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We study the role of plasma compressibility in the gradient soliton problem. We show that the 
compressibility can affect both the linear and the nonlinear properties of gradient waves and 
thereby lead to the formation of gradient solitons. Some new kinds of gradient solitons caused by 
the compressibility are indicated, viz., electron fluted and oblique solitons and electron-ion short- 
wavelength drift solitons in a plasma with a finite ion pressure. We introduce the concepts of 
paramagnetic and diamagnetic solitons. 

1. INTRODUCTION 

One of the vital problems in the contemporary theory of 
nonlinear waves in a plasma is the problem of solitary gradi- 
ent waves or, in other words, of gradient solitons. Waves in a 
magnetized plasma (i.e., a plasma in a magnetic field), which 
in the linear approximation are characterized by the gradi- 
ents of the equilibrium parameters of the plasma and of the 
magnetic field, are called gradient waves. At one time linear 
gradient waves were studied extensively in connection with 
the problem of gradient (drift) instabilities. One can thus ob- 
tain an idea abouth these waves by turning to a monograph 
dealing with the theory of gradient instabilities.' The initial 
development of the theory of gradient solitons was connect- 
ed with the work by Tasso, Oraevskil, and P e t v i a s h ~ i l i . ~ ~  In 
those papers, as in the majority of later papers (see, e.g., Refs. 
5,6), one was dealing waves in relation to which the plasma 
behaved as an incompressible "two-dimensional" fluid with 
div V, = 0, where V, is the plasma velocity at right angles to 
the magnetic field (more precisely, V, is the transverse veloc- 
ity of the electron or ion component of the plasma, depend- 
ing on the kind of wave). The aim of the present paper is a 
study of those kinds of gradient solitons whose existence is 
caused by the compressibility of the plasma. 

Reference 7 is also related to our subject and we com- 
ment on that paper in what follows. 

To get an idea under what circumstances the compress- 
ibility may be important we reason as follows. We note that 
in a number of cases of low-frequency waves (low-frequency 
in relation to the cyclotron rotation of the particles) the ve- 
locity of the plasma at right angles to the magnetic field is the 
same as the drift velocity of the particles in crossed electric 
and magnetic fields, E and B, i.e., V, -- V, , where 

V E = c [ E x B ] / B a ,  (1.1) 

c is the velocity of light. It follows from (1.1) that 
B dB divV,=---- 

B 
cE rot - 

B2 at B2' 
In the problem of waves in a plasma the magnetic field is split 
into two parts, the equilibrium field B, and the field of the 
wave B, so that 

B = B ~ + E .  (1.3) 
In the simplest case of a uniform equilbrium magnetic field, 

neglecting nonlinear terms, Eq. (1.2) becomes 

1 dB, 
div Va=- --. 

B, at 

It is clear that the plasma compressibility is connected with 
the compressibility of the magnetic field and as a conse- 
quence is important in the case of waves whose propagation 
is accompanied by the compression of rarefraction of the 
magnetic field. 

The connection of the compressibility of the plasma 
with the compressibility of the magnetic field also follows 
from the freezing-in condition 

dB/dt=rot [ V ,  x B ] ,  (1.5) 

which is, in essence, nothing but another way of writing 
down Eq. (1.1). Taking the z-component of Eq. (1.5) in the 
case of the two-dimensional motions which are of interest to 
us we get 

dB,/dt=-B, div V,- (VLV )Bz. (1.6) 
This result is in accordance with Eqs. (1.2), (1.4). It also fol- 
lows from (1.6) that the magnetic field can be perturbed, 
Bz #O, also in an incompressible plasma, div V, = 0, if the 
equilibrium magnetic field is inhomogeneous, VB, # 0. Such 
a situation occurs in particular in the case of the so-called 
inertial waves (see $16.3 of Ref. 1). The perturbation of the 
magnetic field is then caused by its convective transfer de- 
scribed by the second term on the right-hand side of (1.6). 
This fact must be taken into account when we look for the 
class of waves which are sensitive to the effect of the com- 
pressibility of the plasma. 

