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The dynamics of the director of a nematic liquid crystal in a constant magnetic field is considered. 
It is shown that, for certain values of the parameters of the system, an external excitation (pulsed 
magnetic field) can produce soliton solutions in the system. These solutions are localized in 
narrow spatial regions in which the angle of deviation of the director from the equilibrium posi- 
tion varies between zero and r. The parameters of these solitons are found as functions of initial 
excitation and of the parameters of the system. Possible experimental verification of these results 
is examined. 

I. INTRODUCTION 

The nonlinear dynamics of liquid crystals has recently 
begun to be intensively investigated. Current interest in this 
problem is due to a number of factors. Above all, it is due to 
the further development of the theory of the liquid-crystal 
state, which is now complete for phenomena that have a 
solution in the linear approximation. The other factor gov- 
erning the importance of such studies is the experimental 
data obtained in recent years in a number of laboratories, 
which cannot be explained by linear theory. Finally, studies 
of nonlinear phenomena in liquid crystals are promising 
from the point of view of searches for new technological ap- 

, plications. 
A large number of liquid crystals with appreciably dif- 

ferent physical properties has now been synthesized. The 
wide range of variation of their characteristic parameters, 
and the relative simplicity of experiments in which such 
crystals are investigated, make them a unique object for the 
investigation of nonlinear phenomena. 

In this paper we investigate the dynamics of the director 
of a nematic liquid crystal in a magnetic field. This problem 
has been examined in the linear approximation by a number 
of authors, and the results are well known (see Refs. 1 and 2 
and the literature cited therein). However, in view of the 
considerable complexity of the equations describing the dy- 
namics of nematic liquid crystals, all previous work has been 
virtually confined to the study of small deviations of the di- 
rector from the equilibrium position. 

A numerical calculation was used in Ref. 3 to investi- 
gate the high-frequency dynamics of the director of a nema- 
tic crystal in a magnetic field. However, this analysis was 
confined to uniform motion, i.e., space effects were not dis- 
cussed. On the other hand, it is interesting to consider the 
dynamics of the director with allowance for spatial relation- 
ships, especially since there are experimental indications 
that such effects are important. The propagation of director 
waves due to uniform shear flow in a nematic liquid crystal 
was investigated experimentally in Ref. 4. It was found that 
the distribution of the director motion orientation takes the 
form of a sequence of regions with perpendicular alignment. 
The qualitative theory5 constructed to describe these experi- 

mental results explains the appearance of soliton solutions in 
the propagation of the director wave. This explanation 
seems to be completely acceptable. 

The essential point is that the orientation of the director 
in liquid crystals is directly related to the optical properties 
of the medium, so that its distribution can be directly ob- 
served experimentally. 

The problem that we have posed is very topical in view 
of the foregoing. 

II. EQUATIONS OF MOTION 

Consider a homeotropic layer of a nematic crystal with 
one free surface. The layer is placed in a constant magnetic 
field H perpendicular to it. We shall suppose, in addition, 
that the bonding of the molecules to the substrate is weak, 
i.e., the boundary has no effect on the orientation of the di- 
rector, or affects it only in a narrow layer. 

The equations describing the dynamics of nematic liq- 
uid crystals, obtained by Ericksen and L e ~ l i e , ~  are well 
known. The equation of motion of the director n can be writ- 
ten in the following form: 

where J i s  the density of the moment of inertia, h is the body 
force producing the equilibrium value of n, and R is the dissi- 
pative force. The director has the property n2 = 1 and all its 
variations are rotations. 

The forces h and R are given by1 

h=K,V (div n) -K,{ (n rot n) rot n 

+rot (n (n rot n) ) ) f K ,  {rot [nX [n X rot n] ] 

- [ r o t n ~ [ n ~ r o t n ] ] ) + ~ , ( H n ) H ,  

where 

v is the velocity of the material, yl and y, are the viscosity 
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coefficients, Ka are Frank constants, and xa is the aniso- 
tropic part of the magnetic susceptibility. The solution of (1) 
is quite difficult in arbitrary geometry because the deviation 
of the director from the position of equilibrium (along the 
field H)  produces the motion of the mass of the crystal with 
nonzero gradient and this, in turn, affects the motion of the 
director. Allowance for this so-called reverse-flow effect can 
be made in special cases but complicates calculations quite 
substantially. There is, however, one geometry in which the 
reverse flow is absent (pure torsion), and we shall confine our 
analysis to this case. It is illustrated in Fig. 1. 

