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The spin contribution to the specific heat and entropy of liquid He3 is isolated by analyzing the 
experimental data. At high temperatures the spin entropy per particle approaches Soz0.972, 
which is different from In 2. The constant So does not depend on the density of the liquid. The 
nonspin contribution to the entropy is linear in the temperature. The temperature dependence of 
the pressure at a fixed liquid density exhibits clearly the spin contribution, which is found to be 
proportional to the logarithm of the temperature. 

1. THE PHYSICAL PICTURE 

1. In Ref. 1 Greywall reports the results of very accurate 
measurements of the constant-volume specific heat C, of 
liquid He3 for temperatures T in the range from 0.005 to 
2.5 "K and molar volumes in the range from 36.8 to 25.7 
cm3/mole. The pressure at T = 0 was varied from 0 to 34 
bar; the liquid density, from the equilibrium density no to 
1.4n0. These are the first measurements of the C, to be per- 
formed in such broad T and Vranges on the same apparatus. 
Earlier constant-pressure specific heat measurements were 
carried out by different authors in narrow temperature 
ranges, and are in poor agreement with each other. Refer- 
ence 1 contains tables of C,, entropy (S,), pressure (P) and 
dP/dTvalues for seven molar volumes of He3. Thompson et 
a[.' have measured the magnetic susceptibility x with a high 
degree of accuracy in roughly the same V and T regions. In 
the present paper we separate out the spin contribution to 
the fundamental thermodynamic characteristics of the liq- 
uid by analyzing and comparing the data reported in Refs. 1 
and 2. We find universal and extremely simple temperature 
and He3-density dependence for C,, S,, P, and X .  These 
relations are found without the use of any model assump- 
tions about the properties of He3. The paper is extremely 
close to experiment, and is meant for experimenters: to draw 
their attention to the study of the properties of He3 at high 
temperatures T z  1 OK, i.e., in the region where the Landau 
theory is no longer applicable, but the liquid is still cold. 

2. Liquids, like gases, do not possess long-range order, 
and, as their fundamental characteristic, let us choose the 
momentum distribution function n, of the particles. This 
function is isotropic and is, in the high-T limit, characterized 
by the thermal momentump; = 2mT (m is the mass of the 
atom) and low occupation numbers: n, (1. If we keep the 
density of the liquid constant and raise T, then there comes a 
time when the thermal momentum becomes smaller than the 
quantum momentum: 

the coarse structure of n, does not change when the tempera- 
ture T is lowered further. The occupation numbers thus re- 
main small, but there appears at a temperature T <  T,, 
where T, is the degeneracy temperature, a small step against 
the background of a smooth momentum distribution nf: 

np=npR+nooO (pF-p). 
It is possible that there are several such steps and Fermi 
momentap,. It is, in our opinion, the smallness of n, at all T 
that constitutes the important property distinguishing a 
dense isotropic condensed medium from a slightly nonideal 
gas. For a gas, a)D,  and (1) is equivalent to the condition 
T < E,, where E, = p:/2m. The real He3 is a dense liquid, 
and the Fermi momentum (the parameter of the ideal gas) is 
not a characteristic momentum for it. The conditions (1) are 
fulfilled for He3 at T 5  20 OK. The degeneracy temperature 
T, and the jump in the function n, are small: T,(T,, 
no,( 1. The smallness of no, is a consequence of the high He3 
density, since the characteristic momentum p, > p, (even a 
weak inequality will do), and the number of particles respon- 
sible for the formation of the n, jump is smaller than the total 
number of particles. This assertion is based on the Landau- 
Luttinger theorem3: 

PF 

J n, hp=  J d3p. 
0 

Since n, > nf and n, ( 1, the following inequality is valid: 

The smallness of T, is tightly bound with the smallness of 
no,. Even a slight warming of the liquid leads to the disap- 
pearance of the weak singularity in n,. The quantity no, de- 
termines the weight of the Landau quasiparticles against the 
background of the total number of particles, and, as has been 
shown by Migdal,4 is the residue at the pole of the single- 
particle Green function: 

Here a is the interatomic distance and D is the diameter of an G=GR+noo[~- (p-p,) u,]-'. 