At the same time we must bear in mind that the pres- 
ence ofthe plasma compressibility does, in general, not mean 
the presence of a perturbation of the plasma density. The 
reason is that according to the equation of continuity, 

an/dt=-n div V,- (V ,V)n ,  (1.7) 

a change in the density, like a change in the magnetic field, 
depends also on the convective transfer fo the plasma de- 
scribed by the second term on the right-hand side of this 
equation (n is the density of any species of particles, electrons 
or ions). Noteworthy in this connection is the case of quasi- 
neutral purely electron waves in which the perturbation of 
the electron density is negligibly small, ii = 0. In that case 
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the change in the density due to the plasma compressibility is 
exactly compensated by its change caused by the convective 
transfer. In that case we have instead of (1.7) 

div V,=-V,x,, (1-8) 

where x, = [alnno/ax and no is the equilibrium density 
which is assumed to be inhomogeneous in the x-direction. 

Equation (1.8) is also useful to illustrate the fact, which 
is important for us, that for an actual manifestation of the 
effects of the plasma compressibility the presence of gradi- 
ents in the equilibrium plasma parameters, in particular, a 
density gradient, is important. To perceive this fact we com- 
bine (1.8) and (1.6) and, as before, we put VB, = 0. Using the 
fact that for the purely electron waves considered 

V== j,le,n,= (c/4ne,no) d8,ldy (1.9) 

(e, is the electron charge), we then get in the approximation 
which is linear in the wave amplitude 

a~ ,18 t+u ,a~ ,1ay=o ,  (1.10) 

u n = ~ - ~ n ~ ~ ~ B e / ~ p e ' ,  (1.1 1 )  
where a,, = e, Bo/mec is the electron cyclotron frequency, 
mi, = 4ref ndm, the square of the electron plasma fre- 
quency. It is clear that the presence of a gradient in the equi- 
librium density produces in the magnetic field a compression 
(or rarefaction) wave propagating along the y axis with a 
velocity u equal to 

Waves of the king (1.12) were first studied in connection with 
instabilities produced by a transverse currents and in con- 
nection with so-called drift-cone in~tabilities.~ One can call 
them electron fluted waves (a /az = 0). 

Turning to Eq. (1.6) one can check that the compress- 
ibility may determine not only the linear but also the nonlin- 
ear properties of the gradient waves. For instance, taking 
into account in (1.6) the term of order 3, /Bo we get instead of 
(1.10) the nonlinear equation 

By adding an inertial term to the equation we shall show in 
Sec. 2 the existence of electron fluted solitons propagating 
with the velocity (1.12). 

Are the compressible plasma perturbations discussed 
by us an alternative to rotational perturbations? To answer 
this problem one must find a relation between div V, and 
curl,V,. We do this using the example of purely electron 
perturbations considered above. The expression for div V, is 
in this case given by Eq. (1.8) in which we can take as an 
estimate for curl, V, the quantity aV, /ay z x  V, , where x is 
the reciprocal characteristic size of the perturbation. Hence, 

div V,/rot, V , s x , / x .  (1.14) 

It is clear that in the case of small-scale perturbations, 
x ) x ,  , the quantity div V, is small compared to curl, V,. 
The small-scale compressible perturbations considered by us 
are thus approximately rotational. Correspondingly the 
theme of our paper may be formulated as the problem of 
"compressible vortices." 

The electron fluted solitons in a plasma with cold elec- 
trons in a uniform magnetic field, which are discussed here 
and in Sec. 2, are the simplest example of gradient solitons 
caused by the compressibility of the plasma. Other examples 
of such solitons are discussed in Secs. 3 to 6. We study in Sec. 
3 the inhomogeneity and curvature of the equilibrium mag- 
netic field, and in section 4 we consider oblique solitons (a / 
a, # 0). As in Sec. 2, we assume in that case that the electrons 
are cold and that the perturbations are purely electronic. In 
Sec. 5 we consider electron fluted solitons in a plasma with 
hot electrons and in Sec. 6 we take into account the ion mo- 
tion. A summary and discussion of the results are given in 
Sec. 7. 

2. ELECTRON FLUTED SOLITONS IN A PLASMA WITH COLD 
ELECTRONS IN A UNIFORM MAGNETIC FIELD 

We continue the analysis of purely electron perturba- 
tions of a plasma with an inhomogeneous density in a uni- 
form magnetic field which we started in Sec. 1. As in that 
section, we assume the perturbations to be fluted, i.e., propa- 
gating at right angles to B,, and the electrons to be cold and 
the perturbed electron density to be negligibly small. The 
latter is valid under the well known condition m& , mi,. We 
assume the perturbations to be low-frequency with respect 
to the electrons, a /at ( a,. 

