
Radiative collision generation of sound in gases by single-pulse optical excitation 
V. M. Shalaev and V. Z. Yakhnin 

Institute of Physics, Siberian Department, Academy of Sciences USSR 
(Submitted 9 April 1984) 
Zh. Eksp. Teor. Fiz. 87, 121 1-1220 (October 1984) 

The generation of sound in the field of a single light pulse, due to the effect of light induced drift 
(LID) of gases, is investigated theoretically. The spectral characteristics of the acoustic LID 
signal and their relation with the parameters of the medium and the radiation are analyzed. The 
existence of two mechanisms of generation of LID sound is established: selective and diffusion. 
The restrictions on the medium and radiation are less stringent for the diffusion mechanism than 
for the selective one. In this sense, the diffusion mechanism is more universal. The calculation 
may serve as the theoretical basis of a method of determining the transport scattering cross 
sections of excited atomic particles by using pulsed lasers and the high-sensitivity optical-acoustic 
spectroscopy technique. 

1. INTRODUCTION Af,=S,, A=d,+vd,, p=1,b, (2.1) 

In recent years, the interest of investigators has been 
drawn to the phenomenon of light-induced drift (LID) of 
gases'-3, which consists in the stimulation, by the radiation 
of a traveling light wave, of counter flows of absorbing and 
buffer gases. In connection with the possibility of a strong 
macroscopic manifestation, the LID effect can find applica- 
tion in physical investigations and in technology (for exam- 
ple, for the separation ofisotopesl)). To obtain the maximum 
drift velocities, certain requirements must be satisfied by the 
following characteristics of the inducing radiation: spectral 
width, detuning from resonance, intensity, and pulse-repeti- 
tion frequency in the case of a pulsed-periodic e~c i t a t i on .~ .~  
These requirements are not always easily satisfied, since the 
number of experimental researches devoted to the LID 
phenomenon is still relatively (see also the bibliogra- 
phy in Ref. 9). For a more task-oriented application of con- 
tinuous and pulsed lasers, and to obtain a strong LID effect, 
information is necessary on the transport collision cross sec- 
tions of excited atomic particles, information very scanty at 
the present time.'0211 Along with this, this information is of 
interest for the physics of atomic and molecular collisions 
and spectroscopy. There exists the attractive possibility of 
obtaining data on the collision cross sections of excited parti- 
cles when a gas is acted upon by a single radiation pulse. This 
allows us to expand the experimental possibilities, including 
in the "arsenal" of sources of light the broad class of single- 
pulse lasers existing at the present time, and use the methods 
of frequency tuning developed for them. The basis of the 
corresponding experimental method can be the effect of ra- 
diation-collision generation of sound2) in single-pulse opti- 
cal excitation, an effect due to LID in gases. The present 
work is devoted to the theoretical analysis of this pheno- 
menon. 

where f, and S, are the distribution function (dependent on 
the velocity v and the radius vector r with componentsx, y, z 
and on the time t )and the collision integral of the component 
p; subscripts p = 1 and p = b label quantities referring to 
absorbing gas and to the buffer, respectively. In the process 
of interaction with the radiation, part of the absorbing parti- 
cles goes into the excited state m. We take into consideration 
the difference of the kinetics of the excited particles from 
their kinetics in the ground state n, representing S, in the 
form 

si=s,+s,. (2.2) 

The collision integrals S, (q, = n, m, b ) have the following 
structure: 

where the component S,, describes the collisions of parti- 
cles of type q, with particles of type $. From the laws of 
conservation of the number of particles, momentum, and 
energy in the collisions, we extract the following properties 
of the partial collision integrals S,, (see, for example, Ref. 
13): 

Here M, and E,,, are the mass and internal energy of a 
particle of type p(Mm = M, =MI). We shall assume that no 
quantum transitions m-n occur in the collisions. We can 
then eliminate the transition energy Em, from qnt in (2.3) 
and assume that qnt = qnt , = qnt . Using (2.1)-(2.4) we 
obtain in the usual way14 a set of hydrodynamic equations: 

2. GENERAL RELATIONS 

Let us consider the action of a light wave on a mixture of 
[ d , ~ a + z  3, (u.u,p+Par) ] =~.a, a, u, z, 

B 
)I 

an absorbing and a buffer gas. For the energy spectrum of the (2.6) 
absorbing particles, we limit ourselves to the model of two 
nondegenerate states m and n (n is the ground state). The [dt(pE) +d~(J&+@+u~Pap) 1 7 0 ,  E. = -+ UP= 8.. 
evolution of the medium is described by the set of kinetic 2 
equations (2.7) 
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(u, V) lr= (J/P, V-U) a, (2.9) 

