# Specific heat, entropy, and magnetic susceptibility of liquid He<sup>3</sup>

A. M. Dyugaev

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR (Submitted 12 April 1984) Zh. Eksp. Teor. Fiz. 87, 1232–1243 (October 1984)

The spin contribution to the specific heat and entropy of liquid He<sup>3</sup> is isolated by analyzing the experimental data. At high temperatures the spin entropy per particle approaches  $S_0 \approx 0.972$ , which is different from ln 2. The constant  $S_0$  does not depend on the density of the liquid. The nonspin contribution to the entropy is linear in the temperature. The temperature dependence of the pressure at a fixed liquid density exhibits clearly the spin contribution, which is found to be proportional to the logarithm of the temperature.

## **1. THE PHYSICAL PICTURE**

1. In Ref. 1 Greywall reports the results of very accurate measurements of the constant-volume specific heat  $C_V$  of liquid He<sup>3</sup> for temperatures T in the range from 0.005 to 2.5 °K and molar volumes in the range from 36.8 to 25.7  $cm^3$ /mole. The pressure at T = 0 was varied from 0 to 34 bar; the liquid density, from the equilibrium density  $n_0$  to  $1.4n_0$ . These are the first measurements of the  $C_V$  to be performed in such broad T and V ranges on the same apparatus. Earlier constant-pressure specific heat measurements were carried out by different authors in narrow temperature ranges, and are in poor agreement with each other. Reference 1 contains tables of  $C_{\nu}$ , entropy  $(S_{\nu})$ , pressure (P) and  $\partial P / \partial T$  values for seven molar volumes of He<sup>3</sup>. Thompson et al.<sup>2</sup> have measured the magnetic susceptibility  $\gamma$  with a high degree of accuracy in roughly the same V and T regions. In the present paper we separate out the spin contribution to the fundamental thermodynamic characteristics of the liquid by analyzing and comparing the data reported in Refs. 1 and 2. We find universal and extremely simple temperature and He<sup>3</sup>-density dependence for  $C_{\nu}$ ,  $S_{\nu}$ , P, and  $\gamma$ . These relations are found without the use of any model assumptions about the properties of He<sup>3</sup>. The paper is extremely close to experiment, and is meant for experimenters: to draw their attention to the study of the properties of He<sup>3</sup> at high temperatures  $T \approx 1$  °K, i.e., in the region where the Landau theory is no longer applicable, but the liquid is still cold.

2. Liquids, like gases, do not possess long-range order, and, as their fundamental characteristic, let us choose the momentum distribution function  $n_p$  of the particles. This function is isotropic and is, in the high-T limit, characterized by the thermal momentum  $p_T^2 = 2mT$  (*m* is the mass of the atom) and low occupation numbers:  $n_p \ll 1$ . If we keep the density of the liquid constant and raise T, then there comes a time when the thermal momentum becomes smaller than the quantum momentum:

$$p_q = \frac{\pi}{a-D}, \ T_{\infty} = \frac{p_q^2}{2m}, \ p_q > p_T, \ T_{\infty} > \frac{3}{2}T.$$
 (1)

Here *a* is the interatomic distance and *D* is the diameter of an atom. The quantum momentum  $p_q$  is estimated on the basis of the uncertainty principle for the coordinate and momentum of the atom. It is important that, for a dense medium,

the coarse structure of  $n_p$  does not change when the temperature T is lowered further. The occupation numbers thus remain small, but there appears at a temperature  $T < T_F$ , where  $T_F$  is the degeneracy temperature, a small step against the background of a smooth momentum distribution  $n_p^R$ :

$$n_p = n_p^R + n_{00} \theta (p_F - p).$$

It is possible that there are several such steps and Fermi momenta  $p_F$ . It is, in our opinion, the smallness of  $n_p$  at all T that constitutes the important property distinguishing a dense isotropic condensed medium from a slightly nonideal gas. For a gas,  $a \ge D$ , and (1) is equivalent to the condition  $T < \varepsilon_F$ , where  $\varepsilon_F = p_F^2/2m$ . The real He<sup>3</sup> is a dense liquid, and the Fermi momentum (the parameter of the ideal gas) is not a characteristic momentum for it. The conditions (1) are fulfilled for He<sup>3</sup> at  $T \leq 20$  °K. The degeneracy temperature  $T_F$  and the jump in the function  $n_p$  are small:  $T_F \ll T_{\infty}$ ,  $n_{00} \ll 1$ . The smallness of  $n_{00}$  is a consequence of the high He<sup>3</sup> density, since the characteristic momentum  $p_q > p_F$  (even a weak inequality will do), and the number of particles responsible for the formation of the  $n_p$  jump is smaller than the total number of particles. This assertion is based on the Landau-Luttinger theorem<sup>3</sup>:

$$\int n_p d^3 p = \int_0^{p_F} d^3 p.$$

Since  $n_p > n_p^R$  and  $n_p \ll 1$ , the following inequality is valid:

$$n_{00} < \int_{0}^{p_{F}} n_{p} d^{3}p / \int_{0}^{p_{F}} d^{3}p \ll 1.$$

The smallness of  $T_F$  is tightly bound with the smallness of  $n_{00}$ . Even a slight warming of the liquid leads to the disappearance of the weak singularity in  $n_p$ . The quantity  $n_{00}$  determines the weight of the Landau quasiparticles against the background of the total number of particles, and, as has been shown by Migdal,<sup>4</sup> is the residue at the pole of the single-particle Green function:

$$G = G^{R} + n_{00} [\epsilon - (p - p_{F}) v_{F}]^{-1}.$$

The strong pole singularity in G determines, even when the residue  $n_{00}$  is small, all the thermodynamic and kinetic properties of He<sup>3</sup> at  $T < T_F$ , but becomes unimportant at  $T > T_F$ .

In the case of highly compressed He<sup>3</sup> it is not  $T_F$  that serves as the lower temperature scale, but the temperature  $T_{cr}$  at which the liquid solidifies. As a result of the small mass of the He<sup>3</sup> atom, there exists, for any density of the liquid, a region of intermediate  $T(T_{cr}, T_F < T < T_{\infty})$  where universal dependences of the thermodynamic quantities on T are to be expected. Indeed, in the zeroth approximation  $T_F, T_{cr} = 0$ ,  $T_{\infty} = \infty$ , and there is, in general, no energy scale. Therefore, the dimensional quantity T cannot enter into the expressions for the specific heat and entropy per particle:  $C_V$ = 0 and  $S_V/R = S_0$ . In the next approximations T can enter in these expressions in the combinations  $T_F/T$  and  $T/T_{\infty}$ :

$$S_v/R = S_0 + \gamma_0 T - T_0/T, \quad C_v/R = \gamma_0 T + T_0/T.$$
 (2)

These relations indeed hold for He<sup>3</sup>. Their accuracy rises with increasing T and as the density n increases. Figures 1 and 2 show plots, constructed from Greywall's data,<sup>1</sup> of  $(S_V + C_V)/R$  and  $C_V T/R$  as functions of T and T<sup>2</sup> respectively. Both functions are linear at high T. Unfortunately, Greywall stopped his measurements at T = 2.5 °K: it would have been interesting to determine the T's up to which the asymptotic dependences (2) are valid. For an ideal crystal  $\gamma_0$ and  $T_0$  in (2) are exactly equal to zero, and the entropy is the sum of the spin and phonon contributions:

$$S_{\rm cr}/R = \ln 2 - T_{*}^{2}/T^{2} + T^{3}/\Theta^{3}$$
.

