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The evolution of a beam over the orbital energy levels is investigated on the basis of the probabili- 
ties found for the transfer of electrons along the Landau levels due to their emission in the regions 
of the anomalous and normal Doppler effects. Emission with spin flip is considered. It is shown 
that inverted population of the spin energy levels is possible because of anomalous Doppler 
emission. 

It was noted some time ago by Ginzburg and Frank' 
that a system emitting at anomalous Doppler frequencies 
and moving in a medium does not go to a lower energy level, 
as is the case for normal Doppler frequencies, but to a higher 
one. Thus, there is hope that this system will require an in- 
verted population of the energy levels. However, in this pro- 
cess, the principal role is played by the competition of the 
radiated anomalous and normal Doppler frequencies. For 
classical systems, this process was considered earlier by 
Ginzburg and one of us,2 but, so far as we know, the problem 
has not been solved in such a formulation for quantum sys- 
tems. In this connection, it should be noted that communica- 
tions have appeared very recently to the effect that it has 
become possible to use the anomalous Doppler effect for the 
creation of a maser (see Refs. 3 and 4). 

In connection with what has been said above, there is 
interest in considering a specific quantum system in which 
anomalous Doppler frequencies can be emitted, and with 
this as the example we can investigate the singular features 
that appear. In the present paper, we have concentrated on a 
simple system of widespread practical interest-that of elec- 
trons moving in a uniform constant magnetic field in a medi- 
um that is characterized by the dielectric constant E.  It turns 
out that the higher energy levels of the considered system 
(the Landau levels) become indeed populated in the steady 
state, thanks to emission of anomalous Doppler frequencies. 
The higher levels are more populated the smaller the ratio of 
the probability of emission of the normal Doppler frequen- 
cies to the probability of emission of the anomalous Doppler 
frequencies. Moreover, it has been possible to determine in 
the system considered the time evolution of the distribution 
of the electrons over the Landau levels. The spread in the 
transverse momentum is connected here not with collisions 
of electrons with one another but with the emission of pho- 
tons. For steady-state distributions, we can introduce the 
concept of temperature and other thermodynamic quanti- 
ties. A very significant feature has been revealed by analysis 
of emission of electron spins. It turns out that conditions are 
possible in which, thanks to emission with change in the spin 
direction of a majority, most electrons go over as a result of 
the anomalous Doppler emission, to a state with the spin 
oriented against the direction of the external field H, (invert- 
ed population of the electron-spin levels. It was known ear- 
lier that, for classical systems, the analogous situation is im- 

possible for transverse waves in an isotropic medium (see 
Ref. 2). 

1. ORBITAL TRANSITIONS IN THE EMISSION OF MOVING 
ELECTRONS 

Let charged particles with spin 1/2 (e1ectrons);placed 
in a homogeneous and constant magnetic field H,, move in a 
medium with a dielectric constant E > 1. The energy levels of 
the particle, neglecting its interaction with the phonons (the 
Landau levels), are well known: 

Here w, = lelH,/mc is the gyrofrequency of the electrons, 
p, is the momentum of the particle along the z axis, and the 
natural number k characterizes the oribtal energy of the par- 
ticle in the magnetic field. The last term on the right side of 
Eq. (1) describes the energy of the particle magnetic moment 
that is coupled with the spin when placed in the magnetic 
field. If the magnetic moment is directed along the field, then 
s = - 1; in the opposite orientation, s = + 1. We assume 
that in its initial state the electron is at the level k, the mag- 
netic moment is arbitrarily oriented, and the longitudinal 
moment p, =p, .  Furthermore, we shall assume that pho- 
tons are absent from the medium in the initial state. Thus, 
the initial state of the system is characterized bya $function 
of the form 

. . 

(2) 
Here qhk (r) is the eigenfunction of a particle with energy Ek ,' 
$,*, = (q,,) are the eigenfunctions of the photons of the medi- 

um in the initial state,6 qAi are the generalized coordinates, 
wAi = C3tA,/~1'2, 3tA, are the wave numbers of the photons. 
The Hamiltonian of the interaction of the particle with the 
field has the form 

rnc 
(3) 

where is the vector potential operator, A, is the vector 
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potential of the uniform field, e,, is the unit polarization dWk,k-I  -= + w H 2 ]  d o = p k ,  (7) 
vector of the photons, o are Pauli matrices, H = curl A is the dt  
magnetic field operator, V is the volume of the system, 1 o - o x l / f l n o < l .  
ci,f ,;,, are the creation and annihilation operators of the 
photons. The first term in the integrands of (6) and (7) corresponds to 

emission of a photon with polarization in the plane (H,, k) In first-order perturbation theory, the interaction oper- 
while the second corresponds to polarization of the photon 

am PI acts on a spinor of the form (bOl) ; $("is given by Eq. perpendicular to the magnetic field. We note that trans- 
(2). It is not difficult to show that the interaction-Hamilton- forms, as u-O and at = into the well-known expression 
ian part that changes the orbital energy of the particles in the for the probability of emission of an electron in a magnetic 
case of unchanged orientation of the spin is field: 