Flp==kM1 J v(Snb+Smb) dv. (2.10) 

The expressions (2.8) and (2.9) can be understood as the 
equality of column matrices: for example p, p, = M, Sf, dv 
and so on. The quantities @, J ,  Pap, E, q) are respectively the 
mass density and mass flux density, the pressure tensor, the 
thermodynamic internal energy per unit mass, and heat flow 
of componentp; (u, V, F), are the macroscopic and thermal 
velocities of the component p and the "friction" force den- 
sity acting on this component. Equations (2.5) and (2.6) are 
the equations of continuity and momentum balance of the 
components, and (2.7) is the energy balance equation for the 
gas mixture as a whole. 

We use next the model of an ideal liquid:14 

We shall also assume that the macroscopic quantities @, J ,  
P, E), depart slightly from their equilibrium values @O, 0, Po ,  
E') and introduce into consideration their nonequilibrium 
parts: 

(p', J, P', E ' ) M = ( ~ ,  J, P, E)P- (Po, 0, Po, (2.12) 

We transform the energy balance equation. Using (2.1 I), the 
relations that are characteristic for an ideal gas1': 

(P, ate) ,= (kTplM, c$'iT/M) ,, 
where k is Boltzmann's constant, T, and c, are the tem- 
perature and heat capacity at constant volume for a single 
particle of the component p and the equation of continuity 
(2.5), we can obtain a linearized variant of Eq. (2.7) in the 
following form: 

where To is the equilibrium temperature of the gas mixture. 
We neglect the difference in the temperatures of the absorb- 
ing and buffer components, i.e., we assume that 

T,'=T,'= T'. (2.14) 

Ths approximation is valid, since the time of exchange of 
energy between the components amounts to several times 
the free path time .r,, , whereas the characteristic times of the 
hydrodynamic processes greatly exceed rfr .3) The linearized 
equations of state for the components of the mixture, with 
account of (2.14), can be written down in the following gen- 
eral form: 

k 
P,' = -(Top,'+ p,OT1). (2.15) 

M. 

We eliminate the nonequilibrium part of the temperature 
from (2.15) with the help of (2.13) and (2.14). Then the equa- 
tions of state for the absorption component and the gas mix- 
ture as a whole will have the form 

Here c,, = c, + k is the heat capacity at constant pressure 
of component p per particle. 

For simplicity, we limit ourselves to the case in which 
the absorbing gas is a small admixture to the buffer: 

pio"p;, p1O/MlCp;IMp (2.18) 
The motion of the absorbing and buffer gases is due, as can be 
seen from (2.6), to their mutual repulsion. Therefore, at 
py +$ the inequality lub I (lu, 1, lu, I is satisfied (u, is the 
macroscopic velocity of the excited component of the ab- 
sorbing gas) and the following expression is valid for the 
force F-Fl in linear approximation: 

Here Y, ( j  = n, m) is the diffusion frequency of collisions of 
the absorbing particle in quantum statej with the particles of 
the buffer gas, and j, is the mass flow density of the excited 
component of the absorbing gas. 

Using Eqs. (2.5) and (2.6) in the linearized variant and 
taking account of (2.11) and (2.19), and also transforming 
(2.16) and (2.17) in correspondence with the conditions 
(2.18), we can obtain the following set of equations: 

d i p : ~ + ~ r ~ l , ~ = ~ ,  J,=JI.j-Jb, (2.20) 
(dl+ v,,) J i+d,Pi l=~ j,, d,J,+d,P,'=O, (2.21) 

As noted above, the hydrodynamic processes are slow 
in the time scale offree path times. In this connection, we can 
neglect the term a, Jl in comparison with Y, J l .  In this ap- 
proximation, the following equations are obtained from 
(2.20)-(2.22): 

Equation (2.23) is the inhomogeneous diffusion equation (D 
is the diffusion coefficient), while (2.24) is the inhomogen- 
eous wave equation (c, is the sound velocity). For solution of 
the set (2.23) and (2.24), we must calculate the quantity J, , 
to which the next section of the paper is devoted. 