Here  $\Theta$  is the Debye temperature and  $T_s$  is of the order of the overlap integral for the wave functions of the atoms in neighboring lattice sites. For the liquid and the dense gas, in which the single-particle motion of the atoms is possible, nothing forbids the occurrence of the  $T_0/T$  and  $\gamma_0 T$  terms in (2). There are also no limitations on the residual entropy  $S_0$  in (2). This parameter for He<sup>3</sup> differs appreciably from ln 2, and is strikingly constant: as the density is raised from  $n_0$  to  $1.4n_0$ , the quantity  $S_0$  undergoes insignificant fluctuations in the interval from 0.964 to 0.972.



FIG. 1. Dependence on T of the quantity  $(C_V + S_V)/R$  for different values of the molar volume V: 1) V = 36.82; 2) V = 30.39; 3) V = 26.17 cm<sup>3</sup>/ mole. The straight lines are plots of functions of the type  $(C_V + S_V)/R = S_0 + 2\gamma_0 T$ .



FIG. 2. Dependence on  $T^2$  of the quantity  $C_V T/R$  for different values of the molar volume V: 1) V = 36.82; 2) V = 30.39; 3) V = 26.17 cm<sup>3</sup>/mole. The straight lines are plots of functions of the type  $C_V T/R = \gamma_0 T^2 + T_0$ .

3. Laws of the type (2) should hold for any system with a nonzero single-particle density of states in the temperature region  $T_l < T < T_u$ , where  $T_l$  and  $T_u$  are respectively the lower and upper quantum scales. For the Landau theory  $T_l$  $= T_c$  and  $T_u = T_F$ , where  $T_c$  is the critical temperature of the transition of He<sup>3</sup> into the superfluid state. In the case of liquid He<sup>4</sup> the arguments adduced above are valid in the region  $T_{\rm cr}$ ,  $T_{\lambda} < T < T_{\infty}$ , where  $T_{\lambda}$  is the superfluid transition temperature. The analog of the  $n_p$  jump for He<sup>4</sup> occurs in the ratio of the number of condensate particles to the total number of particles:  $n_p = n_p^R + n_{00} \delta(\mathbf{p})$ . The smallnes of the number of condensate particles is also a consequence of the high density of the liquid. The quantity  $n_{00}$  is small, since the total number of "slow" atoms is small. In the case of He<sup>4</sup>, as in the case of He<sup>3</sup>, there exists a temperature region where  $C_V$  is proportional to T. Andreev<sup>5</sup> has explained the linear dependence of  $C_V$  on T for He<sup>3</sup>, He<sup>4</sup>, and hydrogen by assuming that these liquids are close to their properties to glasses. Serving as the upper scale in Ref. 5 is the Debye phonon frequency  $\omega_p$ , which is expressed, as in the case of solids, in terms of the sound velocity c and the density  $n: \omega_p$  $\sim cn^{1/3}$ . Most of the time the atoms vibrate about the irregularly disposed equilibrium positions, and sometimes hop to neighboring vacant equilibrium sites. Andreev<sup>5</sup> cited a rigorously defined type of single-particle motion, but actually based his analysis only on the fact that such a motion occurs. The assertions made in Ref. 5 have a general character, and are not connected with the assumption that there is shortrange order in a liquid. An amorphous solid (glass) and a dense gas possess similar thermodynamic properties in the region of intermediate T. Indeed, if we reduce the atomic mass, the single-particle motion will destroy the short-range order, but the temperature interval  $T_F < T < T_{\infty}$  will be preserved.

The analogy between a liquid and glass or a dense gas should not be carried too far. Thus, the large parameters  $\omega_D$ and  $T_{\infty}$  are actually unobservable. In the case of solid He the frequency  $\omega_D$  is not just a quantity connected with the sound velocity and the density, but a parameter that can be found from specific-heat measurements. But in the case of liquid  $He^3$  with density close to the equilibrium density  $n_0$  there is no T region where we can observe even a trace of the phonon contribution to  $C_{V}$ . Furthermore, the correction to  $C_{V}$ , which is proportional to  $T^3$ , has a negative sign, which is characteristic of a gas; the dominant term in  $C_V$  is  $\propto T$ ; the next,  $\propto -T^3$ . The parameter  $T_{\infty}$  is also "bad" in the sense that it is too high. Furthermore, the density dependences of the quantity  $\gamma_0$  in (2) and  $T_{\infty}^{-1}$  do not duplicate each other. Apparently, the characteristic frequency  $\omega_{\perp} = ic_{\perp} k$  of the diffusion-induced transverse excitation serves as the large scale for semiquantum liquids. Tolochko and the present author show in Ref. 6 that such excitations should occur in liquid He<sup>3</sup> with  $k \sim 1/a$ . Notice also that in solids the transverse acoustic excitations have a lower  $\omega_D$  than the longitudinal excitations, and it is precisely they which make the dominant contribution to the specific heat.

4. Andreev and Kosevich<sup>7</sup> have investigated the kinetic phenomena in semiquantum liquids. In particular, for the thermal conductivity coefficient x they obtain within the framework of the "glass" model the law  $\varkappa \propto T$ , which, for He<sup>4</sup>, is obeyed in the T region where  $C_V \propto T$ . This law is characteristic of a cold gas as well, a fact which can be seen from the standard gas-kinetic relation<sup>8</sup>:  $\varkappa \sim C_V \ \overline{lv}$ . For a cold gas  $C_V \propto T$ , and the mean free path l and the mean velocity  $\overline{v}$ of an atom do not depend on the temperature:  $l \sim a$ ,  $\bar{v} \sim p_a/m$ . Entirely different extreme assumptions about the properties of the liquid lead to similar T dependences of the observed quantity. In such a situation it is useful, if we cannot elucidate, then at least to discover the empirical laws peculiar to semiquantum liquids. Liquid He<sup>3</sup> and He<sup>4</sup> can, on the basis of their properties, be placed not between glass and a dense gas, but alongside.