The interaction Hamiltonian that changes the orientation of 
the spin is 

We first calculate the probability of the process in which the 
electron, emitting a photon, transforms from level k to level 
k +  1. 

The probability of emission of a photon of energy +io at 
angle 9 to the field H, is defined as I C,,, + , 1 '. At a photon 
polarization e,, in the yz plane, 9 = 9 (0, sin 9, cos if ), and 
e,, = 0, cos if, sin if ), we have from (4): 

dc:l,:i if, ---L-- = - eh 2nh 
dt  i-[--I" rn E U V  e x P { i (  h  

DO 

Po X 5 xk+' ( y ) e x p ( - i x . y )  ( - i  A sin B+ cos @ 
-m 

where EA + , is the energy in the state k + 1, X ,  + , is the 
wave function of the electron in the magnetic field corre- 
sponding to the Landau levels5 For a photon polarization 
e,; = (1,0,O), we have 

.- m 

Using the last two formulas and summing over all possi- 
ble states of the photons we find the probability of transition 
of an electron from the level k to the level k + 1 in the dipole 
approximation: 

dWk, ,+,  e 2 ( k + l )  J [ ( ~ 2 n 2 w - o - w , , ) 2  
-= 

dt ~ ~ w ~ c ~ v  P2nz 
+ U H 2 ]  dm 

--v ( k +  I ) ,  
- 

(6) 

( o + m H ) / p n o < l ,  P=v/c, n=1/e. 

The finite transition probability of the system to the level 
k + 1 is connected with the possibility of the emission of 
waves at the anomalous Doppler frequencies.'.' 

Similar calculations for the transition of the system to 
the level k - 1 lead to the following expression for the transi- 
tion probability: 

From Eq. (8), in the quasiclassical approximation 
(+ioH k = mu:/2) we obtain an expression for the intensity of 
the magnetic bremsstrahlung in a vacuum: 

In order to obtain classical quantities, for example the radi- 
ation energy per unit time and the work performed by the 
radiation field to change the transverse momentum of the 
electron, it is necessary to multiply the integrands of Eqs. (6) 
and (7) by +io and fiw,, respectively. The expressions ob- 
tained here for the case k) 1 transform into the correspond- 
ing equations for the total and the vibrational part of the 
work of the emission field for an electron moving along a 
helix.' 

2. EVOLUTION OF THE BEAM 

Indications of the possibility of complex dynamics of a 
multilevel system when account is taken of the anomalous 
Doppler effect were given in Ref. 8. In the present work we 
shall show, using (6) and (7), that we can investigate com- 
pletely the dynamics and the stationary distribution of a 
beam of electrons over the Landau levels with allowance for 
the anomalous and normal Doppler effects. 

The equation determining the change in the population 
of particles over the orbital levels has the form 

where n, is the number of particles in level k. The first term 
is connected with the transition k + 1-k due to emission via 
the normal Doppler effect, the second term corresponds to 
the possibility of transition from level k - 1 to k due to the 
anomalous Doppler effect. The last two terms on the right 
side of Eq. (9) determine the decrease in the population of 
level k due to the anomalous and normal Doppler effects, 
respectively. In the derivation of Eq. (9), it was taken into 
account that in the dipole approximation, when the wave- 
length of the emission is significantly greater than the Lar- 
mor radius of the electrons, only the transition probabilities 
to adjacent levels are different from zero. The system (9) is an 
infinite set of coupled equations. The stationary solution of 
(9) is easily found: 

nk=a  ( v / p )  k .  (10) 

This distribution is normalized if v <p, i.e., transitions due 
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to the normal Doppler effect are predominant relative to 
transitions upward. In this case, the normalization constant 
a = N,(1 - v/p), where N is the total number of particles of 
the beam. 

The stationary distribution corresponds to the "trans- 
verse temperature" of the beam T = fiw, /In( p/v). 