3. MOTION OF THE EXCITED COMPONENT 

Let the energy interval between the states m and n of the 
absorbing particles be equal to h, and let the excited state 
decay to the ground state at the rate T,,, . Then the behavior 
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of the excited component of the absorbing gas in the field of 
radiation with frequency w, wave vector k, and photon flux 
density I (I = I/&, where?is the intensity of the radiation) 
is described by the following kinetic equation: 

(A+I',) fm=oZ(fi--2fm) +Sm, 

4nld120  J? 
(3.1) 

(5= 
cfi r2+ (Q-kv) a' 

Here f, is the distribution function of the excited particles, a 
is the cross section for the transition m - n with account of 
the Doppler shift k-v of the radiation frequency; d and r are 
the dipole moment and the halfwidth of the transitions 
m - n; L? = w - w,, is the resonance defect for the immo- 
bile particle; c is the velocity of light. Applying to (3.1) the 
operations M,$dv and ml$vdv, we can obtain the linearized 
equation of the hydrodynamics of the excited component: 

(at+ rm)  pm+drjm=ooplOZ, (3.2) 

(dt+I',+v,) jm+i12voZ~rpm= (kll kl ) avnoopiOI, (3.3) 

where 

In the derivation of (3.2) and (3.3), we have used the first of 
the equations of state (2.22) and assumed satisfaction of the 
conditions 

r or [Q(>lk(vo, pm<pior (3.4) 

which mean that the excitation of the particles by radiation 
is weak and weakly selective in the velocity. In the case in 
which the characteristic time scale T of change of the photon 
flux density exceeds the relaxation time T; ', i.e., 

~ B r ~ - l ,  (3.5) 
we can neglect the terms d,p, and d,j, in Eqs. (3.2) and 
(3.3). Omitting also the term d, j, in (3.2), we can obtain the 
following solution for j, : 

Using (3.6), we can easily show that the neglect of the term 
d, j, in (3.2) is valid in the case 

as is indeed assumed. In (3.7) I,, is the scale of spatial in- 
homogeneity of the photon current density. 

The two components in (3.6) reflect the existence of two 
mechanisms of generation of direct motion of the excited 
particles. The first of these (the component proportional to a )  
is associated with the selectivity of the optical excitation of 
particles by velocity. The quantity avo is the mean rate of 
excitation of the particle before a Maxwellizing collision, 
while the factor T, /(r, + v, ) determines the fraction of 
the lifetime of the excited particle in the translationally non- 
equilibrium state (r, + v, )- ' of the total decay time ' 
of the excited state. The second mechanism is connected 
with the diffusion of particles in state m,  which takes place as 
a consequence of the spatial inhomogeneity of the intensity 

of the exciting radiation. The factor ui/2(r,,, + v, ) is the 
diffusion coefficient of particles in the state m. Its difference 
from the ordinary diffusion coefficient vi/2v (v is the colli- 
sion frequency) is due to the fact that the decay of state m 
leads to additional "braking" of the flux of the excited parti- 
cles. 

Within the framework of the conditions (3.4), the inter- 
action of light with atoms takes on a linear character and the 
process of photo-absorption obeys Bouguer's law. In parti- 
cular, the photon flux density of the light wave traveling in 
the positive z direction is described by the following expres- 
sion: 

I (r, t)  =Io (t-zlc) e-"', 

I, (t-zlc) =Z(r, y, z=0, t-zlc), h=oopioIMi. 

Upon satisfaction of the condition (3.5), the quantity r c  ap- 
preciably exceeds the length of the absorbing media usually 
used in experiments. Taking this into account, (3.8) can be 
rewritten in the form 

z=I0 ( t )  e-'= (3-9) 
with accuracy up to terms proportional to the small factorz/ 
T C  . 

4. SOUND GENERATION 

We now analyze the problem of light-induced disequi- 
librium of the total pressure of the gas mixture in the case in 
which the light wave is a homogeneous pulse of length r with 
a smooth time envelope. This can be accomplished on the 
basis of the solution of the set of equations (2.23), (2.24), 
using next the equations of continuity (2.20) and the second 
of the equations of state (2.22). 

We turn to the system (2.23), (2.24), where the quantity 
j, is determined by the expressions (3.6) and (3.9). We shall 
solve it by assuming that the mixture of gases is located in an 
acoustical resonator of length I (the coordinates of the ends 
of the resonator are z = 0, I ). We shall also assume that the 
photon flux density is homogenous in the xy plane, i.e., Io(t ) 
in (3.9) depends only on the time. Under these conditions, the 
problem becomes one-dimensional. We consider next the 
projections j, and J,,, of the vectors j, and J,,, on the z 
axis. The formulation of the problem corresponds to the 
boundary and initial conditions 

jm, Ji, z l x = o ,  r=O, Ji, 2, atJzlr=.-m=O, (4.1) 
which expresses the absence of particle fluxes through the 
ends of the resonator and corresponds to an equilibrium ini- 
tial state of the gas mixture. The solution of Eq. (2.23) satisfy- 
ing the conditions (4.1) has the form - 