#### 2. MAGNETIC SUSCEPTIBILITY

The experimental T dependence of  $\chi$  is a universal one. The value of  $\chi$  at T = 0 determines the temperature scale for  $\chi$  at all T. In Ref. 2 the following empirical asymptotic laws are given for  $\chi$ :

$$\Phi(\tau) = \tau(1 - \alpha \tau^2/2), \ \tau \ll 1, \ 1 - \Phi(\tau) = b \tau^{-2d}/2, \ \tau \gg 1,$$
 (3)

where  $\Phi \equiv \chi T/c_k$ ,  $\tau \equiv T/T_F$  ( $c_k$  is the Curie constant). As the density is varied, the parameter  $\alpha$  in (3) varies nonmonotonically in the range from 1 to 1.1, while the quantities *b* and *d* vary monotonically: 0.77 < b < 1.45; 0.91 < d < 1.43. The following laws of variation are well obeyed in the entire regions of variation of *T* and *n*:

$$\Phi(\tau) = \tau (1 + \tau^2)^{-\nu_t}, \ T_F(n) = T_F(n_0) (n/n_0)^{\nu_F};$$
  

$$T_F(n_0) = 0.359^{\circ} \mathbf{K}, \ \nu_F = -1.93, \ n/n_0 = V_0/V.$$
(4)

To the equilibrium density  $n_0$  corresponds the molar volume  $V_0 = 36.84 \text{ cm}^3/\text{mole}$ . The minimum value  $T_F = 0.179 \text{ }^\circ\text{K}$  is attained on the liquid-crystal coexistence line. For the parameter  $\Phi$ , which varies in the range from 0 to 1, the approximation (4) corresponds to the values  $\alpha = b = d = 1$  in the

asymptotic formulas (3), and is accurate to within 2%. The expression (4) for  $\Phi$  apparently does not contain any physics, and is also an analog of the empirical Curie-Weiss law, which is characteristic of a system of spins on a lattice:  $\Phi_{C}$  $= \tau/(\tau - 1)$ . But the formula given in (4) for  $T_F(n)$  is very exact and lays claim to the role of a physical law. The corresponding quantity for localized spins depends very strongly on the crystal density:  $T_F \propto n^{-18}$ . For a nearly ferromagnetic Fermi gas the dependence  $T_F \propto (n_c - n)^{\nu F}$ , where  $n_c$  is the critical density, is to be expected. The majority of the observable quantities characterizing the thermodynamics of He<sup>3</sup> and its interaction with a long-wavelength external field also vary with the molar volume according to power laws. The determination of the T dependence of  $\chi$  in a broad range of T is a difficult and an unsolved problem for  $He^3$ . It is insensitive to the choice of a model. Thus, for an ideal gas  $T_F$  $=\frac{2}{3}\varepsilon_F$  and the parameters in (3) are equal to:  $d_0 = 0.75$ ;  $\alpha_0 = 0.73$ ;  $b_0 = 0.98$ . Since  $d_0$ ,  $b_0$ , and  $\alpha_0$  are close to the empirical values of d, b, and  $\alpha$ , it is not surprising that, if we choose  $\varepsilon_F$  so as to obtain the correct value  $\chi(0)$  of  $\chi$  for  $T \rightarrow 0$ , then  $\chi$  will be in good agreement with the ideal value  $\chi_{id}$  at all T. Experimenters traditionally compare the measured  $\chi$ with  $\chi_{id}$ . Moriva gives in his review article<sup>9</sup> extensive experimental data on the properties of nearly ferromagnetic metals. There exists a general empirical rule: if the magnetic susceptibility at T = 0 is high, then  $\gamma$  begins to obey the Curie law at very low T. This rule is applicable to liquid  $He^3$ as well. The Curie law for  $\gamma$  is valid in the temperature region where the liquid is still cold. Below we shall use the expressions (4) without attempting to prove them.

Notice that the introduction of the designation  $T_F$  in (3) is not accidental. The parameter  $T_F$ , defined by the relation  $\chi(0) = c_k/T_F$ , is the degeneracy temperature for He<sup>3</sup>. This is almost obvious: since  $T_F$  determines the scale for  $\chi$ , this same parameter should be the natural scale for all the spin characteristics of He<sup>3</sup>. Another definition of the degeneracy temperature is adopted in the literature:  $\varepsilon_F^* = p_F^2/2m^*$ . The quantity  $\varepsilon_F^*$  is not directly observable, and is obtained from the gas parameters  $m^*$  and  $p_F$ . The scale  $\varepsilon_F^*$  is unnatural, being too large for He<sup>3</sup>. For He<sup>3</sup> all the low-temperature expansions are in powers of  $\tau$ , while the high-temperature ones are in powers of  $\tau^{-1}$ . Moreover, the actual expansions are in powers of the quantities  $\Phi(\tau)$  and  $\Phi(\tau)/\tau$ .

#### 3. ENTROPY, SPECIFIC HEAT, PRESSURE

1. In order to separate out the spin contributions to  $C_V$ and  $S_V$ , we, using the Greywall's data,<sup>1</sup> computed the  $C_V$ value from  $S_V$ . Since the nonspin contribution, which is nearly linear in the temperature, cancels out in the difference, the quantity  $S_V - C_V$  depends only on the parameter  $\tau$ . Figure 3 shows plots of  $(S_V - C_V)T/RT_F$  as a function of  $T/T_F$  for three values of  $T_F$ . It can be seen that the parameter  $T_F$  indeed determines the scale for the spin contributions  $C_V^{\sigma}$  and  $S_V^{\sigma}$ . Therefore, there are grounds for the following separation of the contributions to  $C_V$  and  $S_V$  at  $T \gg T_F$ :



FIG. 3. Dependence on  $T/T_F$  of the quantity  $(S_V - C_V)T/RT_F$  for three values of  $T_F: \bigcirc 0.359$  °K;  $\bigcirc 0.250$  °K;  $\bigcirc 0.185$  °K. The straight lines are plots of functions of the type  $(S_V - C_V)T/RT_F = S_0 T/T_F - 2T_0/T_F$ .