atom. The quantum momentump, is estimated on the basis The strong pole singularity in G determines, even when the 
of the uncertainty principle for the coordinate and momen- residue no, is small, all the thermodynamic and kinetic prop- 
tum of the atom. It is important that, for a dense medium, erties of He3 at T <  T,, but becomes unimportant at T >  TF. 
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In the case of highly compressed He3 it is not T, that serves 
as the lower temperature scale, but the temperature T,, at 
which the liquid solidifies. As a result of the small mass of 
the He3 atom, there exists, for any density of the liquid, a 
region of intermediate T (T,, , T, < T < T, ) where universal 
dependences of the thermodynamic quantities on Tare to be 
expected. Indeed, in the zeroth approximation T,, T,, = 0, 
T, = CO, and there is, in general, no energy scale. There- 
fore, the dimensional quantity T cannot enter into the ex- 
pressions for the specific heat and entropy per particle: C, 
= OandS,/R = So. In the next approximations Tcan enter 

in these expressions in the combinations TF/T and T/T, : 

These relations indeed hold for He3. Their accuracy rises 
with increasing T and as the density n increases. Figures 1 
and 2 show plots, constructed from Greywall's data,' of (S, 
+ C,)/R and C, T/R as functions of Tand T respective- 

ly. Both functions are linear at high T. Unfortunately, 
Greywall stopped his measurements at T = 2.5 OK: it would 
have been interesting to determine the T's up to which the 
asymptotic dependences (2) are valid. For an ideal crystal yo 
and To in (2) are exactly equal to zero, and the entropy is the 
sum of the spin and phonon contributions: 

Here O is the Debye temperature and T, is of the order of the 
overlap integral for the wave functions of the atoms in neigh- 
boring lattice sites. For the liquid and the dense gas, in which 
the single-particle motion of the atoms is possible, nothing 
forbids the occurrence of the To/T and yo T terms in (2). 
There are also no limitations on the residual entropy So in (2). 
This parameter for He3 differs appreciably from In 2, and is 
strikingly constant: as the density is raised from no to 1.4n0, 
the quantity So undergoes insignificant fluctuations in the 
interval from 0.964 to 0.972. 

FIG. 1 .  Dependence on T of the quantity (C, + S,)/R for different val- 
ues of the molar volume V: 1) V = 36.82; 2) V = 30.39; 3) V = 26.17 cm3/ 
mole. The straight lines are plots of functions of the type (C, + S,)/R 
=So + 2y, T. 

FIG. 2. Dependence on T of the quantity C ,  T/R for different values of 
the molar volume V: 1) V = 36.82; 2) V = 30.39; 3) V = 26.17 cm3/mole. 
The straight lines are plots of functions of the type C, T/R 
=yo T Z +  To. 

3. Laws of the type (2) should hold for any system with a 
nonzero single-particle density of states in the temperature 
region TI < T <  T,, where TI and T,, are respectively the 
lower and upper quantum scales. For the Landau theory T, 
= Tc and T, = T,, where Tc is the critical temperature of 

the transition of He3 into the superfluid state. In the case of 
liquid He4 the arguments adduced above are valid in the 
region T,,, TA < T <  T, , where TA is the superfluid transi- 
tion temperature. The analog of the np jump for He4 occurs 
in the ratio of the number of condensate particles to the total 
number of particles: np = npR + no, S(p). The smallnes of 
the number of condensate particles is also a consequence of 
the high density of the liquid. The quantity no, is small, since 
the total number of "slow" atoms is small. In the case of He4, 
as in the case of He3, there exists a temperature region where 
C, is proportional to T. Andreev5 has explained the linear 
dependence of C, on T for He3, He4, and hydrogen by as- 
suming that these liquids are close to their properties to 
glasses. Serving as the upper scale in Ref. 5 is the Debye 
phonon frequency o,, which is expressed, as in the case of 
solids, in terms of the sound velocity c and the density n: o, 
-cn'I3. Most of the time the atoms vibrate about the irregu- 
larly disposed equilibrium positions, and sometimes hop to 
neighboring vacant equilibrium sites. Andreev5 cited a ri- 
gorously defined type of single-particle motion, but actually 
based his analysis only on the fact that such a motion occurs. 
The assertions made in Ref. 5 have a general character, and 
are not connected with the assumption that there is short- 
range order in a liquid. An amorphous solid (glass) and a 
dense gas possess similar thermodynamic properties in the 
region of intermediate T. Indeed, if we reduce the atomic 
mass, the single-particle motion will destroy the short-range 
order, but the temperature interval T, < T < T ,  will be pre- 
served. 

