mean a degenerate tangential discontinuity in one- 
dimensional motion). 

I I I I - 11111 0 IUD ZDU 
x/D, 

FIG. 7. Distribution of the potential and velocity v in plasma at time 
t = 100 0 -' for: a-influx of plasma into plasma (no = 3.67n,, 
uo = u, = 0), b-collision between two plasmas (no = n,, vo = 1.3c,, 
u, = 0). 

When these changes are taken into account, it is possi- 
ble to perform a precise classification of the decay of arbi- 
trary initial discontinuities (4), in dispersive hydrodynamics 
as illustrated in Fig. 8. Discontinuities arising after decay 
should move away from the point at which they are formed, 
i.e., from the position of the initial discontinuity. Repeating 
the reasoning given in Ref. 1 (§93), it can then be readily 
verified that either a self-similar discontinuity or a rarefac- 
tion wave bounded by a pair of weak discontinuities can 
propagate in each of the two directions. Figure 8 shows all 
possible variants of this type of motion. The first case (Fig. 
8a) occurs when two gases collide. Two self-similar discon- 
tinuities (i.e., two nondissipative shock waves) are formed 
from the initial discontinuity and move in opposite direc- 
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n2= (nlno) 'I' exp (-v,/2), v2= [-ln (n,/n,) +v,]/2. (34) 

FIG. 8. Classification of decays of initial discontinuities in accordance 
with the density distribution: 1-self-similar discontinuity; 2-rarefac- 
tion wave: dotted line-weak discontinuity, dashes-tangential discon- 
tinuity; 3-accelerating strong discontinuity." 

tions away from the point T~ = up. In the second case (Fig. 
8b), which occurs, for example, when plasma flows into plas- 
ma with zero initial velocity, we have a rarefaction wave on 
one side of the point T, and a self-similar discontinuity on the 
other. Finally, in the third case (Fig. 8c), which occurs when 
a plasma expands, we have rarefaction waves flowing in both 
directions away from the point rp.  We note that, as t-W , a 
vacuum region is not produced asymptotically as the plasma 
expands (this is in contrast to ordinary hydrodynamics; Ref. 
1, ($93). However, for finite values o f t  and high expansion 
velocities, there may be a vacuum region that contracts lo- 
garithmically with time (in terms of the variables T) and is 
bounded by singular accelerating strong discontinuities on 
the plasma-vacuum boundary that appears in the dynamics 
of nonisothermal plasmas10 (Fig. 8d). 

We shall show that the above relationships can readily 
be used to find all the basic characteristics of flow produced 
during the decay of an arbitrary initial discontinuity (4). 
Without loss of generality, we may suppose that vo = 0 for 
x <O (we are transforming to a coordinate frame moving 
with velocity v,). Moreover, if we normalize to the velocity 
c,, we find from (28) for the self-similar discontinuity on the 
left 

v2=-In (n21no) (32) 

and on the right 

u2=vl+ln (n,/n,). (33) 
The rarefaction wave is described by (7b). Matching (32), 
(33), and (7b), we can find all the basic characteristics. 

For example, in the case of collision between two gases 
[Fig. 8a, v ,  <ln(n,/n,)], equating the velocities v, on the pla- 
teau in accordance with (32) and (33), we find that 

-ln(n21no) =v,+ln(n21n,), 

and hence 

The points T+ and T- for both discontinuities are deter- 
mined with the aid of the curves shown in Fig. 6, remember- 
ing that A = n,/n,, for the left discontinuity and A = n,/n, 
for the right discontinuity. There is thus a net transport with 
velocity v,. Knowing the velocity us = T+ of the leading soli- 
ton, we can find its amplitude from (16). Equations (17), (18), 
and (25) describe the structure of the soliton front, and (19), 
(22), (23), and (24) the structure of oscillations in the region of 
the trailing edge. The tangential discontinuity point T~ = v,, 
the structure of the oscillations in the region of the plateau, 
and the structure of the weak discontinuities are described 
by the expressions given in $ 1. 

Similarly, when plasma flows into plasma [Fig. 8b, 
n, < no, ln(n ,/no) < v, < - ln(n ,/no)], we find from (7b) and 
(33) that n, and v, are given by (34), as before. The location of 
the weak discontinuities bounding the region of the rarefac- 
tion wave is given by 

The points T+ and T- are determined in accordance with 
Fig. 6 for A = n,/n,, using the transport velocity u,. In the 
case of expanding plasmas [Fig. 8c, v, > - ln(n,/no)], we 
find from (7b) that the values of n, and v, on the plateau are 
given by (34), as before. The locations of the weak discontin- 
uities bounding the rarefaction wave were determined from 
(35) on the left and from T, = 1 + v,, T, = 1 + v,/2 + ln(n,/ 
n0)/2 on the right. A vacuum region bounded by the acceler- 
ating strong discontinuities (Fig. 8d) exists for certain finite 
intervals of time. Numerical calculations are in complete 
agreement with these solutions. 