$$S_{v}^{\sigma}/R = S_{0} - T_{0}/T, \quad S_{v}^{R}/R = \gamma_{0}T - \beta T^{3}/3, \quad S_{v} = S_{v}^{R} + S_{v}^{\sigma};$$

$$C_{v}^{\sigma}/R = T_{0}/T, \quad C_{v}^{R}/R = \gamma_{0}T - \beta T^{3}, \quad C_{v} = C_{v}^{R} + C_{v}^{\sigma}, \quad (5)$$

where  $C_V^R$  and  $S_V^R$  are the nonspin regular contributions. The correction  $\beta T^3$  to  $C_V^R$  is very small at all T < 2.5 °K, and the parameter  $\beta$  is found inaccurately. But the sign of the correction  $\propto T^3$  is definitely known. It is possible that it has the form  $\beta T^3 \ln (T_{\infty}/T)$ . On the other hand, the parameters  $\gamma_0$ ,  $T_0$ , and  $S_0$  in (5) can be very accurately determined, since we can find the derivatives of  $T_0$ ,  $S_0$  and  $\gamma_0$  with respect to the volume V of the system, using the identity  $\partial P / \partial T = \partial S_V /$  $\partial V$  and Greywall' experimental data<sup>1</sup> for the dependence of P and  $\partial P / \partial T$  on T. Figure 4 shows the dependence of  $T (\partial P /$  $\partial T)$  on  $T^2$ . The correction  $1/12RT^4 \partial \beta / \partial V$  to the pressure is entirely insignificant, and there is no linear correction  $\propto T\partial S_0 / \partial V$ , which implies almost exact constancy of the parameter  $S_0$ ;

$$P(T) - P(0) = -P_0 \ln (T/T_P) + \delta T^2, \quad P_0 = (\partial T_0 / \partial V) R,$$
  
$$(\partial P / \partial T) T = -P_0 + 2\delta T^2, \quad \delta = (\partial \gamma_0 / \partial V) R.$$
 (6)

The temperature  $T_{\min}$  at which the pressure P has its minimum can be readily found from (6):  $T_2 = P_0/2\delta$ . For  $n = 1.4n_0$  this relation is accurate to within 1%.

In Table I we give the values of the parameters  $\partial_0$ ,  $P_0$ ,  $T_p$ ,  $T_0/T_F$ ,  $S_0$ ,  $T_F$ , and  $\beta$  for seven values of the molar volume of He<sup>3</sup>. Figure 5 shows the dependence of the spin pressure with the sign reversed on ln T:

TABLE I. The principal thermodynamic characteristics of liquid He<sup>3</sup>.

| $ \begin{array}{c} P(T=0,1 \ \mathrm{K}) \\ \mathbf{bar} \end{array} $ | V,cm <sup>3</sup> /<br>mole                                 | <i>τ<sub>F</sub></i> , <b>κ</b>                                                      | γ₀, <b>K</b> <sup>-1</sup>                                                           | $\frac{m_0^*}{m}$                                           | γ <sup>σ</sup> T <sub>F</sub>                               | $\Gamma T_F^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\Theta_C}{T_F}$                               | $\frac{T_{\bullet}}{T_{F}}$                                 | $S_0$                                                                | P <sub>0</sub> , bar                                        | ô, bar∕K²                                                     | т <sub>Р</sub> , К                                          | β.10 <sup>3</sup> , K <sup>−3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>5<br>10<br>15<br>20<br>25<br>30                                   | 36,82<br>32,59<br>30,39<br>28,89<br>27,70<br>26,83<br>26,17 | $\begin{array}{c} 0,359\\ 0,286\\ 0,250\\ 0,224\\ 0,207\\ 0,195\\ 0,185 \end{array}$ | $\begin{array}{c} 0,350\\ 0,296\\ 0,265\\ 0,247\\ 0,233\\ 0,222\\ 0,213 \end{array}$ | 0,352<br>0,323<br>0,303<br>0,293<br>0,284<br>0,276<br>0,270 | 0,858<br>0,792<br>0,765<br>0,746<br>0,744<br>0,743<br>0,751 | $1,70 \\ 1,55 \\ 1,47 \\ 1,41 \\ 1,37 \\ 1,34 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ 1,32 \\ $ | 1,28<br>1,22<br>1,10<br>1,10<br>1,15<br>1,18<br>1,21 | 0,692<br>0,761<br>0,772<br>0,784<br>0,763<br>0,733<br>0,697 | 0,964<br>0,966<br>0,972<br>0,972<br>0,972<br>0,971<br>0,972<br>0,972 | 0,701<br>0,685<br>0,852<br>1,074<br>1,339<br>1,593<br>1,837 | $0,561 \\ 0,480 \\ 0,474 \\ 0,486 \\ 0,504 \\ 0,523 \\ 0,542$ | 0,468<br>0,410<br>0,392<br>0,384<br>0,380<br>0,377<br>0,374 | $3,54 \\ 2,61 \\ 1,35 \\ 1,18 \\ 1,08 \\ 1,04 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ 1,02 \\ $ |



FIG. 4. Dependence on  $T^2$  of the quantity  $T\partial P/\partial T$  for the same molarvolume values given in Figs. 1 and 2. The straight lines are plots of functions of the type  $T\partial P/\partial T = -P_0 + 2\delta T^2$ .

$$P^{\sigma}(T) = P^{\sigma}(0) - P_0 \ln \left( T/T_P \right).$$

whe

This law is obeyed at  $T \approx 2$  °K to within 0.2%. On the other hand the law for  $C_{V}^{\sigma}$  is obeyed in the region  $T > 2T_{F}$  to within 5%. The T dependence of  $C_{V}^{\sigma} T/R$  at high densities  $\approx 1.4n_{0}$  is nonmonotonic, and possesses a weak minimum.

2. The density dependence of the parameter  $\gamma_0$  in (5) is a power-law one:

$$\gamma_{0}(n) = \gamma_{0}(n_{0}) (n/n_{0})^{\nu_{\gamma}},$$
  
re  $\nu_{\gamma} = -1.44, \quad \gamma_{0}(n_{0}) = 0.35 \text{ K}^{-1}.$  (7)

This law is obeyed in the broad interval from  $n = n_0$  to  $n = 1.84n_0$ . The formula (7) agrees to within 4% with the experimental data obtained by Pandorf *et al.*<sup>10</sup> for He<sup>3</sup> and He<sup>4</sup> and their solutions in the temperature range from 2 to 4.5 °K and molar-volume range from 20 to 23 cm<sup>3</sup>/mole. The values of the exponent  $v_{\gamma}$  for He<sup>3</sup> and He<sup>4</sup> are almost equal, which again confirms the correctness of the separation of the spin contribution to  $C_V$  and  $S_V$ . The nonspin contribution  $\gamma_0 T$  turned out to be insensitive to the type of particle statistics used. In Table I we also give values for the quantities  $m_0^*$ , which is the effective mass of the light quasiparticles:

$$m_0^* = \gamma_0 p_F^2 / \pi^2, \ m_0^*(n) \approx m_0^*(n_0) (n/n_0)^{\vee}$$



FIG. 5. Dependence on  $\ln T$  of the quantity P''(0) - P''(T) for the same molar volumes given in Figs. 1 and 2. The straight lines are plots of functions of the type  $P''(0) - P''(T) = P_0 \ln(T/T_p)$ .

