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The equilibration time of the concentration in a capillary is used to measure the temperature 
dependence of the interdiffusion coefficient near the critical point for CO, vaporization in a C0,- 
Ne solution. It is shown that in the region of reduced temperatures lop3 5 T 5: 10- ' the singular 
part of the mobility (the Onsager coefficient) is much smaller than the regular part. The latter can 
be evaluated in this region by a theory of the Enskog-Chapman type. The anomalies of the 
diffusion coefficient in this region are governed by the derivative of the chemical potential with 
respect to the concentration of the solution. 

A study of interdiffusion near the critical points of bina- 
ry solutions is of great interest because in such a region a 
solution is an extremely nonideal system with substantial 
anomalies of its equilibrium and kinetic properties. The 
first experimental studies in this field were undertaken by 
Krichevski and c o - ~ o r k e r s . ~ , ~  In 1965 Leontovich proposed 
a phenomenological theory6 describing the diffusion anoma- 
lies near the critical point of the solvent. This theory was 
based on an equation of the van der Waals type and presup- 
posed the absence of anomalies in the mobility of the compo- 
nents (Onsager coefficients). Somewhat later, experimental 
studies of the light-scattering spectrum near the critical 
point revealed the presence of an anomaly in the mobility of 
the  component^.^*^ The special case of kinetic phenomena 
near the critical point for vaporization of the solvent was 
considered in Ref. 1 1. 

In considering diffusion processes in nonideal solutions 
(such as solutions near critical points) it is necessary to take 
into account the fluxes arising as a result of the change in 
density upon mixing of the components. For this reason 
there is ambiguity in defining the diffusion coefficients, and 
it becomes necessary to describe the diffusion by a nonlinear 
equation.6 

Let us define the diffusion coefficient for the mixing of 
the components of a solution under conditions such that one 
can neglect the gradients of the temperature and pressure: 

.V (u-w) =-DdNldx.  (1) 

Here D is the diffusion coefficient defined with respect to a 
coordinate system moving with the average velocity, with 
the concentration gradient expressed in terms of the gradient 
of the fraction N of particles of one of the components (in the 
present case, the solute), x is the coordinate in the laboratory 
system (we are considering the one-dimensional case), v is the 
average velocity of the solute, the flux of which with respect 
to the laboratory system is equal to nNv, where n is the num- 
ber density of the particles, and w is the average velocity of 
all the particles of the solution. With allowance for the con- 
tinuity equation it can be shown that this velocity is given by 

°' d 2 ( l / n )  d N  
- n D  --- (, ) d x .  

XI 

d2N 

Thus the velocity w arises as a result of the dependence of the 
density of the solution of the concentration when concentra- 
tion gradients are present in the solution. It is also seen from 
equation (2) that the velocity w, like the particle fluxes, is not 
a local quantity relative to the laboratory coordinate system. 
We emphasize that the solution is in a state of mechanical 
equilibrium1, and is not acted upon by external forces or 
fields which would set it in motion. 

If the drop in concentration over a length x, - x l  is 
small, one can neglect the integral in (2), and then in place of 
the nonlinear diffusion equation one can use the Fick equa- 
tionI3 

dN/dt=Dd"N/dx2. (3) 

This is the basis of one of the experimental methods em- 
ployed in this paper for determining the interdiffusion coef- 
ficient under conditions of a strong concentration depen- 
dence of the density of the solution. 

According to nonequilibrium  thermodynamic^,'^ 

wherep is the chemical potential of the component per parti- 
cle, and b is its macroscopic mobility with respect to a coor- 
dinate system moving at a velocity w and is related to the 
corresponding Onsager coefficient. According to the fluctu- 
ation theory of second-order phase transitions1 the mobility 
b and the derivative (dN / d p ) p , ~  diverge at a critical point of 
a binary solution. Therefore, let us separate the quantities 
appearing in (4) into singular (s) and regular (r)  parts8: 
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Far from the critical point the diffusion coefficient is gov- 
erned by the term D('), while D(") becomes the governing 
term as one approaches close to the critical point. 

According to the mode-mode interaction t h e ~ r y , ' . ~ , ' ~  
near the critical point of mixing of a binary solution, where 
one can neglect the regular terms, the diffusion coefficient is 
given by 

where k is the Boltzmann constant, v* is the "high-frequen- 
cy" viscosity (in our case for purposes of estimation one can 
take this to be the shear viscosity of the solution), and rc is 
the correlation radius of fluctuations in the concentration. 
The macroscopic mobility thus diverges like r P U ,  where 
r = ( T  - Tc, /Tc , v  is the critical exponent of the correlation 
radius, and Tc is the critical temperature of the solution. The 
phenomenological meaning of Eq. (8) is that D'"' is the diffu- 
sion coefficient for Brownian particles with a radius equal to 
the correlation radius of the fluctuations. 