The analogy between a liquid and glass or a dense gas 
should not be carried too far. Thus, the large parameters o, 
and T, are actually unobservable. In the case of solid He the 
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frequency w, is not just a quantity connected with the sound 
velocity and the density, but a parameter that can be found 
from specific-heat measurements. But in the case of liquid 
He3 with density close to the equilibrium density no there is 
no Tregion where we can observe even a trace of the phonon 
contribution to C,. Furthermore, the correction to C,, 
which is proportional to T3, has a negative sign, which is 
characteristic of a gas; the dominant term in C, is a T; the 
next, cc - T3. The parameter T, is also "bad" in the sense 
that it is too high. Furthermore, the density dependences of 
the quantity yo in (2) and T ; ' do not duplicate each other. 
Apparently, the characteristic frequency w, = ic, k of the 
diffusion-induced transverse excitation serves as the large 
scale for semiquantum liquids. Tolochko and the present 
author show in Ref. 6 that such excitations should occur in 
liquid He3 with k- l/a. Notice also that in solids the trans- 
verse acoustic excitations have a lower w, than the longitu- 
dinal excitations, and it is precisely they which make the 
dominant contribution to the specific heat. 

4. Andreev and Kosevich7 have investigated the kinetic 
phenomena in semiquantum liquids. In particular, for the 
thermal conductivity coefficient x they obtain within the 
framework of the "glass" model the law x a T, which, for 
He4, is obeyed in the T region where C, a T. This law is 
characteristic of a cold gas as well, a fact which can be seen 
from the standard gas-kinetic relation8: x - C, ZF. For a cold 
gas C, a T, and the mean free path 1 and the mean velocity ij 
of an atom do not depend on the temperature: I-a, 
- v- p,/m. Entirely different extreme assumptions about the 
properties of the liquid lead to similar T dependences of the 
observed quantity. In such a situation it is useful, if we can- 
not elucidate, then at least to discover the empirical laws 
peculiar to semiquantum liquids. Liquid He3 and He4 can, 
on the basis of their properties, be placed not between glass 
and a dense gas, but alongside. 

asymptotic formulas (3), and is accurate to within 2%. The 
expression (4) for @apparently does not contain any physics, 
and is also an analog of the empirical Curie-Weiss law, 
which is characteristic of a system of spins on a lattice: @, 
= T/(T - 1). But the formula given in (4) for TF(n) is very 

exact and lays claim to the role of a physical law. The corre- 
sponding quantity for localized spins depends very strongly 
on the crystal density: TF a n-18. For a nearly ferromagne- 
tic Fermi gas the dependence TF a (n, - n)vF, where n, is 
the critical density, is to be expected. The majority of the 
observable quantities characterizing the thermodynamics of 
He3 and its interaction with a long-wavelength external field 
also vary with the molar volume according to power laws. 
The determination of the T dependence ofx in a broad range 
of T is a difficult and an unsolved problem for He3. It is 
insensitive to the choice of a model. Thus, for an ideal gas TF 
= +eF and the parameters in (3) are equal to: do = 0.75; 
a, = 0.73; b, = 0.98. Since do, b,, and a, are close to the 
empirical values of d, b, and a ,  it is not surprising that, if we 
chooseeF SO as to obtain the correct valuex (0) ofx for T-tO, 
then x will be in good agreement with the ideal value X, at 
all T. Experimenters traditionally compare the measured x 
withxid. Moriya gives in his review article9 extensive experi- 
mental data on the properties of nearly ferromagnetic met- 
als. There exists a general empirical rule: if the magnetic 
susceptibility at T = 0 is high, then x begins to obey the 
Curie law at very low T. This rule is applicable to liquid He3 
as well. The Curie law forx is valid in the temperature region 
where the liquid is still cold. Below we shall use the expres- 
sions (4) without attempting to prove them. 