Here  $v^* = -0.773$  and  $m_0^*(n_0) = 0.352$ m. As shown in Ref. 6, the parameter  $m_0^*$  is an important characteristic of He<sup>3</sup>. The dispersion of the short-wave acoustic excitations is determined not by the value of the mass  $m^*$  of the heavy Landau quasiparticles, but by just the quantity  $m_0^*$ . Before the publication of Greywall's data<sup>1</sup> the parameter  $m_0^*$  was known very inaccurately.<sup>11</sup>

3. The laws (5) and (6) hold in the high-T region where the dependence of the magnetic susceptibility  $\chi$  on T is described by the Curie law to within fractions of one percent. But in the case of solid He<sup>3</sup> the approach of the spin entropy to the value R ln2 and that of  $\chi$  to the Curie law occur in the same temperature range. The cause of this difference lies, apparently, in the fact that, while the spin entropy  $S_{\varphi}^{\sigma}$  is a functional of  $\chi$  (k), the long-wavelength limit  $\chi$ (k = 0) is measured in experiment. For localized spins  $\chi$  does not depend on k, and the Curie law begins to hold, as the temperature is raised, for all the momenta simultaneously. But in the case of the liquid  $\chi$  depends on the wave vector k, and the approach of the magnetic susceptibility to the Curie law occurs earlier for k = 0 than for  $k \sim 1/a$ . The contribution of the momenta



 $k \sim 1/a$  is, in our opinion, responsible, for the appearance of the slowly decreasing—with increasing *T*—term of the order of  $T_0/T$  in (5). In other words, in contrast to what obtains in a crystal, in a liquid there exists a nonzero probability of the atoms coming so close to each other that the exchange effects are not negligible at any temperature.

4. We can determine the spin entropy  $S_V^{\sigma}$  and the spin specific heat  $C_V^{\sigma}$  at all temperatures on the basis of the asymptotic dependences for  $S_V$  and  $C_V$ . To do this, we must, using Greywall's data,<sup>1</sup> subtract the value  $S_V^{\sigma}$  from the total entropy and  $C_V^{\rho}$  from the total specific heat:

$$C_{v}^{\sigma}/R = C_{v}/R - \gamma_{0}T + \beta T^{3}, \quad S_{v}^{\sigma}/R = S_{v}/R - \gamma_{0}T + \beta T^{3}/3.$$
 (8)

This operation is legitimate if the functions  $S_{V}^{R}(T)$  and  $C_{V}^{R}(T)$  are linear at all, and not just high, T. That this is in fact the case can be seen from Figs. 6 and 7, which depict the dependence of the quantities  $S_V^{\sigma}/R$ ,  $S_V^{\sigma}T_F/RT$ , and  $C_V^{\sigma} T_F/RT$  on  $T/T_F$  for three values of the parameter  $T_F$ . The parameter  $T_F$  alone determines the scale of  $C_V^{\sigma}$  and  $S_V^{\sigma}$ in the enormous interval 0.005 < T < 2.5 °K. The spin specific heat and spin entropy are functions of the ratio  $T/T_F$ only. Notice that if we went from low to high T, it would be very difficult to separate the contributions to  $C_V$  and  $S_V$ , since at low temperatures  $S_V^{\sigma} \gg S_V^R$  and  $C_V^{\sigma} \gg C_V^R$ . It turned out to be simpler to go down the temperature "scale" from the relation of high T, where  $S_V^{\sigma} \approx S_V^R$  and  $C_V^{\sigma} \approx C_V^R$ , into the low-T region. The high accuracy of the measurements allowed Greywall to determine all the three coefficients in the low-temperature expansion of  $C_{\nu}$ :

$$C_{v} = \gamma T - \Gamma T^{3} \ln (\Theta_{c}/T), \quad T \ll T_{v}.$$
<sup>(9)</sup>

In Table I we give the values of the dimensionless parameters  $\Gamma T_F^3$ ,  $\Theta_C/T_F$ , and  $\gamma^{\sigma}T_F$ , where  $\gamma^{\sigma} = \gamma - \gamma_0$ . It can be seen that the parameter  $T_F$  is again the natural scale at low T: all the numbers in Table I are of the order of unity. Therefore, at low T

$$\frac{C_{v^{\sigma}}}{R} = \gamma^{\sigma} T - \Gamma T^{s} \ln \frac{\Theta_{c}}{T}, \quad \frac{S_{v^{\sigma}}}{R} = \gamma^{\sigma} T - \frac{1}{3} T^{s} \ln \frac{\Theta_{s}}{T}, \quad (10)$$

where

$$\Theta_s \equiv \Theta_c e^{\gamma_h}, \quad \frac{C_v^R}{R} = \frac{S_v^R}{R} = \gamma_{\mu} T.$$

FIG. 6. Dependence on  $T/T_F$  of  $S_{\nu}^{\nu}/R$  and  $S_{\nu}^{\nu}T_F/RT$  for the same  $T_F$  values given in Fig. 3.



FIG. 7. Dependence on  $T/T_F$  of  $C_V^{\sigma}T_F/RT$  for the same  $T_F$  values given in Fig. 3.

In experiment the parameter  $\Gamma$  varies in the range from 36.8 to 225 K<sup>-3</sup>. The density dependence of  $\Gamma$  has the form

$$\Gamma(n) = \Gamma(n_0) (n/n_0)^{\nu_{\Gamma}}, \ \Gamma(n_0) = 36.8 \ K^{-3}, \nu_{\Gamma} = 5.02$$

It is characteristic that the asymptotic dependences (10) hold right up to high  $T \approx \Theta_C / 2 (\Theta_C \text{ varies, as } n \text{ is increased, from})$ 0.46 to 0.22 °K), i.e., the expressions (10) are valid in the region where  $\ln(\Theta_C/T) \approx 1$ . Greywall was the first to point out this important circumstance. The existence of the correction  $T^3 \ln T$  to  $C_V$  was predicted by Éliashberg,<sup>12</sup> and Brinkman and Engelsberg<sup>13</sup> have given an estimate for the region of applicability of the law (10) for He<sup>3</sup>: T < 0.025 °K. It is usually difficult to detect a logarithmic law, and here we must think of how to get rid of it. Indeed, the value of  $\Theta_C$  in (10) is of the normal—for He<sup>3</sup>—order of magnitude of  $T_F$ : the ratio  $\Theta_C/T_F$  (Table I) varies from 1.1 to 1.28. It is not possible to find the parameter  $\Theta_{C}$  within the framework of the low-temperature Fermi-liquid expansions, since it cannot be expressed in terms of the characteristics of the liquid at the Fermi surface. Let us try to find the relation between the spin contributions,  $C_V^{\sigma}$  and  $S_V^{\sigma}$ , and the magnetic susceptibility  $\gamma$  constructively without the use of model assumptions, trusting, of course, that such a relation exists.