The equation of motion of the director n = (0, sin 9 ,  cos 
9 )  is reduced in this case to the well-known sine-Gordon 
equation 

d2q d2q dq 
I -  - K2 - +yi - +%Hz sin q=O, 

dt2  d x 2  d t  

where e, = 29. We note that the choice HI lz is not essential 
to obtain this equation. For H = (0, sin $, cos $) lying in the 
zy plane, the equation of motion of the director will be the 
same except that q, will be replaced with @ = 2(9 - $). 

When Eq. (3) is investigated in the theory of liquid crys- 
tals, it is usually linearized and the inertial term J (d2q, /dt ')is 
discarded because it is assumed that J is determined by mo- 
lecular quantities and is small (J- 10-I4g/cm). There are as 
yet no measurements of J .  

However, the development of the hydrodynamics of liq- 
uid crystals and the very introduction of the director n char- 
acterizing a given liquid crystal presupposes averaging over 
a physically small volume which nevertheless contains a 
large number of molecules. It is therefore natural to suppose 
that the moment J i s  much larger than the moment of inertia 
of an individual molecule. The fact that J has not been mea- 
sured may signify that inertial effects do not appear in linear 
problems of liquid-crystal dynamics, but it does not signify 
that such effects will be unimportant in the nonlinear case. 

Moreover, it is likely that new nematic liquid crystals 
containing molecules with greater inertia will be synthe- 
sized. In particular, inclusion of inertial effects will be neces- 
sary in the case of lyotropic liquid crystals for which nematic 
order is determined by relatively large clusters containing a 
large number of molecules. 

Equation (3) is conveniently rewritten in terms of di- 
mensionless variables as follows: 

FIG. 1. Pure twist deformation. 

FIG. 2. Geometry of excitation of director motion. 

where r=HCya/~) ' / ' t ,  ~ = H C ~ ~ / K ~ ) ~ / ' X ,  and r=  yl/ 
H Cya J)'/' is the effective damping. 

Generally speaking, the quantity r is not small for 
moderate magnetic fields of - 100-1000 Oe and molecular 
values of J. However, for fields - lo4 - 1050e, 
y, = 10-'Pa, andx, z 1OW6ESU, the conditionr < 1 can be 
satisfied for J- 10-'g/cm. In view of what we have said 
about the moment of inertia of the director, we shall confine 
our attention to this particular situation. 

Let us now suppose that, at the initial instant of time, a 
particular region of the specimen is characterized by a rate of 
deviation of the director from the equilibrium position (de- 
termined by the field H) that is uniform in the yz plane (Fig. 
2). This could be produced in a variety of ways. For example, 
it may be produced by a pulsed magnetic or electric field 
lying in the zy plane at an angle to the z axis, by a hypersonic 
shock, or by a sudden shift of the surface in this region. The 
only essential point is that the disturbance must be uniform 
in the interior of the region, and must have a sharp enough 
boundary in the x direction. At the next instant of time, the 
perturbation begins to propagate in the x direction, and the 
problem is effectively one-dimensional if we neglect the ef- 
fects of the boundaries of the specimen. 

Let us discard the term containing r ,  in (4), i.e., let us 
ignore, completely dissipation effects to which we shall re- 
turn later. In this approximation, the problem reduces to an 
analysis of the equation 

subject to the initial conditions 

Ill. SCATTERING MATRIX 

To solve this problem, we shall use the inverse scatter- 
ing method (see Refs. 7 and 8 and the references cited there- 
in), which has undergone intensive development during the 
last decade. The procedure employed in this method is to 
find for the initial condition a set of values, the so-called 
scattering data, then take their transform with respect to the 
time r ,  and, finally, reconstruct the solution of the equation 
that corresponds to the transformed scattering data. In gen- 
eral, Eq. (5) is the compatibility condition for the set of equa- 
tions9.10 
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where 

and the matrices U,,  U,, and U, have the form 

cos cp -i sincp 
- '~=(isincp -ooscp ) .  