Notice that the introduction of the designation TF in (3) 
is not accidental. The parameter TF, defined by the relation 
x (0) = ck/TF, is the degeneracy temperature for He3. This is 
almost obvious: since TF determines the scale for X, this 
same parameter should be the natural scale for all the spin 

2. MAGNETIC SUSCEPTIBILITY 
characteristics of He3. Another definition of the degeneracy 
temperature is adopted in the literature: E; = pi/2m*. The 

The experimental  of^ is a One. quantity E$ is not directly observable, and is obtained from 
The value ofx at T = 0 determines the temperature scale for the gas parameters m* and p,. l-he scale &; is unnatural, x at all T. In Ref. 2 the following empirical asymptotic laws being too large for He3. F~~ He3 all the low-temperature 
are given for x :  expansions are in powers of T, while the high-temperature 

where @ =xT/c,, r z T / T F  (c, is the Curie constant). As 
the density is varied, the parameter a in (3) varies nonmono- 
tonically in the range from 1 to 1.1, while the quantities b and 
d vary monotonically: 0.77 < b < 1.45; 0.91 < d < 1.43. The 
following laws of variation are well obeyed in the entire re- 
gions of variation of T and n: 

To the equilibrium density no corresponds the molar volume 
V, = 36.84 cm3/mole. The minimum value TF = 0.179 "K 
is attained on the liquid-crystal coexistence line. For the pa- 
rameter @, which varies in the range from 0 to l ,  the approxi- 
mation (4) corresponds to the values a = b = d = 1 in the 

ones are in powers of T-I. Moreover, the actual expansions 
are in powers of the quantities @ (T) and @ (T)/T. 

3. ENTROPY, SPECIFIC HEAT, PRESSURE 

1. In order to separate out the spin contributions to C, 
and S,, we, using the Greywall's data,' computed the C, 
value from S,. Since the nonspin contribution, which is 
nearly linear in the temperature, cancels out in the differ- 
ence, the quantity S, - C, depends only on the parameter 
T. Figure 3 shows plots of (S, - Cv)T/RTF as a function of 
T/TF for three values of TF. It can be seen that the param- 
eter TF indeed determines the scale for the spin contribu- 
tions C a n d  S ", Therefore, there are grounds for the fol- 
lowing separation of the contributions to C, and S, at 
D T F :  
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FIG. 3. Dependence on T / T F  of the quantity (S,  - C,)T/R TF for three 
values of TF: 0) 0.359 'K; A) 0.250 OK; 0)  0.185 "K. The straight lines are 
plots of functions of the type (S,  - Cv)T/RTF =So T / T F  - 2TJTF. 

Svo/R=S0-TOIT, SV~/R=~,T-pT3/3,  Sv=SvRf SVU; FIG. 4. Dependence on T 2  of the quantity TaP/dT for the same molar- 
volume values given in Figs. 1 and 2. The straight lines are plots of func- 

CV"IR=ToIT, CV~/R=~,T-pT3,  CV=CVR+Cvn, (5) tions of the type TaP/dT = - Po + 26TZ. 

where C; and S; are the nonspin regular contributions. 
The correctionpT3 to C; is very small at all T <  2.5 OK, and 
the parameter p is found inaccurately. But the sign of the 
correction a T 3  is definitely known. It is possible that it has 
the formpT3 In (T, /T). On the other hand, the parameters 
yo, To, and So in (5) can be very accurately determined, since 
we can find the derivatives of To, So and yo with respect to the 
volume V of the system, using the identity dP/dT = dS,/ 
dVand Greywall' experimental data1 for the dependence of 
Pand dP/dTon T. Figure 4 shows the dependence of T (dP / 
dT)on T '. Thecorrection 1/12R T4dp  /dV to the pressureis 
entirely insignificant, and there is no linear correction 
a TaS,/dV, which implies almost exact constancy of the pa- 
rameter So; 

This law is obeyed at T z 2  OK to within 0.2%. On the other 
hand the law for C 3 s  obeyed in the region T >  2TF to with- 
in 5%. The T dependence of C",/R at high densities 
z 1.4no is nonmonotonic, and possesses a weak minimum. 