### 4. EMPIRICAL RELATIONS FOR $C_{V}^{\sigma}$ , $S_{V}^{\sigma}$ , AND $\chi$

Let us first of all write down the asymptotic expressions for  $S^{\sigma}$  and  $\Phi = \chi T/c_k$ , replacing all numbers of the order of unity simply by unity:

$$S_{v}^{\sigma}/R = 1 - 1/\tau, \ \Phi = 1 - 1/\tau^{2}, \ \tau \gg 1,$$
  
$$S_{v}^{\sigma}/R = \tau - \tau^{3} \ln(1/\tau^{2}), \ \Phi = \tau(1 - \tau^{2}), \ \tau \ll 1.$$
 (11)

In (11) the substitution  $\tau \rightarrow \Phi(\tau)$  suggests itself, after which the low-temperature expansions have meaning at  $\tau \ge 1$  as well and the high-temperature expansions have meaning at  $\tau \ll 1$ :

$$S_{v}^{\sigma}/R = \Phi - \Phi^{2}/\tau, \quad \tau \gg 1,$$

$$S_{v}^{\sigma}/R = \Phi - \Phi^{3} \ln (1/\Phi^{2}), \quad \tau \ll 1.$$
(12)

Therefore, we can endeavor to seek the relation between  $S_{\nu}^{\sigma}$ and  $\Phi$  in the form of an expansion of  $S_{\nu}^{\sigma}$  in powers of  $\Phi$  and  $\Phi/\tau$ . This expansion should contain  $(\Phi/\tau)^n$  terms, since the asymptotic form of  $S_{\nu}^{\sigma}$  contains a  $T_0/T$  term, which we cannot obtain if we have only powers of  $\Phi$ :

$$\frac{S_{v^{\sigma}}}{R} = \varkappa \Phi - \frac{\lambda}{3} \Phi^{3} \ln \frac{\Phi_{s}^{2}}{\Phi^{2}} + \lambda_{1} \Phi^{5} + \ldots - \frac{\tau_{0}}{\tau} \Phi^{2} + \frac{\tau_{2}^{2}}{\tau^{2}} \Phi^{3} + \ldots$$
(13)

Two of the coefficients in (13) are known:  $\lambda = \Gamma T_F^3/2$  and  $\tau_0 = T_0/T_F$ . There is hope that the series (13) converges, since even the first approximation  $S_V^{\sigma} = \varkappa \Phi$ , with  $\varkappa = S_0$ , reproduces the experimental  $S_V^{\sigma}$  curve in the region  $T < T_F$  to within 25%, and possesses the correct asymptotic form in the region  $T > T_F$ . We can truncate the series (13), but it is better to approximate it by the functions

$$\frac{S_{v^{\sigma}}}{R} = \varkappa \frac{\tau}{\tau_{1}} \ln \left( 1 + \Phi \frac{\tau_{1}}{\tau} \right) - \frac{\lambda}{3} \Phi^{3} \ln \left( \rho_{s}^{2} + \frac{\Phi_{s}^{2}}{\Phi^{2}} \right). \quad (14)$$

The approximation (14) can be justified, but we propose to treat the expression (14) as an empirical expression. Since the function  $\Phi$  coincides exactly with  $\tau/(1 + \tau^2)^{1/2}$ . (4), we can simplify the formula (14) greatly and find the parameters  $\varkappa$ ,  $\tau_1, \rho_S^2, \Phi_S$ , and  $\lambda$  from the asymptotic forms of  $S_V^{\sigma}$  for  $T > T_F$  and  $T < T_F$ , knowing the quantities  $\gamma^{\sigma}, \Phi_S, \Gamma$ , and  $T_0, S_0$ :

$$S_{0} = \varkappa - \frac{\lambda}{3} \ln \left( \rho_{s}^{2} + \Phi_{s}^{2} \right), \quad \ln \frac{\Theta_{s}}{T_{F} \Phi_{s}} = \frac{3\varkappa}{4\lambda(1 + \tau_{1})},$$
$$\gamma^{\circ} T_{F} = \frac{\varkappa}{\tau_{1}} \ln (1 + \tau_{1}), \quad \lambda = \frac{\Gamma T_{F}^{3}}{2}, \quad \frac{T_{0}}{T_{F}} = \frac{\varkappa \tau_{1}}{2}.$$

The dependence (14) agrees with experiment to within 2%. The formula (14) is not improved in accuracy if we do not use the empirical expression (4) for  $\Phi$ , but substitute in it the experimental values of  $\Phi$ . As was to be expected, the parameters  $\tau_1$ ,  $\varkappa$ ,  $\lambda$ ,  $\Phi_S$ ,  $\rho_S^2$  (Table II) depend weakly on the molar volume. By making the same approximations, we can obtain the expression for the spin specific heat  $C_V^{\sigma}/R$ :

$$\frac{C_{\mathbf{r}^{\sigma}}}{R} = \varkappa \tau \frac{\partial}{\partial \tau} \left\{ \frac{\tau}{\tau_{1}} \ln \left( 1 + \Phi \frac{\tau_{1}}{\tau} \right) \right\} -\lambda \Phi^{2} \frac{\partial \Phi}{\partial \tau} \tau \ln \left( \rho_{c}^{2} + \frac{\Phi_{c}^{2}}{\Phi^{2}} \right),$$
(15)

where  $\Phi_s \equiv \Phi_C e^{1/2}$  and  $\rho_s^2 = 1.086 \rho_C^2$ . The dependence (15) agrees with the identity  $C = \tau \partial S / \partial \tau$ , since the following relation holds to within 1% in the entire interval  $0 < \Phi < 1$ :

$$\int_{0}^{\Phi} \Phi_{1}^{2} \ln \left( \rho_{c}^{2} + \frac{\Phi_{c}^{2}}{\Phi_{1}^{2}} \right) d\Phi_{1} = \frac{\Phi^{3}}{3} \ln \left( \rho_{s}^{2} + \frac{\Phi_{s}^{2}}{\Phi^{2}} \right).$$
(16)