Equation (5) with the above initial conditions can thus be 
integrated with the aid of the set of differential equations 

the solutions of which for {+ - w 

and for 6-t + co 

at the initial instant of time determine the components of the 
scattering matrix viz., the transmission coefficient A - ' ( R ) 
and the reflection coefficient r( R ) = b ( R )/a( R ). The func- 
tion a( A ) is then analytic in the upper half-plane of A and 
la(R)I2 + Ib(A)I2 = 1forrealR.Onceweknowthescatter- 
ingdataa( R ),b ( R ), thezerosA, ofthefunctiona( R ), andthe 
coefficients 6, given by 

we can determine the nature of the solution of (6) q, ( {,r) 
from their form at the initial time. 

The time dependence of the scattering data is defined as 
follows: 

1 
b(h, r)=b(A,O)exp[-i (h tK) r ] ,  

ah, 1 ( ' 1  - =0, b,, (r) = bn (0) exp [-i (hn + 4h-) r].  a .r 
Let 

2fo for -L<a<L, 
f ( E ) =  I 0 for a<-r, E>L, 

where 21 is the size (in dimensionless units) of the region to 
which the perturbation was applied. 

The choice of this initial condition is dictated by its sim- 
plicity, since the more complex geometry f (5 ) would appre- 
ciably complicate the calculations without introducing any 
substantial change into the picture of the phenomenon. 
Moreover, as we shall see later, this initial condition may 
correspond to a particular experimental situation. 

Substituting (8) in (6), and takingA = R - 1/4R, we find 
that 

M 
a (A) = cos LA- -sin LA, 

A 

In general, the solution of (6)  contains both a contin- 
uous spectrum and soliton solutions. Knowledge of the re- 
flection coefficient r( A ) for real A gives the necessary infor- 
mation about the continuous spectrum. The soliton part is 
characterized by the zeros of a( A ) in the complex half-plane 
I d  > 0, and the restriction off ({ ) to real values leads to a 
restriction on the disposition of zeros that ensures that they 
are symmetric relative to the imaginary axis (i.e., a zero An 
should be accompanied by a zero - An *. Consider the equa- 
tion that determines the zeros of the function a( A ): 

for different values of the variable (A ). Since, for A = 1/2 
p eia , 

the values of A, corresponding to the roots A n  and - A, * 
are related by A ( - A n  *) = - A *( A n  ) and lie in the upper 
half-plane. 

We shall now show that solutions of (10) in the upper 
half-plane correspond to purely imaginary A. To prove this, 
consider the behavior of the zeros of a(A ) for different values 
off,. When f, = 0, we have a(A ) = 1 in the entire complex 
plane. For small f,, the fact that a(A )-+l for IA 1-t~ in the 
upper half-plane and a(A ) - 1 on the entire real axis, ensures 
that the function a(A ) has no zeros in the upper half-plane. 
However, since a(A ) is an entire function, it must have zeros 
in the lower half-plane. Since a(A )is a continuous function of 
f,, its zeros pass into the upper half-plane as f, increases. It is 
clear that, for real A #0, the quantity A is also real, and (10) 
has no solutions. Hence, the zeros of a(A ) can penetrate the 
upper plane from the lower half-plane only through the 
pointA = 0 (we note that If, = n-/2 + n-k when a zero passes 
through A = 0). 

Suppose a zero passes through the point A = 0. By vir- 
tue of what we have said about the function a(A ), each zero 
with ReA, + O  should correspond to another zero lying sym- 
metrically relative to the imaginary axis. For a pair of zeros 
to appear as f, increases, a multiple zero must pass through 
A =o.  