2. The density dependence of the parameter yo in (5) is a 
power-law one: 

Y O  ( n )  =yo(no)  (nlno)vY, 

where v,=-1.44, yo  ( n o )  =0.35 K-.' (7) 

This law is obeyed in the broad interval from n =no  to 
n = 1 . 8 4 ~ ~ ~ .  The formula (7) agrees to within 4% with the 
experimental data obtained by Pandorf et al. lo for He3 and 
He4 and their solutions in the temperature range from 2 to 
4.5 OK and molar-volume range from 20 to 23 cm3/mole. 
The values of the exponent v, for He3 and He4 are almost 
equal, which again confirms the correctness of the separa- The temperature T,, at which the pressure P has its mini- 
tion of the spin contribution to C, and s,. The nonspin 

mum can be readily found from (6): T, = P0/2S. For 
contribution yo T turned out to be insensitive to the type of n = 1 .4n0 this relation is accurate to within 1 %. 
particle statistics used. In Table I we also give values for the 

In Table I we give the values of the parameters do, Po, 
quantities m,*, which is the effective mass of the light quasi- T,, T,JTF, So, TF, andB for seven values of the molar vol- 
particles: 

ume of He3. Figure 5 shows the dependence of the spin pres- . - 

sure with the sign reversed on In T: mo*='yop~~/7~~, ma*(,) =mo* (no)  (nln,)" 

TABLE I. The principal thermodynamic characteristics of liquid He3. 
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FIG. 5 .  Dependence on In T of  the quantity Po(0) - P U ( T )  for the same 
molar volumes given in Figs. 1 and 2. The straight lines are plots of  func- 
tions of  the type Po(0) - Po(T)  = Po ln(T/T,) .  

Here Y* = - 0.773 and m,*(n,) = 0.352m. As shown in Ref. 
6, the parameter m,* is an important characteristic of He3. 
The dispersion of the short-wave acoustic excitations is de- 
termined not by the value of the mass m* of the heavy Lan- 
dau quasiparticles, but by just the quantity m,*. Before the 
publication of Greywall's data1 the parameter m,* was 
known very inaccurately. 

3. The laws (5) and (6) hold in the high-T region where 
the dependence of the magnetic susceptibility x on T is de- 
scribed by the Curie law to within fractions of one percent. 
But in the case of solid He3 the approach of the spin entropy 
to the value R ln2 and that ofx  to the Curie law occur in the 
same temperature range. The cause of this difference lies, 
apparently, in the fact that, while the spin entropy S 2 s  a 
functionalofx (k ), thelong-wavelengthlimitx(k = 0) is mea- 
sured in experiment. For localized spins x does not depend 
on k, and the Curie law begins to hold, as the temperature is 
raised, for all the momenta simultaneously. But in the case of 
the liquidx depends on the wave vector k, and the approach 
of the magnetic susceptibility to the Curie law occurs earlier 
fork = 0 than fork- l/a. The contribution of the momenta 

k - l/a is, in our opinion, responsible, for the appearance of 
the slowly decreasing-with increasing T-term of the or- 
der of To/Tin (5). In other words, in contrast to what obtains 
in a crystal, in a liquid there exists a nonzero probability of 
the atoms coming so close to each other that the exchange 
effects are not negligible at any temperature. 

4. We can determine the spin entropy S a n d  the spin 
specific heat C a t  all temperatures on the basis of the 
asymptotic dependences for S, and C,. To do this, we must, 
using Greywall's data,' subtract the value S R, from the total 
entropy and C $ from the total specific heat: 