It turns out to be possible to investigate the evolution of 
the beam in time over the orbital energy levels. For this pur- 
pose, we seek solution of Eqs. (9) in the form 

nk = 9 W ( p .  .) ph ap.  (11) 
C 

Here T = p t  and Cis  the closed integration contour. (From 
the condition Enk < co it follows that I pl < 1.) Assuming 
W(p,r)  to be a single-valued function of p, we obtain the 
following equation from (9): 

d 
W ( p ,  r ,  = ( I - p )  - ( x )  W (  x = v / p .  (12) 

d-c 3~ 

Equation (12) should satisfy the initial conditions. At t = 0, 
let there be n, particles on the zeroth level (k = 0), n, on the 
first, n, on the second, and so on. To these initial conditions, 
there corresponds 

Equation (12) can be solved by the method of characteristics. 
As a result, we obtain 

1  
w(p , z )= - -q  p-x ( = e x p ( - r ( x - l ) ) ) ,  p-I 

where is an aribtrary function that should be determined 
from the initial conditions. We consider some specific exam- 
ples. 

1. Let all the particles be on the level k = 0 at t = 0. The 
solution of Eq. (12) that satisfies this initial condition has the 
form 

n o ( x - I ) e x p ( - - ~ ( x - 1 ) )  
W ( p '  

2n i (p - -p0 )  [x-cap(--r ( x - 1 )  ) 1 
x [ l - e x p  ( - t  ( x - 1 )  ) ] (13) 

P o  = 
x - e x p ( - z  ( x - 1 )  ) ' 

It is seen from (1 3) that W ( p , ~ )  is a single-valued analyt- 
ic function. The polep =p, lies in the interval from 0 to 1 at 
arbitrary T and x .  The dependence of n ,  on T is easily deter- 
mined [see (13) and (1 I)]: 

no (2-l)exp(-t (x-1)) x [ l - e x p ( - t  ( x - I ) )  ] 
nk = 

x-exp ( -T  ( x - 1 )  - ) {- x - e x p ( - T ( x - l ~  1 . 
At v/p < 1, T-CC , the distribution n k  reaches the stationary 
value (10). At x > 1, the stationary distribution is not realized 
and the population of the k th level falls off according to the 
law 

2. We now consider the case in which at t = 0 the parti- 
cles are distributed over the Landau levels according to an 
exponential law, i.e., 

W ( p ,  0) = - = 2ni  p-y 2nip  
k=O 

The change in the population with time in this case has the 
form 

3. CHANGE OF SPIN ORIENTATION DUE TO EMISSION 

The dynamics of a beam of particles over the orbital 
energy levels was considered above. At the same time, the 
possibility of the emission of waves in the region of the anom- 
alous Doppler effect leads to the result that the magnetic 
moments initially aligned along the field can reverse their 
orientation as a consequence of the emission. By the same 
token, the anomalous Doppler emission is a mechanism that 
increases the internal energy of the magnetic moments. To 
find the emission probability with change of orientation of 
the spin, one should take into consideration the Hamiltonian 
of the interaction (5). The probability amplitude of a process 
in which an electron emitting a photon of frequency w,, and 
polarization e,, changes spin orientation and momentum is 
given by 

eh 
d t  2 mc (i?, + iBy) I$('' dq d r ,  (14) 

$(') is given by Eq. (2), p(i) is an eigenfunctions of an electron 
single photon system in the state ,Ii. Integration is carried 
out over all the generalized coordinates of the photons and 
over the coordinates of the particle. 

For definiteness, let the polarization vector of the pho- 
ton lie in the smae plane as x,, and H,. Taking it into account 
also that the annihilation operator acting on $(') yields zero, 
we arrive at the relation 

In obtaining (15), we made use of the law of momentum con- 
servation along thez axis,p, =p,, + hx, , which follows au- 
tomatically from the calculation of the integral over z in Eq. 
(14). The probability amplitude of the considered process 
1 C,, 1 is easily determined from ( 15): 

(16) 
In obtaining Eq. (16), we used the formula 
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sin gt 
lim - = n6 (E) . 
t - t m  

sion is determined by the sum of integrals of type (19), but 
with other limits of integration: 

The fact that the argument of the S function is equal to zero 
expresses the law of energy conservation in the particle with 
spin + photon system. Actually, if the magnetic moment of 
the electron is directed along the field in the initial state, then 

The energy of the system in the final state, i.e., after the spin 
flip, is 

where p,, is the momentum of the paricle along the z axis 
after emission. Using the law of momentum conservation 
along the z axis, we obtain from the equality E, = El + h 
the following expression: 