For multiple zeros at the points A,, where a(An ) = 0, 
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we must also have a; (A,) = 0. From (9) we have 

i fo  exp (ilAn) 
a' (An) = (iZA,,- 1 )  

foz+AnZ ' 

and hence af(0) # 0. 
Consequently, a simple zero occurs at the point A = 0 

and should remain on the imaginary axis as f, increases. 
Since, in general, for all A, on the imaginary axis with 
lAn I < co , we have al(A, ) # 0, this means that all the zeros 
subsequently remain on the imaginary axis. 

It is clear from (1 1) that A will be purely imaginary in 
the following two cases: 

(a) forp = 1, i.e., when the zeros A, of the function a( R ) 
lie on a semicircle of radius 1/2: 

(b) for a = n-/2, when the zeros A, lie on the imaginary 
axis: 

We note that in both cases, the roots A, corresponding 
to a particularA appear in pairs. In accordance with general 
t h e ~ r y , ~  in case (a) this implies the formation of a bound state 
(a breather), whereas in case (b), a kink and antikink appear 
and move in opposite directions with equal velocity. This 
form of the solution is a reflection of the symmetry of the 
problem about the x axis. 

Equation (lo), written as a function of t, assumes the 
form 

t g  I ( f ,2- tZ) '1i=-  (fo2-t2)'h/t - (13) 
and has positive solutions for t < f,. If we substitute 
u = If: - t ' ) ' I 2 ,  we find that (13) reduces to the equation 
sin u = f u/f,l, which is well known in quantum mechan- 
ics. Its graphical solution corresponding to our case is shown 
in Fig. 3. 

It kclear from Fig. 3 that, in view of the foregoing, the 
solution u, appears for If, = n-/2. The quantity u, increases 
with increasing If,, a new root appears for If, = 3rr/2, and so 
on. The total number n of roots is determined by the inequa- 
lity ITN - n-/2<& < n-N + r/2. 

The quantities t, (and, correspondingly, A,  ) can be ex- 
pressed in terms of u, as follows: 

and depend both on the disposition of the roots u, and on f,. 
Thus, different variants of the solutions may appear, de- 
pending on f, and If,. They include soliton-free solutions, 

solutions with one or several breathers, a mixture of breath- 
ers and king-antikink pairs, and one or several kink-anti- 
kink pairs." These cases will be examined in the next sec- 
tions. 

IV. SOLITON-FREE CASE 

As already noted, the solution of (5) contains no solitons 
at lf, < n-/2. It is, however, interesting to examine its asymp- 
totic behavior for large times in this case we well. Firstly, the 
asymptotic behavior of the director dynamics has not been 
previously considered in the nonlinear approximation. 
Moreover, knowledge of the behavior of the continuous 
spectrum will provide us with information on the character- 
istic times for which soliton solutions, if they exist, appear 
against the background of the continuous spectrum. 

The asymptotic behavior of the solution of the sine- 
Gordon equation in the soliton-free case was studied in Ref. 
1 1. It was shown there that the amplitude p ( f ,T) has the 
form 

where 

Substituting a ( A ) from (9) in (14) we obtain 

where p- 1. 
Equation (1 5) becomes appreciably simpler for positive 

n < 1 and V 5  1 (which, as we shall see, is typical of the ex- 
perimental situation). The requirement that q- 1 deter- 
mines the characteristic time after which a soliton at the 
point f = VT becomes distinguishable against the back- 
ground of the continuous spectrum: 

V. BREATHER SOLUTIONS 

In the case of nonreflecting potentials, for which 
b ( R ) - 0 at all real A, the solution of (5) has the form7 

cp ( E ,  z) =-4 arg det ( l + d )  , (17) 
where 

z f , < J r / 2  + I  FIG. 3. Graphical solution of (13). There are no 
1 soliton solutions in the shaded regions. Dashed 

f;' lines represents lcos U I = t /f,. Crosses lying 
above the f i- ' line correspond to kink-antikink 
solutions, whereas those below this line corre- 

'1 'ln " spond to breathers. 
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Here soluton $,,(f,A, ), that has at 6- + a, the asymptotic form 

b:' (0) N 
h-hi 

cm=- 
aOf (A,,,) ' 

i d  

and b E) correspond to the pure soliton solution. 
To take into account the effect of the continuous spec- 

trum on the character of the soliton solutions, let us isolate in 
the initial scattering data the contribution corresponding to 
solitons and then, because of the one-to-one correspondence, 
the soliton solutions will be given by (17) with the parameters 
determined in this way. 