This operation is legitimate if the functions S;(T) and 
C$(T) are linear at all, and not just high, T. That this is in 
fact the case can be seen from Figs. 6 and 7, which depict the 
dependence of the quantities S Y R ,  S V F / R T ,  and 
C V T , / R T  on T/TF for three values of the parameter TF. 
The parameter TF alone determines the scale of C a n d  S ", 
in the enormous interval 0.005 < T <  2.5 OK. The spin specif- 
ic heat and spin entropy are functions of the ratio T/TF 
only. Notice that if we went from low to high T, it would be 
very difficult to separate the contributions to C, and S,, 
since at low temperatures S ",S and C ",C $. It turned 
out to be simpler to go down the temperature "scale" from 
the relation of high T, where S ",S $ and C ", C R,, into 
the low-T region. The high accuracy of the measurements 
allowed Greywall to determine all the three coefficients in 
the low-temperature expansion of C,: 

In Table I we give the values of the dimensionless pa- 
rametersrTi,  O,/TF, and y"TF, where y" = y - y,. It can 
be seen that the parameter TF is again the natural scale at 
low T: all the numbers in Table I are of the order of unity. 
Therefore, at low T 

C," 
-= 

Oc STa 1' 0 s  yaT-rT3 ln - - =yUT- Ts ln - , (10) 
R T '  R 3 T 

where 

S ~ / R  s;-, ;T  
1 

so . 
. 0 * A *  

f O ' ~ ' a  

.O 

2A ~ o o O  %..\ A , .  0 

* A  
FIG. 6 .  Dependence on T / T ,  of  S",R and 

WE- 
* S ;  TJRT for the same T, values given in Fig. 3. 

C 
C 
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asymptotic form ofS  ",contains a To/T term, which we can- 
not obtain if we have only powers of @: 

FIG. 7. Dependence on T / T F  of C V F / R T  for the same T, values given 
in Fig. 3. 

In experiment the parameter r varies in the range from 36.8 
to 225 K-3. The density dependence of r has the form 

r (n) =r (no) (nln,)'~. , r ( n o )  =36.8 A'- ', v,.=5.02. 

It is characteristic that the asymptotic dependences (10) hold 
right up to high T=:O,/2 (0, varies, as n is increased, from 
0.46 to 0.22 OK), i.e., the expressions (10) are valid in the 
region where ln(O,/T)=: 1. Greywall was the first to point 
out this important circumstance. The exi:tence of the cor- 
rection T 3  In T to C ,  was predicted by Eliashberg," and 
Brinkman and Engelsberg13 have given an estimate for the 
region of applicability of the law (10) for He3: T <  0.025 OK. 
It is usually difficult to detect a logarithmic law, and here we 
must think of how to get rid of it. Indeed, the value of O, in 
(10) is of the normal-for He3--order of magnitude of T,: 
the ratio Oc/TF (Table I) varies from 1.1 to 1.28. It is not 
possible to find the parameter O, within the framework of 
the low-temperature Fermi-liquid expansions, since it can- 
not be expressed in terms of the characteristics of the liquid 
at the Fermi surface. Let us try to find the relation between 
the spin contributions, C  ",nd S F ,  and the magnetic sus- 
ceptibility x constructively without the use of model as- 
sumptions, trusting, of course, that such a relation exists. 

4. EMPIRICAL RELATIONS FOR C",, S",, ANDx 

Let us first of all write down the asymptotic expressions 
for S " and @ = xT/c,, replacing all numbers of the order of 
unity simply by unity: 

Sv0/R=l-I/%, @ = I - I / ? ,  , > I ,  

In (1 1) the substitution T+@ (T) suggests itself, after which 
the low-temperature expansions have meaning at r ) l  as 
well and the high-temperature expansions have meaning at 
r41:  

Therefore, we can endeavor to seek the relation between S ", 
and @ in the form of an expansion of S ",n powers of @ and 
@ /T. This expansion should contain (@ /T)" terms, since the 

(13) 

Two of the coefficients in (13) are known: A = T T i / 2  and 
r0 = TdT,. There is hope that the series ( 13) converges, 
since even the first approximation S ", tt@, with x = So, 
reproduces the experimental S ",curve in the region T < TF 
to within 25%, and possesses the correct asymptotic form in 
the region T> TF. We can truncate the series (13), but it is 
better to approximate it by the functions 

The approximation (14) can be justified, but we propose to 
treat the expression (14) as an empirical expression. Since the 
function @ coincides exactly with r/(1 + 7 ')ll'. (4), we can 
simplify the formula (14) greatly and find the parameters tt, 
r,,&, QS, andA from the asymptotic formsofS ",or T> TF 
and T <  TF, knowing the quantities y", @,, T ,  and To,So: 