For states of the solution near the critical point of va- 
porization it becomes necessary to take into account that the 
concentration N is small. As was shown in Ref. 11, 
allowance for this fact on the basis of the isomorphism of 
critical phenomena yields to following expression for the 
mobility: 

whereil is the singular part of the thermal conductivity of 
the pure solvent and T,, is its critical temperature of vapori- 
zation. The derivative is taken along the critical curve, near 
Tc* . 

The second term on the right-hand side of (5) corre- 
sponds to the coefficient of diffusion of the molecules of the 
solution in a mean field of interaction which depends on the 
concentration of particles. One can obtain an expression for 
this diffusion coefficient by transforming the Bogolyubov 
chain of kinetic equations in the limit of weak interaction, 
neglecting the ternary and higher correlation functions. l4 As 
a result, one obtains a Boltzmann kinetic equation with an 
average force of interaction: 

where v, , P a ,  and r, are the velocity, momentum, and coor- 
dinate of a particle, respectively, v,, is the relative particle 
velocity, ds,, is the differential scattering cross section, 
f (P,r,t ) and f '(P,r,t ) are the single-particle correlation func- 
tions before and after the collision, respectively, FF) is the 
average force of interaction, which depends on the single- 
particle and two-particle correlation functions, and the in- 
dices a and b denote the components of the solution. Solu- 
tion of equation (10) in the familiar Enskog-Chapman 
approximation15 yields the following expressions for the dif- 
fusion coefficient and the mobility: 

where fl"~"'  is the reduced collision integral, u,, is the effec- 
tive scattering diameter, m, and m, are the particle masses, 
U(') is the mean field of interaction associated with the aver- 
age force I;(') . 

The expression for the field U") in terms of the molecu- 
lar constants is rather awkward and is not amenable to eva- 
luation for realistic models, but one can determine the field if 
the equation of state is known. In fact, one can see by com- 
paring equations (7) and (1 1) that this field can be expressed 
in terms of the chemical potential: 

Clearly, when the interaction field is zero, Eq. (1 1) implies 

D"'=D,=b""k.T. (14) 

We note that expression (12) corresponds to the result in the 
first approximation of Enskog-Chapman theory for a rar- 
efied gas. By examining (10)-(14) one sees that the diffusion 
process governed by diffusion coefficient (7) takes place in a 
mean field which depends on the concentration of particles. 
Near the critical point the field gradient is directed along the 
particle-concentration gradient and inhibits equilibration of 
the concentration. 

EXPERIMENT 

In the present study experiments were carried out in a 
dilute solution of neon (Ne) in carbon dioxide (CO,) in the 
region of reduced temperatures lou3  < r < lo-' near the 
critical density of the solution at concentrations N< 0.04 
mole fraction of Ne by the capillary method described pre- 
v i ~ u s l ~ . ' ~ ~ "  The method essentially consists of determining 
the rate of change of the average concentration of a solution 
filling a capillary which is closed at one end and immersed at 
the open end in a solution whose density and concentration 
(different from the initial composition of the solution in the 
capillary) are held constant over the entire course of the ex- 
periment. The method ensures a constant temperature and 
pressure in the capillary during the diffusion and provides 
conditions of mechanical equilibrium of the ~olu t ion . '~  In 
the experiments the drops in concentration were small, mak- 
ing it possible to use Eq. (3). The concentration measure- 
ments were made with a mass spectrometer. 

The uncertainty in the measurements of the diffusion 
coefficients depends strongly on the proximity to the critical 
point and lies in the range of 2-10% of the measured quanti- 
ty. There are also uncertainties in the analysis due to the 
necessity of taking into account the changes in the critical 
temperature and density of the solution and, hence, the 
"drift" of the reduced temperature T. The change in the criti- 
cal temperature is caused by the change in composition of 
the solution due to diffusive mixing of the components. 

For comparison of the experimental data with the the- 
ory, Fig. 1 shows a plot of lg(D /Do), where D is the experi- 
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FIG. 1 .  Temperature dependence of the interdiffusion coefficients in 
C02-Ne and C0,-Ar solutions near the critical point for vaporization of 
CO,. C0,-Ne: barred crosses) experimental values; 1) D /Do, where D is 
described by Eq. (16) and Do = 9.3 - lo-' m2/sec, 2) Eqs. (5), (16), and (22), 
3) Eq. (24), 4) Eq. (29). C0,-Ar (Ref. 17): plain crosses) experimental val- 
ues; 5) Eq. (24). 