Our first aim is to obtain for g, an equation analogous 
to (1.13) but supplemented by the inertial term. To do that 
we turn to the electron equation of motion 

where d /dt = 13 /at + V . V and V is the electron velocity. 
We apply the curl operator to both sides of this equation and 
express the velocity and the electric field in terms of the 
magnetic field using the relation [cf.( 1.9)] 

v= (cl4ne,n,) rot B (2.2) 
and the Maxwell equation curl E = - 6' B/at. We then get 
(cf. Ref. 7) 

where A,  = a '/axZ + 6' '/dy2. In the case of perturbations 
depending on x and < = y-ut it follows from this equation 
that [cf. (1.13)] 

Here h = B, /Bo, 
a 1 b=--- 
a t  u 

[VX,X VI., 

a p e 2  Un S= -- 
2cZ U ' (2.7) 

xis the stream function defined by the equation V, = - ax/ 
ay and connected with h through the relation 

x = - c ~ u ~ ~ ~ / u ~ . ~ .  (2.8) 

Equation (2.4) contains two kinds of nonlinearities: a 
vector one caused by the term [Vx X V], in the operator 2) 
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[see (2.5)] and a scalar one described by the term with S. 
Correspondingly two kinds of solitons are possible, the so- 
called "vector" and "scalar" ones. The vector solitons were 
studied in Ref. 10. Neglecting the vector nonlinearity Eq. 
(2.4) reduces to the form 

A,h-Ah+Sh2=0. (2.9) 

From the condition that h be bounded at infinity it fol- 
lows that A > 0 .  Using this and establishing with the aid of 
(2.9) the integral form 

we conclude that if h has constant sign we must have 

This means that the total magnetic field in the region of the 
soliton is larger than the equilibrium field. In this sense the 
solitons considered may be called paramagnetic. 

To illustrate this we consider "one-dimensional" soli- 
tons, putting d ' / d f  % d ' /dx2.  In that case Eq. (2.9) has the 
solution 

h=ho/ch2 (xg /2 ) ,  (2.12) 

where 

x2=A, ho=3Ac2/ape2. 

By assumption h, 1 .  Hence, the propagation speed u 
of the solitons is determined by the approximate Eq. (1.12). It 
also follows from (2.12) and (2.13) that the characteristic size 
of the soliton I ,  as a function of h, is of the order of' 

lC=c/op.h'~ . (2.14) 
We have similar estimates also in the case of a circular 

soliton, i.e., one for which h = h @) withp = (x2 + f  ')k. 

3. THE ROLE OF THE INHOMOGENEITY AND CURVATURE OF 
THE MAGNETIC FIELD IN THE PROBLEM ELECTRON 
FLUTED SOLITONS IN A PLASMA WITH COLD ELECTRONS 

3.1. Rectilinear magneticfield. We assume as above that 
Bollz, but that now there is in the plasma an equilibrium 
electric field E x ,  causing an equilibrium drift of the elec- 
trons in crossed fields V,, - V, = - cE, /B,  and a corre- 
sponding equilibrium electric current j,, = e, noVo. The 
equilibrium magnetic field then turns out to be inhomogen- 
eous, dB,/dx#O. The relative gradient of this field 
x ,  =d 1nBJdx is given by the relation 

up2 En, - * = -- * 

C O s r  COB. Bo (3.1) 

The equilibrium considered is assumed to exist only for a 
relatively short time during which the ions cannot be 
dragged along by the field Ex,. 

We study. the fluted perturbations of this equilibrium. 
The analysis of such perturbations is performed starting 
from Eq. (2.3). We then get instead of (2.4) 

where A and S are given by Eqs. (2.6) and (2.7) while the 
operator D, has the form 

Similarly to (2.4), Eq. (3.2) describes two kinds of soli- 
tons: vector and scalar ones. Neglecting the vector nonlin- 
earity, it follows from (3.2) that [cf. (2.9)] 

We used here the approximate relation 1 - VJu = 1 - x ,  / 
x ,  obtained by using Eq. (1.12). 