The dependence (14) agrees with experiment to within 2%. 
The formula (14) is not improved in accuracy if we do not use 
the empirical expression (4) for @, but substitute in it the 
experimental values of @. As was to be expected, the param- 
eters r l ,  tt, A, Os,p; (Table 11) depend weakly on the molar 
volume. By making the same approximations, we can obtain 
the expression for the spin specific heat C  ",R: 

where @,@,e'I2 andp; = 1.086 p", The dependence (15) 
agrees with the identity C  = rdS/Jr ,  since the following re- 
lation holds to within 1 % in the entire interval 0 < @ < 1: 

If we set @ = r( 1 + r 2)112, then ra@ /ar = @ (1 - @ 2), and 
we have for the total specific heat C ,  = C  ", CC from (15) 
the expression 

In Table I1 we also give the values ofp: and @,. The empiri- 
cal formula (17) is less accurate than (14), it being accurate to 
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TABLE 11. Parameters of the empirical functions S g T )  and C g T )  (the formulas (14) and (17)). 

within 5%, which is admissible, since the approximation (4) 
is for @, while (15) contains the T derivative of 0. The maxi- 
mum deviation of the dependence (1 7) from the experimental 
curve occurs in the region T=: 1 K, where we can roughly use 
for C ",he asymptotic formula C F  = RTJT. But in the 
region of the C ",maximum, which occurs at r =: 1, the error 
introduced by the use of (17) is the same as the error made 
when the formula is used in the region T <  TF, this error 
being 1%. We do not overrate the good agreement of the 
empirical dependence (14) and (17) with experiment, but the 
fact that the series expansions of C a n d  S ",n powers of @ 
and @ /T converge is extremely important for the choice of a 
realistic model for He3. Regardless of whether we assume 
existence or absence of short-range order in liquid He3, there 
comes a point in the theory of He3 gas and He3 glass when we 
introduce the scale TF on the basis of the experimental data. 
After this, the auxiliary parameters of the type m*, p,, and 
E: no longer enter into the relations connecting the observ- 
able quantities, and remain numbers of the order of unity. 
All the theories are then alike. We can, on the basis of dimen- 
sional considerations, simply set S", @, and it will be in 
quite good agreement with experiment. 

The predictions of the various models of ~e~ differ ap- 
preciably only in the expressions they yield for the correc- 
tions to C>nd S ", There has not in the history of He3 been 
a single paper in which the experimental value of the param- 
eter TF is obtained from first principles, but there are a few 
different models that lead to the relation S,/R = x@, with 
x=: 1 (Goldstein,14 Castaing15). The Landau theory16 gives a 
relation between the parameters TF and y: 

Tpy=n2(1+-FOa)/3, SV/R=yT,  @=T/TF for T+O 

(Fg is the fundamental harmonic of the spin-dependent qua- 
siparticle scattering amplitude). In experiment the quantity 
yT, varies in the range from 0.98 to 0.79 as the He3 density is 
increased. Since r2/3 is a large number, but r (1 + Fg)/3 
=: 1, the almost exact constancy of Fg =: - 0.75 is only a 
reflection of the fact that there is no scale other than TF for 
He3 in the region T <  T,, and the model of He3 within the 
framework of which a close value of Fg is obtained is not 
confirmed as a realistic model. 

5. DISCUSSION 

1. As the density increases, the spin effects weaken in 
solid He3, but become stronger in liquid He3. This can be 
seen from a comparison of the quantities Po and 6 (see Table 

I). The spin pressure increases in absolute value as the molar 
volume V decreases. But the nonspin pressure, which is 
cc L5T2, depends weakly on V, since the exponent V, (6),  (7) is 
close to unity. If indeed there is short-range order in liquid 
He3, and the atoms are most of the time spatially separated, 
then the Pauli principle should very quickly be "switched 
off' as the density increases. What we see indicates the oppo- 
site: as the density increases, liquid He3 does not move closer 
in its properties to solid He3, but rather moves away from it. 
If now we remember that the residual entropy per atom So 
does not tend to the value In 2, then it becomes clear that the 
simplest short-range order-one atom at one site of an irreg- 
ular lattice-is not realized in He3. If, on the other hand, we 
assume that the number of He atoms is smaller than the 
number of sites, then the "extraneous" entropy So - In 2 can 
be interpreted as the entropy of the vacancies. But for the 
constancy of So to be explainable, the vacancy density must 
not depend on the density of the liquid, which, in our opin- 
ion, is impossible. An additional disorder can be introduced 
in another way: we can allow two atoms with opposite spins 
to occupy the same site. 