If we set  $\Phi = \tau (1 + \tau^2)^{1/2}$ , then  $\tau \partial \Phi / \partial \tau = \Phi (1 - \Phi^2)$ , and we have for the total specific heat  $C_V = C_V^\sigma + C_V^R$  from (15) the expression

$$\frac{C_{\nu}}{R} = \varkappa \frac{\tau}{\tau_1} \ln \left( 1 + \Phi \frac{\tau_1}{\tau} \right) - \frac{\varkappa \Phi^3}{1 + \Phi \tau_1 / \tau} - \lambda \Phi^3 (1 - \Phi^2) \ln \left( \rho_c^2 + \frac{\Phi_c^2}{\Phi^2} \right) + \gamma_0 T - \beta T^3.$$
(17)

In Table II we also give the values of  $\rho_C^2$  and  $\Phi_C$ . The empirical formula (17) is less accurate than (14), it being accurate to

TABLE II. Parameters of the empirical functions  $S_{\nu}^{\sigma}(T)$  and  $C_{\nu}^{\sigma}(T)$  (the formulas (14) and (17)).

| V,<br>cm <sup>3</sup> /mole                                 | λ                                                           | ж                                                           | $	au_1$                                                     | $\Phi_S$                                                    | $\Phi_C$                                                                            | $ ho_S^2$                                                   | $\rho_C^2$                                                                          |
|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 36,82<br>32,59<br>30,39<br>28,89<br>27,70<br>26,83<br>26,17 | 0,851<br>0,775<br>0,735<br>0,705<br>0,685<br>0,670<br>0,659 | 1,268<br>1,220<br>1,193<br>1,176<br>1,163<br>1,153<br>1,147 | 1,092<br>1,247<br>1,295<br>1,334<br>1,312<br>1,272<br>1,215 | 1,047<br>1,007<br>0,903<br>0,898<br>0,925<br>0,933<br>0,937 | $\begin{array}{c} 0,750\\ 0,721\\ 0,647\\ 0,643\\ 0,663\\ 0,668\\ 0,671\end{array}$ | 1,824<br>1,659<br>1,649<br>1,576<br>1,462<br>1,378<br>1,340 | $\begin{array}{c} 1,680\\ 1,528\\ 1,518\\ 1,451\\ 1,346\\ 1,269\\ 1,234\end{array}$ |

within 5%, which is admissible, since the approximation (4)is for  $\Phi$ , while (15) contains the  $\tau$  derivative of  $\Phi$ . The maximum deviation of the dependence (17) from the experimental curve occurs in the region  $T \approx 1$  K, where we can roughly use for  $C_V^{\sigma}$  the asymptotic formula  $C_V^{\sigma} = RT_0/T$ . But in the region of the  $C_V^{\sigma}$  maximum, which occurs at  $\tau \approx 1$ , the error introduced by the use of (17) is the same as the error made when the formula is used in the region  $T < T_F$ , this error being 1%. We do not overrate the good agreement of the empirical dependence (14) and (17) with experiment, but the fact that the series expansions of  $C_{\nu}^{\sigma}$  and  $S_{\nu}^{\sigma}$  in powers of  $\Phi$ and  $\Phi / \tau$  converge is extremely important for the choice of a realistic model for He<sup>3</sup>. Regardless of whether we assume existence or absence of short-range order in liquid He<sup>3</sup>, there comes a point in the theory of He<sup>3</sup> gas and He<sup>3</sup> glass when we introduce the scale  $T_F$  on the basis of the experimental data. After this, the auxiliary parameters of the type  $m^*$ ,  $p_F$ , and  $\varepsilon_F^*$  no longer enter into the relations connecting the observable quantities, and remain numbers of the order of unity. All the theories are then alike. We can, on the basis of dimensional considerations, simply set  $S_V^{\sigma} = \Phi$ , and it will be in quite good agreement with experiment.

The predictions of the various models of He<sup>3</sup> differ appreciably only in the expressions they yield for the corrections to  $C_{\nu}^{\sigma}$  and  $S_{\nu}^{\sigma}$ . There has not in the history of He<sup>3</sup> been a single paper in which the experimental value of the parameter  $T_F$  is obtained from first principles, but there are a few different models that lead to the relation  $S_{\nu}/R = \varkappa \Phi$ , with  $\varkappa \approx 1$  (Goldstein, <sup>14</sup> Castaing<sup>15</sup>). The Landau theory<sup>16</sup> gives a relation between the parameters  $T_F$  and  $\gamma$ :

$$T_F \gamma = \pi^2 (1 + F_0^{a})/3, S_V/R = \gamma T, \Phi = T/T_F \text{ for } T \rightarrow 0$$

 $(F_0^a)$  is the fundamental harmonic of the spin-dependent quasiparticle scattering amplitude). In experiment the quantity  $\gamma T_F$  varies in the range from 0.98 to 0.79 as the He<sup>3</sup> density is increased. Since  $\pi^2/3$  is a large number, but  $\pi^2 (1 + F_0^a)/3 \approx 1$ , the almost exact constancy of  $F_0^a \approx -0.75$  is only a reflection of the fact that there is no scale other than  $T_F$  for He<sup>3</sup> in the region  $T < T_F$ , and the model of He<sup>3</sup> within the framework of which a close value of  $F_0^a$  is obtained is not confirmed as a realistic model.

#### 5. DISCUSSION

1. As the density increases, the spin effects weaken in solid He<sup>3</sup>, but become stronger in liquid He<sup>3</sup>. This can be seen from a comparison of the quantities  $P_0$  and  $\delta$  (see Table

I). The spin pressure increases in absolute value as the molar volume V decreases. But the nonspin pressure, which is  $\propto \delta T^2$ , depends weakly on V, since the exponent  $V_{\gamma}$  (6), (7) is close to unity. If indeed there is short-range order in liquid He<sup>3</sup>, and the atoms are most of the time spatially separated, then the Pauli principle should very quickly be "switched off" as the density increases. What we see indicates the opposite: as the density increases, liquid He<sup>3</sup> does not move closer in its properties to solid He<sup>3</sup>, but rather moves away from it. If now we remember that the residual entropy per atom  $S_0$ does not tend to the value ln 2, then it becomes clear that the simplest short-range order-one atom at one site of an irregular lattice—is not realized in He<sup>3</sup>. If, on the other hand, we assume that the number of He atoms is smaller than the number of sites, then the "extraneous" entropy  $S_0 - \ln 2$  can be interpreted as the entropy of the vacancies. But for the constancy of  $S_0$  to be explainable, the vacancy density must not depend on the density of the liquid, which, in our opinion, is impossible. An additional disorder can be introduced in another way: we can allow two atoms with opposite spins to occupy the same site.