Using the analysis of Sec. 2 we conclude that, in con- 
trast to the case x ,  = 0,  when x , / x ,  > 1 the solitons are 
diamagnetic rather than paramagnetic, 

h<O. (3.5) 

The propagation soliton speed u remains approximately the 
same as when x ,  = 0 ,  i.e., it is determined by the approxi- 
mate Eq. (1.12) but its shift, caused by finite h, now has a sign 
which is the opposite of that in the case x ,  = 0 .  We note also 
that in terms of E, the condition x ,  / x ,  > 1 means 

Solitons caused by the vector nonlinearity (vector soli- 
tons) can conveniently be characterized by the parameter x,  
the exponent of the decrease of the field a sp  + cr, , defined 
by the relation hwexp( - xp) [cf. (2.12), (2.13)]. It follows 
from (3.2) that for fixed x the propagation speed of the vector 
solitons equals 

V O + X ~ O B ~ / X ~  
u= 

I - O ~ . ~ / X ~ C ~  ' 
(3.7) 

This result is valid both when x <ape /c  and when x > ape /c. 
When x > a p , / c  it follows from (3.7) that 

U = V O + X ~ O B ~ / X ~ -  (3 .8 )  
This result was obtained in Ref. 9 for the case V, = 0. 

3.2. Solitons in a cylindrical z-pinch. We now assume 
that the equilibrium state of the plasma has cylindrical sym- 
metry and that the equilibrium magnetic field is directed 
along the angular coordinate 9- of a cylindrical system of 
coordinates r, 8, z, i.e., B0116. We assume also that at equilib- 
rium there is a radial electric field E,llr. This field leads to 
motion of the electrons along the z axis with a velocity V, , 
and to a magnetic field gradient x ,  =d lnB,/dr given by the 
relation [cf. (3.  I ) ]  

We consider perturbations of this equilibrium assuming 
them to depend on r and f  = z-ut. We introduce a functionx 
defined by the relation V, = d x  /dz.  If we then take the 9- 
component of Eq. (2.3), we are led to an equation of the form 
(3.4) with expressions for A and S i n  the form (2.6) and (2.7) 
but with the substitution 

and with an expression for D, of the form (3.3) with 
[VX x V], replaced by [VX X Via. 

It is clear from what we have said that the results ob- 
tained in Secs. 2 and 3.1 for the case of a magnetic field with 
B,llz can also be used in the case B0116 if we make in the 
corresponding formula the notation change that follows 
from (3.9) and (3.10). 

700 Sov. Phys. JETP 60 (4), October 1984 MikhallovskK etal. 700 



4. OBLIQUE ELECTRON SOLITONS IN A PLASMA WlTH COLD 
ELECTRONS 

In contrast to Secs. 2 and 3 we now consider oblique 
perturbations, i.e., perturbations for which B, VX #O. For 
the sake of simplicity we restrict ourselves to the case of a 
uniform magnetic field B,l(z and to only the scalar nonlin- 
earity. It is necessary to take into account not only the per- 
turbed longitudinal magnetic field & but also the perturbed 
transverse field B, when B, VX #O. 

We perform the analysis starting from Eq. (2.3). Taking 
the z-component of that equation we get 

cBo a' - 
rot, B,=O. 

4ne.no az 

Moreover applying the operator curl, to Eq. (2.3) we get 

- .  

We assume that the perturbations depend on x and 
5 = y + az-ut, where a is a constant such that la[ g 1.  In 
that case we get from (4.1) and (4.2) 

(1-a2cA,ZI~') Alh-Ah+ope2h2/2cZ=0, (4.3) 
where c:, = B i /4anom, is the square of the electron Alf- 
vCn speed. 

Equation (4.3) has the same structure as the Eqs. (2.4) 
and (3.3) which we analyzed before. It describes paramagnet- 
ic solitons when a < Ix, Ic/wpe and diamagnetic ones when 
a > lxn lc/wpe. 

5. ELECTRON FLUTED SOLITONS IN A PLASMA WlTH HOT 
ELECTRONS 

The assumption of cold electrons made above in the 
problem of the compressible perturbations means that 
j?, -t 0, where j?, = 8 m O T  ,, / B  i is the ratio of the electron 
pressure to the magnetic field pressure, and To,  is the equi- 
librium electron temperature. We now consider electron 
fluted solitons in a plasma with finite j?,. 