ns 
I , =  I,. sin k.z, k. = 7, 
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The motion of the absorbing gas as a whole can be written 
qualitatively in the following fashion. The light-induced flux 
that arises because of the difference in the frequencies Y,  

and Y ,  leads to an inhomogeneous distribution of the ab- 
sorbing gas in space (the gas is drawn towards one of the ends 
of the resonator). As a consequence, a diffusion flux is pro- 
duced in the opposite direction. Two components in the 
expression for J , ,  are connected with the presence of these 
two fluxes. Using (4.2), we find the following solution of the 
boundary-value problem (2.24), (4.1): 

OD 

A= I,, sin k . ~ ,  

AM V 
1 

12, = -- vopio6xx, I i ( t P )  {A, sin A. ( t- t ' )  
Mi vn 

-OD 

-Dk.f [exp[-Dk.f (t-t') 1-cos A. (t-t') I )  at', A.--cok*. 

Substituting (4.2) and (4.3) in (2.22) and finding pisz,  we ob- 
tain next with the help of (2.22) the following expression for 
p;:  - 

Dk 
cos A, ( t- t ' )  - 2 gin A, ( t - t l )  at1, 

-OD 
A' I 

(4.4) 

In what follows, we shall be interested in the low-frequency 
modes of the resonator, i.e., we shall consider such values ofs 
at which 

DkS2/A,<1. (4.5) 
For times t s r ,  the upper limit of integration in the formula 
for P,, can be replaced by .4) We then have in the approxi- 
mation (4.5): 

P2,=EP,o~sA,i ,  cos (A.t+,cp,) ; 
A. 

i.- (A.'+B.')", ctg (pa=- - 
B, ' 

-OD 

The contributions P, cos k,z to the nonequilibrium part of 
the total pressure describe at t(r standing sound waves with 
frequencies A, and wave numbers k, . 

We now analyze the problem of the spectral distribu- 
tion of the acoustic signal, using (4.6). In the caseill( 1 (weak 
light absorption), the factory, in (4.6) reaches large values at 
odd s. It is maximal and of the order of unity for the funda- 
mental mode (if Al(1) or for certain lower-frequency odd 
modes (if A1- 1). In the limit A1) 1 or for certain lower-fre- 
quency odd modes (if A1- 1). In the limit A1s1 (strong light 
absorption) the quantity X, as a function of k, constitutes 
dispersion contour, with widths 2 a  of the positive and 

negative branches (at half-height). Since s > 0, we are inter- 
ested in the positive branch, which reaches a maximum 
@I)-'(1 at k, -A. For all s-A /kl the factor y, is also - (A1 )-I.  The quantity A, I,, which together with y, deter- 
mines the dependence of the amplitude of the waves on the 
number of the mode of the resonator, reaches maximum val- 
ues of the order of unity at r- l/A, .5' 

Thus, in the case of weak absorption of radiation, the 
optimal is pulse duration rapt -A ; '. The most effectively 
excited state is the fundamental mode of the acoustical reso- 
nator (A14 1) or a small number of the lowest-frequency odd 
modes (A/- 1). If strong light absorption takes place, then 
rapt - (Ac,)- '. Correspondingly, the frequency of the most 
efficiently generated mode and the width of the spectrum of 
the acoustic signal are of the order of Ac,. 

In connection with the interpretation of Eq. (3.6), we 
have noted the existence of two mechanisms of the genera- 
tion of a flow of excited particles: selective and diffusive. In 
the analysis of the problem of the acoustic signal, they come 
forward as two mechanisms of radiative-collisional genera- 
tion of sound. For the development of a diffusion flux of 
excited particles, the necessary and sufficient condition is a 
nonzero gradient of the intensity of the induced radiation 
(spatially inhomogeneous radiation). Thus, on this basis, 
generation of sound is possible under conditions in which the 
selectivity of the excitation with respect to velocity is lack- 
ing, viz, a large departure from resonance, a large homogen- 
eous transition width, and broad radiation spectrum. We 
note that the spatial inhomogeneity of the excitation of parti- 
cles can be due not only to absorption of radiation but also to 
the transverse inhomogeneity of the light beam. In the latter 
case, cylindrical standing waves can also arise in the case of 
axial symmetry of the beam and of the acoustical resonator. 