We must have experimental data for He<sup>3</sup> and He<sup>4</sup> and their solutions in the regions of high T and n and in the region close to the melting curve if we are to understand which variant has been "chosen" by nature. We can, for example, measure the pressure P(V,T) (and it can be measured very accurately); the entropy  $S_{\nu}(T)$  can then be found by integrating the identity  $\partial P / \partial T = \partial S_V / \partial V$ . The constant of integration is found from the value  $R \ln 2 = S_{cr}$  for solid He<sup>3</sup> at the point  $T_{\min} = 0.32$  °K where the melting curve has its minimum. Notice that in Ref. 1 the quantities S and P are found through integration of the specific heat over V and T. A high accuracy is not required in the determination of  $S_{\nu}$ ; the important thing is for the temperature scale not to vary with T and n. We can then separate the contributions to the  $S_V$  and  $C_V$  for He<sup>3</sup> and He<sup>4</sup> according to how they depend on V and T. We could not find in the literature data for the entropy of He<sup>4</sup> at high  $T \sim 2 - 10$  °K. It is important to know whether the  $S_{\nu}$  for He<sup>4</sup> contains, besides the term linear in T, a constant of the type  $S_0$ . The most extensive information about the properties of He<sup>3</sup> and He<sup>4</sup> would be provided by  $C_{\nu}(T)$  curves determined with the same apparatus in the broad temperature range T < 10 °K and broad density range  $n_0 < n < 2n_0$ . It is possible that, near the melting curve, the  $C_V(T)$  curve for He<sup>3</sup> has a weak minimum at  $T_{\min}^2 \sim T_0/$  $\gamma_0$ , (5). It can be seen from Greywall's data<sup>1</sup> that, for  $n \approx 1.4 n_0$ , this dependence has a broad plateau in the region

 $T > T_F$ ; this is a result of the competition, as T increases, between the increasing quantity  $\gamma_0 T$  and the decreasing quantity  $T_0/T$ . It will be interesting to know whether there is in the V-T phase diagram for He<sup>3</sup> and He<sup>4</sup> a region where the parameter  $\beta$ , (5), has the opposite sign, which would be an indication of the existence of weakly-damped phonons with frequencies  $\gtrsim T$ . It is also important to determine the He<sup>3</sup> density at which the power-law dependence of  $\gamma_0$  and  $T_F$  on the density breaks down. The experimental determination of the parameter  $T_0$  at high *n* and *T* would enable us to find the quantity  $T_F$  as well, since the ratio  $T_0/T_F$  (see Table I) depends weakly on the molar volume. We can, by taking into account the fact that the parameter  $T_F$  is the scale for  $\chi$ , (3), obtain information about  $\gamma$  in the region of high T where the magnetic susceptibility is small and it is difficult to measure it. The extrapolation of the dependences for  $C_V$  and  $S_V$  from the region of high T and n into the region of low T would enable us to predict the properties of supercooled liquid He<sup>3</sup>.

The majority of experimenters traditionally work with helium at constant pressure. But physically, data obtained at constant volume of the liquid are more informative. The dependence of  $A(V_0, T)$  on T for the observable quantity A, determined at a single value of the molar volume  $V_0$ , is already useful. But one  $A(P_0, T)$  curve is almost useless, since at high T the density of helium is strongly dependent on T, and it is necessary to have a series of curves  $A(P_i, T)$  in order to go over to the function A(V,T). Greywall's work<sup>1</sup> is a rare exception: he measured what can be analyzed and computed. Notice that we lose the accuracy of the experimental data when we go over from the variables P, T to V, T since there is some indeterminacy in the dependence of P on V. The principal physical parameter of helium is its density (the molar volume); as for the pressure P it is a secondary quantity. It is not accidental that the above-presented density dependences of the thermodynamic quantities of He<sup>3</sup> are so simple.

In conclusion, it is a pleasure to thank A. F. Andreev, D. N. Khmel'nitskiĭ, and G. M. Eliashberg for discussions and L. A. Tolochko for his help in the investigation.

- <sup>1</sup>D. S. Greywall, Phys. Rev. B 27, 2747 (1983).
- <sup>2</sup>J. R. Thompson, H. Ramm, J. F. Jarvis, and H. Meyer, J. Low Temp. Phys. 2, 521 (1970).
- <sup>3</sup>A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, Metody kvantovoĭ teorii polya v statisticheskoĭ fizike (Methods of Quantum Field Theory in Statistical Physics), Fizmatgiz, Moscow, 1962 (Eng. Transl., Prentice-Hall, Englewood Cliffs, N. J., 1963).
- <sup>4</sup>A. B. Migdal, Teoriya konechnykh fermi-sisten i svoĭstva atomnykh yader (Theory of Finite Fermi Systems and the Properties of Nuclei) Nauka, Moscow, 1983, p. 102.
- <sup>5</sup>A. F. Andreev, Pis'ma Zh. Eksp. Teor. Fiz. 28, 603 (1978) [JETP Lett. 28, 556 (1978)]; Usp. Fiz. Nauk 127, 724 (1979) [Sov. Phys. Usp. 22, 287 (1979)].
- <sup>6</sup>A. A. Tolochko and A. M. Dyugaev, Zh. Eksp. Teor. Fiz. 86, 502 (1984) [Sov. Phys. JETP 59, 293 (1984)].
- <sup>7</sup>A. F. Andreev and Yu. A. Kosevich, Zh. Eksp. Teor. Fiz. 77, 2518 (1979) [Sov. Phys. JETP 50, 1218 (1979)].
- <sup>8</sup>E. M. Lifshitz and L. P. Pitaevskii, Fizicheskaya kinetika (Physical Kinetics), Nauka, Moscow, 1979 (Eng. Transl., Pergamon, Oxford, 1981), p. 39. <sup>9</sup>T. Moriya, J. Magn. and Magn. Mater. **14**, 1 (1979).
- <sup>10</sup>R. S. Pandorf, E. M. Ifft, and D. O. Edwards, Phys. Rev. 163, 175 (1967). <sup>11</sup>A. M. Dyugaev, Zh. Eksp. Teor. Fiz. 70, 2390 (1976) [Sov. Phys. JETP 43, 1247 (1976)]
- <sup>12</sup>G. M. Éliashberg, Zh. Eksp. Teor. Fiz. 43, 1105 (1962) [Sov. Phys. JETP 16, 780 (1963)].
- <sup>13</sup>W. F. Brinkman and S. Engelsberg, Phys. Rev. 169, 417 (1968).
- <sup>14</sup>L. Goldstein, Phys. Rev. **112**, 1465 (1958).
- <sup>15</sup>B. Castaing, J. Phys. (Paris) 41, 333 (1980).
- <sup>16</sup>L. D. Landau, Zh. Eksp. Teor. Fiz. **30**, 1058 (1956) [Sov. Phys. JETP **3**, 920 (1956)].

Translated by A. K. Agyei