Consider the case where all the roots of (13) are t, < 1, 
i.e., only breathers are produced in the system. Since all the 
zeros A, of the function a( A ) lie on a semicircle ofradius 1/2, 
this means that the velocities of all the breathers produced in 
this way are zero.' Because of the symmetry of the problem, 
their centers lie at the point 6 = 0. The asymptotic behavior 
of the solution of (5) for large times T is shown schematically 
in Fig. 4a for this case. 

Consider the behavior of the solution $,({,A, ) of the set 
(6), whose asymptotic form as {- - a is 

As the region of the continuous spectrum is traversed from 
left to right up to the region in which the breathers are local- 
ized, the function $, assumes the form 

where A, is the function a( A ) and characterizes the contin- 
uous spectrum with wave propagation velocities V <  0. For a 
breather corresponding to the roots A, and - A,. , the expo- 
nential in the last formula represents the asymptotic behav- 
ior of the eigenfunction to the left of it, whereas, on the right 
of it the function $, assumes the form 

in view of the definition of b F'. 
On the other hand, if we consider the behavior of the 

FIG. 4. Schematic representation of the asymptotic form of the solution of 
(5): (a) the thick line corresponds to a breather and the thin line to the 
continuous spectrum; (b) the thick line corresponds to ap/al for kinks 
and antikinks, and the thin line to the continuous spectrum. 

we should have 

as we traverse this region from right to left, where A,( A, ) is 
the function a( A )  and corresponds to a continuous spectrum 
with wave velocities ( V> 0). 

As a result, 

Comparing this with (6'),  we find that 

The quantities that we have found refer to the time 7. By 
referring them to the time T = 0, we obtain precisely those 
scattering data which describe the soliton solutions with the 
aid of ( 17). 

Since, by definition, A, and A, represent the function 
a( A ) for the potential set up by the waves running to the left 
(V<O) and to the right ( V >  O), and the group velocity V  is 
given by 

we must have 

In IA,(A) 1=01(1--4A2) In la(A) I ,  
In 1 A2 (A) 1 =% (&'--I) In 1 a (A) 1, 

whereO(x) = lforx>OandO(x) =Oforx<O. SinceA,and 
A ,  are analytic for I d  > 0, they can be written in the form 

EvaluatingA,/A, and recognizing that b, ( An) = b ( A, ), we 
obtain 

2e-'Omh, Im hm 
c,=sign (sin u,) 

Re h, 

where u, is the root corresponding to the zeros 4 and A, * 
(see Fig. 3), N is the number of possible roots u, , 

ln(1-w-' sin2 l f , ~ ' ~ )  
w- ( ~ " , / l f ~ ) ~ ]  (w-q) '" 

dw, (21) 

and 7 = v2 - llfo-,. 
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As noted above, substitution of the above expressions 
for c, in (17) gives the complete description of the set of N 
breathers. The solution is quite complicated, so that we shall 
write out only the explicit form of q, ( 6,r) for one breather. 
We then have 

It is clear from (22) that the solution is a function that is 
periodic in time. When t is close to unity, the amplitude of 
the breather is -2a, and the localization region is - 1. 

VI. KINK-ANTIKINK SOLUTIONS 

Let us know consider the case where all the roots of (13) 
are t ,  > 1, i.e., only king-antikink pairs are produced in the 
system. By analogy with the preceding section, we now de- 
termine the scattering data that characterize each soliton. 
The asymptotic form of the solution of (5) for large values of 
time r is shown schematically in Fig. 4b for this case. Each 
soliton moves with velocity7 

(We recall that all the zeros A, of the function a( A ) lie on the 
imaginary axis in this case.) 