Free acoustical oscillations die out as a result of mo- 
mentum and energy exchange between different sections of 
the gas (viscosity and thermal conductivity). The presence of 
walls leads to additional absorption because of the large gra- 
dients of the macroscopic velocity and of the temperature 
near them. For waves of small amplitude, an exponential 
damping law is valid.'' Under this condition, the factor 

exp (-PJ) (4.7) 
should be introduced on the right side of the relations (4.6) (B 
is the absorption coefficient of sound waves with frequency 
A,). This takes into account the dissipation processes noted 
above. The contributions to the quantity P, from these pro- 
cesses were calculated in Ref. 17. Here we shall give the 
expression for& without account of the effect of the resona- 
tor 

In (4.8), 7, 7' and { are the coefficients of viscosity, 
second viscosity, and thermal conductivity of the buffer gas 
(for monatomic gases, 7' = 0).19 Estimates with the use of 
elementary gas-kinetic formulas for 9, 9' and { show that 
p, -A : /v,  where Y is the collision frequency of particles 
with one another. This is why the low-frequency modes of 
the acoustical resonator are of interest. 
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5. DISCUSSION OF RESULTS. ESTIMATES 

The calculations carried out in the present section can 
provide the theoretical basis of a method for determining the 
transport collision cross sections of excited atoms and mole- 
cules from the experimental data on the acoustical signal due 
to the LID effect in the field of a single light pulse. 

We now estimate, by using Eq. (4.6), the orders of the 
quantities characterizing the acoustic signal and the electro- 
magnetic radiation stimulating it for the case of atomic gas- 
es. We shall start out from the values of the parameters that 
are characteristic for atomic transitions: w,, - 1015 sec-', 
Id1 - ID, r, - 10' sec-', IkluO - 10'' sec- '. We carry out 
the estimates for the case If2 I - 10'' set-', P 7 - 1 Torr @y/ 
M, - 1016 cmP3), Pz - 10 Torr, M I  -M,, I- 1 cm. The val- 
ues v,, , - lo7 se~- ' ,  r- lo9 s e ~ - '  correspond to a buffer 
gas pressure of 10 Torr. Under the considered conditions 
ill- 1, i.e., there is a tendency for the effecient generation of 
the lowest frequency modes of the resonator and, in particu- 
lar, for the basic mode with frequency A ,  - lo5 sec'. Thus, 
the optimal duration of the light pulse amounts to T -  lop5 
sec. The photon flux density is bounded from above, by vir- 
tue of the second of the assumptions (3.4) [see also (3.6)], to 
values such that a,Jo(0)/r, -lo-'. This corresponds to 
h I o ( 0 )  - lo3 W/cmZ. The estimate from (4.6), together with 
the use of the values of the quantities characterizing the gas 
mixture and the inducing radiation given above, shows that 
the amplitude of the oscillations of the pressure with fre- 
quency A ,  reaches values of the order of lC/v, 1-10-2 Torr at 
the ends of the resonator. According to the data of Ref. 20 
for the sensitivity of microphones, by recording a sound 
wave of such an amplitude one can determine the factor 
I (a, - a, )/a, I (a,, , is the transport collision cross section 
of the absorbing atom in quantum states m, n; v,, , a a,,,, ) 
down to values of For the determination of the sign of 
the difference a, - a, the phase of the wave must also be 
recorded. 

The high sensitivity of sound  receiver^^^.^^ allows us to 
choose experimental conditions by aiming not only at the 
maximum of the effect but also at the possibility of compar- 
ing the experimental results with the simplest theoretical 
formulas. Thus, at not too high pressures of the absorbing 
and buffer gases (such that ill(1, ilvO(T, la 1, v, (r, and 
pulse durations T<A ; ' the expression (4.6) for the funda- 
mental mode of the acoustic resonator takes the form 

4 v ( s ~ E ~ A ~  
p Z i = - A ~ ( - % i  -- aPio cos ~ ~ t .  (5.1) 

2-t MiMb vn r m  
Here 

is the number of photons landing on a unit area of the trans- 
verse cross section of the resonator. Thus, the amplitude of 
the sound wave is determined in this case only by the energy 
of the pulse and does not depend on the time envelope of the 
intensity of the radiation. 

The results can find application also in connection with 
the interest arising recently in laser sources of sound.22 The 

phenomenon of radiative-collision generation of sound in 
connection with the well-developed techniques of optical- 
acoustical spectroscopy of molecules21 can apparently be 
used in the spectroscopy of atoms and for analysis of the 
composition of atomic gas mixtures. 

In conclusion, the authors express their gratitude to A. 
K. Popov for posing the problem and constant interest in the 
research and to F. Kh. Gel'mukhanov for fruitful discus- 
sions. 
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