To describe the electrons we use the hydrodynamic 
equations of motion and heat balance" 

a P 2 - + V V p + y o p  div V=-  - div q. 
at 3 (5.2) 

Here p, q, and n- are the pressure, heat flux,a nd viscosity 
tensor of the electrons, yo = 5/3 is the adiabatic exponent. 
We consider the case Bllz. In that case" 

and the components of the viscosity tensor which we need 
have the form1 

Here w,  = e, B /me c, where B is the total magnetic field. 

According to (5.1) in the equilibrium state the electrons 
move along y with a speed 

where V,, = - c Ex, /go, V, = cToe xp  /e ,  B,  is the so- 
called electron drift velocity under the action of the pressure 
gradient, xp = x ,  + x, ,  xT = dln  Toe/&.  In the case of 
fixed ions there is connected with this motion an equilibrium 
electric currentj,, + ee n V and a gradient of the equilibri- 

O. um magnetic field determined by the relation [cf. (3. I)] 

Moreover, at equilibrium there is an electron heat flux equal 
to 

where VT = cToe x , / e ,  B, is the drift velocity of the elec- 
trons under the action of a temperature gradient. 

By analogy with (2.3) and (4.1) we get from (5.1) 

cx,  dT. &+- 
d t 

where pe is the perturbation of the electron temperature. 
It follows from (5.2) and (5.3) that 

T,= - 
8, (si + -62), 

4nn0 ~ B o  (5.9) 

where 
1 5 2 a,= [VT (1 --P.) -3 v.] . (5.10) 

6 
1 5  2 5 5 

62=r{3~.~T+bl U [(---) V ~ - - V T  
P. 3 3 

2 

10 

3P. 
We have introduced here the notation: 

Using (2.2), (5.3), (5.4), and (5.9) we find 

where 

Substituting (5.9), (5.13) into (5.8) we get a nonlinear 
equation for h of the form (2.9) with A and S equal to 
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It follows from this equation that, if we neglect the non- 
linearity and dispersion, A = 0. With A of the form (5.15) 
this means that we are dealing with waves with a phase ve- 
locity which satisfies the relation 

Un 1 - - (1+61) =O. (5.17) 
u 

Substituting here S, from (5.10) we get for u a quadratic 
equation from which we can find two values of u, denoted by 
u, and u,. It then turns out that in contrast to the case of a 
cold plasma we have either two traveling waves (if u, and u2 
are real) or we have no travelling waves at all (when u, and u, 
are complex). Complex u mean the presence of an instability. 
Such solutions are possible when f l  =. 1 and VT,, $0. We 
shall not dwell upon the problem of instabilities and restrict 
ourselves to the case VT,, = 0. Moreover, for the sake of 
simplicity we take VEo = 0. We then get a dependence of the 
phase velocities of the waves u, and u2 on the plasma density 
which is shown qualitatively in Fig. 1. We note that [cf. 
(1.1211 

UI=U,, u2=5b2u,/12, b<1, (5.18) 

It follows from an analysis of the solitons corresponding to 
these oscillation branches that both for small and for large P 
both kinds of solitons are paramagnetic (cf. Sec. 2). 

6. SHORT-WAVELENGTH DRIFT SOLITONS IN A PLASMA 
WITH A FINITE ION PRESSURE. 

In the equilibrium state the ions move along they axis 
with a macroscopic velocity Vpi = cT, lt, / e ,  B,. We assume 
that there is no equilibrium electric field, Exo = 0. The equi- 
librium condition (the equation giving the balance between 
the plasma and magnetic field pressures) has the form 

where Pi = 8 m O T  ,, /B :. 
To describe the electrons we use the continuity equation 

(1.7) and the equation of motion (2.1). Assuming that d / 
dt 4 a,, we write the solution of Eq. (2.1) in the form 

V=Vs+Vr, (6.2) 

where V, is the velocity of the electron inertial motion, given 
by the relation 

FIG. 1. 

where d,/dt = a /at + V, V. Substituting (6.2) into (1.7) we 
get [cf. (1.8)] 

We write the perturbed electric field in the form 

Here, as above, we used that fact that the perturbations de- 
pend on x and f = y-ut. In the case of interest to us of short- 
wavelength perturbationsp, V, ) 1 @, is the ion Larmor ra- 
dius), the magnetic field B, weakly affects the ion motion. 
One can thus approximately assume that the ion density n, is 
given by the Boltzmann formula 

ni=no exp (-eicplTi). (6.6) 
To find the connection between q, and B, we use Eq. (1.9) (the 
contribution from the ions to the current jx is negligibly 
small compared with the electron contribution). We then use 
the approximate relation V, =. VEX -cE, /B and the fact 
that B = B, + B,. Using the first Eq. (6.5) we then get 