Let us now label all the solitons from left to right with 
an index k that runs through the values 1 to 2N, where N is 
the total number of zeros of the roots of (1 3). We shall deter- 
mine the scattering data for the nth soliton moving in the 
positive direction of 6 with velocity V,. The solution 
p2(A,,6) of (6) which, has the asymptotic form 

as 6-t W ,  takes on the left of the first soliton the form 

i 1 
$,=Ai (an) exp 1- --i- (an - =) I ] ,  

where A ,  characterizes the continuous spectrum of waves 
propagating with velocities V <  K. <O. As the first soliton 
passes, $,, which is not its eigenfunction, acquires only the 
factor ( A, - Ai)/(  A, - Ai *) (Ref. 7), and so on. Thus, to the 
left of the nth soliton the function $, has the form 

To the right of the nth soliton, $, has the form 

n - i  
h n - b  k=ai(an). . . A.(L) a:" ((11 

k=i  

Xexp - A - -  f . r:c 4 3  I 
By analogy with the foregoing, if we study the behavior of 

the solution $i ( A, ,6 ) which, as 6-t + w the asymptotic 
form 

we finally obtain 
n - i  l\.n-hk 

(24) 
k=i  k=n+i  

HereA , andA , area( A )for the continuous spectrum prop- 
agating with velocities respectively greater than and smaller 
than V, .In analogy with (19), 

Substituting in (24) the values ofA, expressed in terms of the 
roots of (13) and expressions (25), we finally obtain 

where 

and t, is the root of ( 13) corresponding to the nth soliton. If 
we know b, (0), we can immediately write down the form of 
the nth soliton7 

q, (g, T) =4 arctg exp (28) 

The sign of E sets the form of the soliton: a kink occurs for 
E = - 1 and an antikink for E = 1. The square root in the 
denominator of (28) determines the characteristic dimen- 
sions of the soliton, andcon gives the coordinate of the center 
of the soliton at the initial time. 

It is clear from (13) that the quantities t, decrease with 
increasing number of the root. There is a corresponding re- 
duction in the velocities V, = t, - '(t, ' - 1)'". We note, by 
the way, that the maximum possible soliton velocity in the 
system is V,,, = I~"',  since the maximum value oft, is fo 
(for Ifo+ w ). Thus, the solution q, ( 6,r) for q, 6 > 0 is a se- 
quence of antikinks with the one on the extreme right propa- 
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gating with the maximum possible velocity, determined by 
the first root of (13). It is clear that by virtue of the symmetry 
of the problem the solution p ( l , r )  will be symmetric about 
< = 0, i.e., an equal number of kinks will be present on the 
left of the origin. When the solution includes breathers, there 
is no difficulty in taking into account their effect on the char- 
acteristics of the kinks. Considerations similar to those used 
above can readily be used to show that here again b r) are 
given by (26), where the t, < 1 corresponding to breathers 
are taken into account in the second product, and N is the 
total number of roots of (1 3). 

It is interesting to consider the separation dm,,+, 
between the centers of neighboring solitons (kinks or anti- 
kinks) since, as will be shown later, this quantity can readily 
be observed experimentally. For the mth and (m + 1) st soli- 
tons, sufficiently large N (i.e., If,), and m not too close to N 
(i.e., for solitons closest to the origin), we can write with good 
precision (see the Appendix) 

Since urn -mul - mn- and If, - Nn-, it is clear that for 

the separation dm,, + , remains practically unaltered and is 
determined by the initial parameter of the problem. For 
large times, the separation between the solitons increases 
linearly with time. The ratio of the characteristic soliton size 
(1 - Vm 2)112 = tm to the separation between neighboring 
solitons characterizes the degree of overlap of the soliton 
solutions. 

For 7 5 1, we find from that 

This means that solitons are well separated in space and may 
be looked upon as independent. 