mental value and Do is the estimate of the diffusion coeffi- 
cient from Eqs. (12) and (14). The change in Do due to the 
changing density in the capillary over the course of the diffu- 
sion corresponds to the vertical hash marks in Fig. 1. The 
horizontal hashes correspond to the change in the reduced 
temperature of the solution over the same time. In calculat- 
ing Do we used the values of the effective scattering diameter 
(which has units of length!) a,, = (al + u2)/2 = 3.39 lop8 
cm; a, = 3.996. cm (Ref. 18); a, = 2.789. cm 
(Ref. 19); m,N, = 44.01 g/mole; m2NA = 20.18 g/mole, 
NA is Avogadro's number, ~ , , k  -' = k -'(E,E,)~ = 82.4K; 
~~k = 190 K (Ref. 18); ~ , k  -' = 35.7 K (Ref. 19); a,,&,, 
and u,,~, are the parameters of the Lennard-Jones poten- 
tial15 for CO, and Ne, respectively, and ~ ~ ~ , a ~ ~  are the pa- 
rameters for their solution; 0 ('."' (e12/kT) is the integral cal- 
culated on the basis of the Stockmayer potential and 
averaged over molecular orientations15; the critical density 
of the pure solvent ncr = 1.085 . lop2 mole/cm3 (Ref. 20); 
(dn/dN)crl,-t, = 1.22 . 10W2 mole/cm3M (Ref. 21); 
N = 0.036 M Ne (indices 1 and 2 refer to the solvent CO, and 
the solute Ne, respectively). 

Let us now use (8) to estimate the temperature depen- 
dence of the singular term of Eq. (5); as we have mentioned, 
this term is the diffusion coefficient of Brownian particles of 
radius r, . According to Ref. 1 we have 

re=ro~-V ,  (15) 
where ro is the amplitude of the temperature dependence of 
the correlation radius. Further, we can assume for purposes 
of estimation that v* -rl(r) where $1 is the regular part of 
the viscosity in the temperature region of the present mea- 
surements. In fact, it is known from experimentZZ that the 
viscosity of CO, in the critical region changes by no more 
than lo%, and it can be assumed that the change in the 
viscosity of a solution will be still smaller. If it is also taken 
into consideration that the modern theory23 predicts that the 
critical exponent of the viscosity is small, the estimate given 
above for the high-frequency viscosity can be considered sat- 
isfactory. In the final analysis we obtain 

Fi ure 1 shows a plot of D/Do according to (16), with ,l(q = 3.3 - 10-4 g/cm sec (Ref. 22), ro = 3 . lop8 cm (we 
adopted this value of ro on the basis of the review by Anisi- 
mov2), Do = 9.2 . lop4 cm2/sec, and with a slope v = 0.63; it 
is seen that the values calculated from (16) lie significantly 
below the experimental data. This rough estimate implies 
that the experimental dependence should apparently be de- 
scribed mainly by the regular part of the mobility. 

Let us determine the boundary temperature at which 
the singular part of the mobility becomes larger than the 
regular part. We estimate the boundary temperature at the 
critical density using Eq. (9), withz4 

kT,2, d p  
La) = - 6nq "r, ( )  kTF (T, An) .  

P 

where 

y is the critical exponent of the compressibility, and in our 
case F(r,An) = 1. The regular part of the mobility can either 
be evaluated by (12) or estimated in order of magnitude using 
the Stokes equation13: 

As a result 

For the investigated C0,-Ne solution we take the average 
value of the concentration in the experiment as N = 0.036 
mole fraction of Ne; n,, = 6.53 . 10'' cmP3 (Ref.20); 
Tcr = 304.15K (Ref. 25); (dT/dN),, = - 24.57 K/mole 
fraction (Ref. 21); (dp/dT), = 1.71 . lo6 dyn/cm2K (Ref. 
25); a1/2 = ro, A = 7.6 10-lo cmz/dyn (Ref. 25); y = 2v, 
Y = 0.63 (Ref. 1). We finally obtain ro = 1.1 . lop6. If we use 
Eqs. (9) and (12) we get ro = 4.2 . lo-'. Consequently, in the 
temperature region of the present measurements the diffu- 
sion coefficient should be described by the regular part of the 
mobility. 

For estimating the diffusion coefficient in the region we 
use the relation from the fluctuation theory1 

and the approximation for a weak ideal solution 

Then 

It should be noted that the applicability of estimate (23) for 
the mobility b(" at densities clear up to the critical density is 
actually something more of an experimental fact, since this 
relation was obtained in the limit of small densities. The cor- 
rectness of using Eq. (12) or the like for evaluating the regu- 
lar part of the mobility at densities as high as the critical 
density is discussed in Ref. 14, where a review of the experi- 
mental data relevant to this question is also given. Unfortu- 
nately, at the present time the coefficients A ,  of the scaling- 
theory equation of state for C0,-Ne solutions are unknown, 
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and therefore the coefficient A j here remains an adjustable 
parameter. The temperature dependence of the interdiffu- 
sion coefficient according to (5), (16) and (22) with 
Do = 9.2. cm2/sec, A ; = 2.0. and 
A ,  = 2.30. lop4 cm2/sec is given by curve 2 in Fig. 1; it is 
seen that Eq. (22) gives satisfactory agreement with the ex- 
perimental data. 