We must have experimental data for He3 and He4 and 
their solutions in the regions of high T and n and in the 
region close to the melting curve if we are to understand 
which variant has been "chosen" by nature. We can, for ex- 
ample, measure the pressure P ( V, T )  (and it can be measured 
very accurately); the entropy S,(T) can then be found by 
integrating the identity dP/dT = dS,/dV. The constant of 
integration is found from the value R In 2 = S,, for solid He3 
at the point T,, = 0.32 "K where the melting curve has its 
minimum. Notice that in Ref. 1 the quantities S and P are 
found through integration of the specific heat over V and T. 
A high accuracy is not required in the determination of S,; 
the important thing is for the temperature scale not to vary 
with Tand n. We can then separate the contributions to the 
S, and C, for He3 and He4 according to how they depend on 
V and T. We could not find in the literature data for the 
entropy of He4 at high T-2 - 10 OK. It  is important to 
know whether the S, for He4 contains, besides the term lin- 
ear in T, a constant of the type So. The most extensive infor- 
mation about the properties of He3 and He4 would be pro- 
vided by C,(T) curves determined with the same apparatus 
in the broad temperature range T <  10 "K and broad density 
range no < n < 2n0. It is possible that, near the melting curve, 
the C,(T) curve for He3 has a weak minimum at Tii,, - To/ 
yo, (5). It can be seen from Greywall's data1 that, for 
n =: 1 .4n0, this dependence has a broad plateau in the region 
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T >  TF; this is a result of the competition, as T increases, 
between the increasing quantity yo T and the decreasing 
quantity To/T. It will be interesting to know whether there is 
in the V-Tphase diagram for He3 and He4 a region where the 
parameter P, (5 ) ,  has the opposite sign, which would be an 
indication of the existence of weakly-damped phonons with 
frequencies k T. It is also important to determine the He3 
density at which the power-law dependence of yo and TF on 
the density breaks down. The experimental determination of 
the parameter To at high n and T would enable us to find the 
quantity TF as well, since the ratio T,,/TF (see Table I) de- 
pends weakly on the molar volume. We can, by taking into 
account the fact that the parameter TF is the scale forx, (3), 
obtain information aboutx in the region of high Twhere the 
magnetic susceptibility is small and it is difficult to measure 
it. The extrapolation of the dependences for C ,  and S ,  from 
the region of high T and n into the region of low T would 
enable us to predict the properties of supercooled liquid He3. 

The majority of experimenters traditionally work with 
helium at constant pressure. But physically, data obtained at 
constant volume of the liquid are more informative. The de- 
pendence ofA ( Vo,T) on T for the observable quantity A, de- 
termined at a single value of the molar volume Vo, is already 
useful. But oneA (Po,T) curve is almost useless, since at high 
T the density of helium is strongly dependent on T, and it is 
necessary to have a series of curves A (Pi,T) in order to go 
over to thefunctionA ( V,T). Greywall's work' is arare excep- 
tion: he measured what can be analyzed and computed. No- 
tice that we lose the accuracy of the experimental data when 
we go over from the variables P, T to V,Tsince there is some 
indeterminacy in the dependence of P on V. The principal 
physical parameter of helium is its density (the molar vol- 
ume); as for the pressure P i t  is a secondary quantity. It is not 
accidental that the above-presented density dependences of 
the thermodynamic quantities of He3 are so simple. 

In conclusion, it is a pleasur: to thank A. F. Andreev, 
D. N. Khmel'nitskii, and G. M. Eliashberg for discussions 
and L. A. Tolochko for his help in the investigation. 
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