Finally, consider the effect of the dissipative term 
r (dp/dr) on the form of the solution of (4). No solution of (4) 
can be found for arbitrary T .  WhenT( 1, the soliton solution 
can be found with the help of perturbation theoryI2 and has 
the following form in a coordinate frame moving with the 
soliton velocity: 

where p, is the solution obtained previously without dissipa- 
tion and 

This means that the solution of (4) will have the form of 
solitons propagating with the same velocities as in the ab- 
sence of damping, but their shape will depend on time (the 
soliton amplitude will decrease and they will expand). 

VI. DISCUSSION OF RESULTS AND OF POSSIBLE 
EXPERIMENTAL VERIFICATION 

Consider a possible experiment in which the initial data 
of the above problem can be implemented. Suppose that a 
nematic liquid crystal is placed in a constant magnetic field 
H perpendicular to the crystal layer at time t = 0 and a mag- 
netic field pulse hlH is applied to the region 21, as shown in 
Fig. 2. Using the same assumptions about the characteristic 
parameters and the damping yl as above, we find that the 
equation of the director motion can be written in the form 

Ji j+xa(H2-h2)  sin cp-2hH cos rp=O. (31) 

The gradient terms in (4) have been discarded here be- 
cause, by virtue of the homogeneity of the conditions, they 
will be appreciable only on the boundaries of the region to 
which the field is applied and will have little effect on the 
final result for sufficiently short pulses. 

The initial data that could correspond to the above 
problem are: the quantity p must remain small for (p(1) 
during the time tp of application of the magnetic-field pulse, 
whereas the rate of rotation of the director p must assume an 
appreciable value. 

For small p ,  Eq. (3 1) can be linearized and its solution 
corresponding to h > H has the form2' 

Substituting h = aH, we find that, when 

we have p( 1. 
In terms of the dimensionless variables introduced in 

Sec. 2, 

When a is not too large, condition (32) yields tp -0 - ', 
so that dp/dr - 1. For example, for a = 10 and at, = 1, we 
obtain p ~ 0 . 1  and d p  /d.r = 2f0 = 2.4. The corresponding 
pulse length is of the order of lop6 s. 

Thus, the quantity f in the expressions obtained in the 
preceding sections will be of the order of unity in the region 
accessible to experimental examination. 

The consequence of this result is that the necessary con- 
dition for the appearance of a sufficiently large number N of 
solitons is that I-Nn-/2fo be large. The velocities of solitons 
with numbers not too close to N will be V, 5 q112 < 1, where 
n 5 1, i.e., this justifies the assumption made in the deriva- 
tion of (16) and (30). 

The characteristic time after which the amplitude of the 
continuous spectrum becomes much smaller than the ampli- 
tude of the soliton solutions is seen from (15) to have the 
largest value for V = 0, i.e., at the origin, where it is given by 

a,,= (271) -' In (cos Ifo) 
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For solitons propagating with velocities V, -77112, con- 
dition (IS), which takes the form 

is well satisfied for 5 greater than v1 'y~2n-.  
As an example, consider the characteristic soliton pa- 

rameters in the specific case where fo = l and 2, N = 20 in 
terms of dimensional variables with the indicated H x ,  , and 
J, and K2- lop6 dyn. For these parameters, I = lop2 cm, 
7 = 0.3, V1,2,3,4 = 5.5, 5.3, 4.9, and 4.1 cm/s, respectively, 
T,,, - s, and d ,,, = low3 cm. The characteristic di- 
mension of the first few solitons is then about 3 X cm, 
and the distance from the origin for which the time depen- 
dence in d,,, + , becomes important is about lo-' cm. As 
time increases, the separation between neighboring solitons 
will also increase and, after an interval of the order of a sec- 
ond, it will reach a few millimeters, by which time the soli- 
tons themselves will have traversed a few centimeters. 