It is important to note the breaking of the leading soli- 
ton of a quasistationary wave, which occurs when the soliton 
amplitude becomes sufficiently large (16), so that the veloc- 
ity us = T+ reaches the value 1.6. Using (34) and the results 
of numerical calculations, we may determine the limit for 
the parameters of the initial discontinuity for which break- 
ing occurs: 

vl,=ln (nolnl) --1,38. 

Hence, it is clear that, in particular, when u,  = 0, the critical 
value is (n,Jn,), ~ 4 . 0 .  When v, > v,,, there is no breaking 
and the single-flux solution examined above exists. If, how- 
ever, v, < u,, , the soliton breaks and this means that a second 
flux, that of the particles reflected from the solitons, ap- 
pears.4 

It is important, however, that the soliton breaking 
changes only the width of the region of the self-similar dis- 
continuity region, increasing the value of T+. Conditions 
(27) and (28) remain unchanged in this case. This means that 
breaking does not restrict the range of validity of the hydro- 
dynamic solution constructed above, which is therefore val- 
id for arbitrary values of the initial parameters. Of course, 
the width and structure of the self-similar discontinuity 
change as a result of the break. However, the analysis of this 
question is outside the framework of the present research. 

We note that although we have confined our attention 
to the case of isothermal dispersive hydrodynamics, de- 
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scribed by (2 ) ,  (3 ) ,  and (6) ,  at a gas pressure Pa n,  analogous 
results can readily be obtained for an arbitrary dependence 
of the form P a nY. We then have c, = codY ' , C; = T J M ,  
and instead of (28)  we obtain 

Instead of (34) ,  we then obtain the following expression for 
the decay of an arbitrary initial discontinuity: 

Numerical calculations show complete agreement with 
these results. 

The authors are indebted to V. L. Ginzburg and L. P. 
Pitaevskii for useful discussions and to 0. A. Gel'fond for 
help with the numerical calculations. 

APPENDIX 

For small initial discontinuities, An = (n ,  - no) /no<l ,  
the change of variables 

reduces Eqs. ( 2 )  and ( 3 )  as is well known, to the KdV equation 
(Ref. 2, $15): 

Consider the region near the trailing edge of a quasista- 
tionary wave in the case of the KdV equation. The dispersion 
relation for linearized KdV waves is 

Here we have taken into account the fact that the parameter 
is normalized to unity on the plateau, in accordance with 

( A .  1 ) .  From (21)  we than have 

u= (2+21) 13, k= ($-TI) "/3"', ~ i = ~ i / t i .  (A-2) 

We have also taken into account the fact that, in the decay of 
the initial discontinuity, u and k depend asymptotically only 
on the self-similar variable 7, .  For the average quantity i j  we 
find by analogy with (23)  that, in the approximation that is 
quadratic in the wave amplitude a ,  we have 

- q=~-a2 /4 ( l -~ i ) .  ( A . 3 )  
Stationary nonlinear KdV waves are defined by three 

parameters. We shall take them to be i j ,  a and s2, where the 
last parameter determines the nature of the oscillations in 
the waves. The phase velocity u and the wave vector k for 
nonlinear waves are then given by8 

(-4.4) 
where K(s) and E(s) are the complete elliptic integrals of the 
first and second kind, respectively. The last two expansions 
are written so as to indicate that we are interested only in the 
neighborhood of the trailing edge of the discontinuity 7, -, 
where the amplitude a of the oscillations and the parameter 
s2 are small. Comparison of ( A . 2 )  with ( A . 4 )  for a ,  s2-0 then 
shows that the parameters a and s2 are not independent near 
r ,  -, but are related by 

If we use ( A S )  and ( A . 3 ) ,  we can rewrite ( A . 4 )  in the form 

Substituting these expressions in (21) ,  and taking the terms 
of the principal order in a and a2 ,  we reduce it to the form 

Hence it follows that d a / d r l  # O  ifa = 2 / 3  (7, - 7 , - ) ,  which 
corresponds to (24) ,  to the lower branch of the C ( T - )  curve 
for r--+l  in Fig. 5,  and to the results of the exact ~o lu t ion .~  

''Apart from the KdV equation, for which the Whitham system becomes 
in principle much ~ imple r .~  

"In fact, if we introduce the new variable An = n/n, instead of n, where 
n, = n(r+),  we can write (2) and (3) in the form 

From this and (28) it follows that the solutions of the average equations, 
which do not include the Debye length,6 depend only on the ratio n,/n,, 
whereas the change of D (n,) determines the scale of the oscillations. 
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