Expressing all quantities in Eq. (6.4) in terms of B, we 
reduce that equation to the form (2.9) with coefficientsn and 
S equal to 

wherep:, = Ti /me a;, is the square of the electron Larmor 
radius at the ion temperature, 

Vni=cTixnleiB0, ~ = a  In Ti/a In no. 

By analogy with (1.12), (5.17) we conclude that in this 
case we are dealing with waves which in the linear approxi- 
mation have a phase velocity [cf. Eq. (15.24) of Ref. 11 

Solitons corresponding to such waves were considered 
in Ref. 6 for Pi 4 1 and 8, + 0. It is clear from (6.9) that in 
case it is necessary to have a temperature gradient present, 
r # 0, for solitons with B, + 0 to exist. For finite Pi the role 
of the temperature gradient is also important. In accordance 
with what was said in Sec. 2, solitons may then be either 
diamagnetic, h < 0 or paramagnetic, h > 0. 

7. CONCLUSIONS 

The analysis given here indicates the existence of gradi- 
ent solitons caused by the plasma compressibility. We con- 
sidered several types of electron solitons and one of the sim- 
plest kinds of electron-ion solitons. Of course, the class of 
"compressible" gradient solitons is broader. Such solitons 
are particularly interesting in connection with the problem 
of magnetic confinement of a finite pressure plasma and 
their study is necessary to elucidate transport processes in 
such a plasma. 

In the analysis of the electron solitons we assumed that 
the role of the ion motion was negligibly small. Such an as- 
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sumption is justified for a sufficiently strong plasma in- 
homogeneity. It follows from this also that electron solitons 
may be experimentally studied in relatively simple laborato- 
ry setups. According to Sec. 2, this calls only for a sufficient- 
ly large density gradient, and it is not necessary to produce in 
the plasma a transverse electric current. Moreover, accord- 
ing to Sec. 3 electron solitons may arise in current systems 
such as thee, andz pinches (see, respectively, subsections 3.1 
and 3.2). We note that electron solitons in az-pinch configu- 
ration were considered earlier in a paper referred to above.' 
The nonlinear equation obtained in Ref. 7 differs from ours 
which is, apparently, explained by the additional assump- 
tions made in Ref. 7. The exposition of Ref. 7 is, however, too 
sketchy and does not contain explanations of the assump- 
tions made. 

We note also that in the case of a z-pinch configuration 
the fluted solitons considered by us (and also in Ref. 7) corre- 
spond to so-called "constrictions." Constrictions are char- 
acteristic for experiments of the plasma-focus type.'* One 
may thus think that the concept of compressible solitons 
may turn out to be useful for the interpretation of these ex- 
periments. For this it is, however, necessary to consider elec- 
tron-ion rather than electron fluted solitons with character- 
istic sizes larger than the ion Larmor radius and this has so 
far not been done. 

Oblique solitons considered by us in Sec. 4 may be of 
interest for the case of a plasma contained in a tapered mag- 
netic field when the existence of purely fluted waves is im- 
possible. 

The analysis of the role of finite P, in the problem of 
electron fluted solitons which we gave in Sec. 5 may be of 
interest for 9- for z-pinch type systems. We used in Sec. 5 a 
hydrodynamic description of the electron component and 
showed that it is possible for two varieties of solitons to exist 
for finite p,. The kinetic description is, however, more ap- 

propriate for the case of a collisionless plasma. One should 
therefore consider the results of Sec. 5 basically as only indi- 
cative. 

The contents of Sec. 6 are important both for the prob- 
lem of nonlinear short-wavelength drift oscillations of a 
plasma with finitepi to which Sec. 6 was specifically devoted 
and for the problem of long-wavelength drift oscillations of a 
plasma with finite fie which are similar to them. The latter 
problem is more complicated as the corresponding waves are 
three-dimensional. However, its analysis is also necessary in 
connection with the special role of long-wavelength oscilla- 
tions in transfer processes in a plasma across the magnetic 
field. 
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