The foregoing estimates show that the situation de- 
scribed above can definitely be attained under reasonable 
experimental conditions. The simplest approach to an ex- 
perimental verification of these results is to use optical meth- 
ods. l3  

The tilt 6 of the director from the equilibrium position 
in the above solution should take the form of a moving alter- 
nation of bands with 0 e 0 ,  and much narrower bands corre- 
sponding to kinks and antikinks within which the angle 0 
varies from zero to n-. (The fact that the successive kinks or 
antikinks differ in amplitude by 2n- has no effect on the result 
because this simply indicates a rotation of the director 
through the angle n-, i.e., into an identical state.) When 
breathers are present, the neighborhood of the origin will 
contain a region in which the tilt of the director from the 
equilibrium position varies with time in a rather complicated 
manner, and the amplitude of the variation is determined by 
its value for the highest breather. 

If we place the specimen between two crossed polar- 
izers, oriented at 45" to the direction of propagation of the 
solitons, and observe the transmission of natural light in the 
direction perpendicular to the surface of the specimen, we 
should observe at a fixed instant of time a sequence of dark 
and bright bands. Light bands correspond to solitons and 
their centers coincide with the coordinates of the soliton 
centers, where 0 = n-/2. By observing these bands, we 
should be able to determine the speed of the solitons, their 
number as a function of the exciting fields strengths, and the 
characteristic dimensions of the solitons. 

CONCLUSION 

Our analysis has shown that soliton solutions for the 
motion of the director in a magnetic field are possible in 
nematic liquid crystals when the characteristic parameters 
of the specimen satisfy certain conditions. Experimental 
studies of these phenomena would be useful because they 
would provide information about the magnitude of the mo- 
ment of inertia J. 

Although the excitation producing the motion of the 
director was assumed to be a pulsed magnetic field, the re- 
sults can readily be extended to other cases. A modified ver- 
sion of the above method can be used to examine the motion 
of the director in an electric field, as well as a number of 
other problems that lead to the Sine-Gordon equation. 

The authors are indebted to E. I. Kats and S. V. Mana- 
kov for numerous useful discussions. 

APPENDIX 

Let us write lo, [Eq. (29)] in the form 
lo, = f on + B, t ,  - I ,  and first estimate go, for a sufficient- 
ly large N (i.e., If,) and for the antikink numbered m not too 
close to N. Under these assumptions, urn (If,)- ' z m / N  < 1 
because urn (If,)-'- 1 only for the last root of (13). The pres- 
ence of breathers in the system improves the situation, since 
we then have urn ( & ) - I  z (N - n)/N< 1, where n is the total 
number of breathers in the system, even for the last of the 
possible antikinks. Thus, assuming that urn (If,)-'( 1 and 17 is 
not too small in comparison with unity, we find that 

Substituting these values in the expression for l o , ,  and re- 
calling that for large Nand m(N we may write with suffi- 
cient precision urn =mui, we find that 

The contribution due to breathers has been taken into 
account in the last product. Writing out the analogous 
expression for the n + 1 st antikink, and subtracting one 
from the other, we obtain 

('4.3) 
where y =t,t;:, - 141. 

It is clear that, under the above assumptions about the 
values of N and m, and provided that the number n of breath- 
ers is not large in comparison with N, the leading term in 
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(A.3) is the first logarithm, i.e., 

Eon-Eon+l~2fo-' In [q ( 2 ~ f o ) z / ~ l z l .  (A.4) 

Let us now estimate the difference 
B , t , - I - B , + , t ; : ,  =B.. Since A, = t ,  + ( t F - 1 ) " *  
and A, + , are not very different, we have 

Differentiating under the integral sign and evaluating the 
integrals, we obtain 

We now make the change of variable t-4 / t  in the last inte- 
gral and recognize that a( A, / t  ) = a(t /A, ), as can be readily 
verified. We thus obtain 

Since, moreover, for 5 1 both A, and A, -' are close to 
unity, we have 

Integration in this expresison leads to a rapidly converging 
integral I < 1 multiplied by the small quantity A, - A, -', so 
that the first term in the braces is, in fact, the leading term. 
We thus finally obtain 

Comparison of (A.7)  with (A.4)  yields ultimately (30). 
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