Another possibility for estimating the temperature de- 
pendence arises in light of the fact that the critical exponent 
y = 1 in the van der Waals-Landau theory of the critical 
point is not greatly different from the value y = 1.2 from the 
fluctuation theory.' Thus one can, with a certain error, esti- 
mate (aN/ap) using a mean-filed type theory, which in the 
present case of diffusion near the critical point for vaporiza- 
tion of the pure solvent gives6 

For A V = 0 we have 

D o  1 - A )  I ,  Al=iVA,2/kT,2ATv. (24) 

In relations (23) and (24) the coefficients are given by the 
equation of state 

p-pcPANN+A,AT+ANvNAV+ATVATAV+Avvv (AV) 3, 

(25) 

where V = l/n, A V = V - V,, , A T  = T - T,, , and the sub- 
script "cr" denotes the value of the parameter at the critical 
point of the pure solvent. According to Ref. 25 the coeffi- 
cients of Eq. (25) are A, = 1.71 10, kPa/K, 
AT, = - 1.80. lo3 kPa . K-'kmole mP3, 
A,,, = - 2.84 . kPa . kmole3 . m-9. For determin- 
ing the remaining coefficients we use the experimental data 
for C02-Ne solutions along the critical line, which for low 
Ne concentrations is a straight line inp- V-N-T space, origi- 
nating at the critical point of pure CO,. From equation of 
state (25) we obtain the equation of the critical line as26 

Strictly speaking, this equation for the critical line does not 
comply with experiment, since the data of Ref. 21 give a 
nonzero concentration derivative of the volume along the 
critical line, i.e., (dV/dN),, #O, in disagreement with (28). 
However, the disagreement in the case at hand is small and 
has no substantial affect on the interpretation of the experi- 
mental data by Eq. (25). This disagreement can be decreased 
further if A V in (25) is formally replaced by A Vc = V - Vc 
and Eq. (28) is replaced by the condition Vc = (dV/dN ),,N, 
where Vc is the experimental critical volume of the solution. 
Equations (26) and (27) can then be retained without modifi- 
cation in the given experimental situation. According to Ref. 
21, (dp/dN),, = 4.09 . lo4 kPa/mole fraction, yielding 
A ,  = 4.51 lo4 kPa/mole fraction and A,, = - 8.49 - lo5 
kPa . kmole/m3mole fraction. The temperature dependence 
corresponding to (24) with A ,  = - 5.3 . lop2 and with the 

values of the coefficients given above is shown by curve 3 in 
Fig. 1. It is seen that, as anticipated, this curve also agrees 
with experiment within the limits of error. 

Using the fact that Eq. (23) applies, let us estimate the 
temperature dependence in the case when the density in the 
capillary is not equal to the critical density of the solution. 
Such a difference in these densities is observed in the mea- 
surement presented here. IfA V, is small, then Eq. (23) yields 

The temperature dependence from (29) is shown in Fig. 1 by 
curve 4, which was constructed for A, = - 0.403 and 
SVc = - 7.7 . lop2. It is seen that the correction due to the 
deviation from the critical density is small and can be ne- 
glected everywhere except, perhaps, in the immediate vicini- 
ty of the critical temperature, where the experimental error 
increases rapidly. 

Figure 1 also shows values from earlier" diffusion ex- 
periments and the curve from (24), consistent with these val- 
ues, for a C0,-Ar solution with concentration N = 0.043 
mole fraction of Ar (A, = - 2.1 . lop2). Analogous esti- 
mates for this solution give a boundary temperature of 
r0 = 6.0 . lop5. Thus, for this solution also the temperature 
dependence of the mobility in the investigated region is gov- 
erned by its regular part. 

Comparison of the experimental and theoretical curves 
shows that near the critical point for vaporization of the 
solvent, the diffusion coefficient can be described, to within 
the experimental error of less than lo%, with the aid of Eqs. 
(12),(14), and (23). In the interval lop3 S 7 5 lo-' and for 
N 5 0 . 1 , ~  Sp,, , the singular part of the mobility is at least an 
order of magnitude smaller than the regular part and can be 
neglected. The regular part of the mobility can be calculated 
using Enskog-Chapman theory in the rarefied-gas approxi- 
mation (or by a similar theory; see, e.g., Ref. 27), even though 
the solution does not qualify as such. The anomalies of the 
interdiffusion coefficient for a solution in the given param- 
eter region are governed mainly by the quantity (aN /ap),,., 
which can be evaluated if the equation of state is known. 
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