As fi-+O, the usual classical condition for emission at the 
anomalous Doppler frequencies follows from (17). The last 
term of the left side of Eq. ( 17) describes the recoil that the 
electron experiences during emission. To investigate the pos- 
sible effects connected with the recoil, we shall first consider 
the medium without dispersion. Such an approximation will 
be valid if the dielectric constant changes little over the en- 
tire range of waves emitted by the spin. The angles between 
the initial velocity v and the wave vector x are easily deter- 
mined: 

($ + T)] I h }  . (18) 
f i x  

In contrast to the classical case, account of the loss can lead 
to the result that the emission with spin flip at a given fre- 
qency can propagate at two different angles. 

A simple analysis of Eq. (18) shows that the emission 
sets in at 

and if mv(u/2 - C E - " ~ )  < haH, then a contribution to the 
total energy of emission is made only by the root 9,. The 
total energy emitted by the electron per unit time is then 

cm c 2ho '" 
O I , Z = T { V - ~ T  [( V-2) '-51 } 9 

Y E A  

The angle 8, is determined from (18) where we must set 
x = WV'\/E/C. With increase in the velocity, or more precisely 
at mu(v/2 - c / ~ / E ) >  hwH, a contribution to the field of 
emission from the root 9, appears, and the intensity of emis- 

Here w, is the limiting frequency of emission, which follows 
from the relation 

Aoo+Ao,=mv2/2. 

The physical meaning of the limiting frequency w, is that the 
particle comes to rest upon emission of a quantum of this 
frequency. The fact that the power spectrum has an integra- 
ble singularity near w, turns out to be nontrivial. As has 
already been noted, when account is taken of the recoil in the 
emission process, a complex Doppler effect in the medium 
without dispersion also becomes possible. It follows from 
condition (18) that, in general, two frequencies are radiated 
at a specified angle 2P: 

o(1,2), 
cm 

{ ( v  COSB- -&) * [ ( v  cos6--= 
YEA C O S ~  B Y E  

We now consider the other limiting case, in which the 
dispersion properties of the medium become effective earlier 
than the recoil effect. In this case we can neglect the term 
&,2/2m, in (16) and (17), and the expression for the intensity 
of the radiation takes the form 

-=- dWs PO' Jeo3dw, 
dt c2v 

(o+oH)/$no<l,  el p (0, -sin 6, cos 6).  
(21) 

Below, we shall need an expression similar to (21) for the 
intensity of radiation with polarization perpendicular to H,: 

[the region of integration is the same as in (21)l. 
The inverse process of radiation with rotation of the 

magnetic field along the field is considered in analogous 
fashion. The formulas obtained here differ from (19)-(22) 
only by the replacement of o, by - w, . 

For investigation of the dynamics of spins moving in a 
medium, it is necessary to know the probability of radiation 
with rotation of the spin. The corresponding formulas are 
easily obtained by noting that they differ from the expres- 
sions (19)-(22) by a factor l / h  under the integral sign. As a 
result, we obtain the following expresions for the total prob- 
ability per unit time of radiation with rotation of the spin 
against and along the field: 

Let n, and n, be the number of electrons with magnetic 
moment along and against the field, respectively. The equa- 
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FIG. 1. Refractive-index frequency dependence that leads to inversion of 
spinsy, =/3&(J,yz= 1 + w ~ / w , Y ) =  11 -wH/oI. 

tions describing the dynamics are 

Their solutions are 
Nob 

nl=nio exp (- (a+ b )  t )  + - [ I -exp  (- (a+ b )  t )  1. 
a+b 

The steady ratio of populations is n ,/n,=b /a. If the ratio b / 
a < 1, then inversion of the spin-system population is possi- 
ble. 

We shall describe briefly the simple case in which an 
inverted population of spin energy levels occurs in a magnet- 
ic field. We shall assume that n(w) is described by the cure 
shown in the figure, i.e., the quantity n(w) is significantly 
larger than unity only in a narrow interval near the gyrofre- 
quency (w, %A, /3 & > 1). Then, at 

the limits of integration in (23) and (24) are identical and S 

i.e., the probability of emission of anomalous Doppler fre- 
quencies in this case is actually greater than the probability 
of emission of normal Doppler frequencies, and inversion of 
the electron spin levels takes place. It is interesting to note 
that, as follows from Ref. 2, in a classical system, no buildup 
of oscillations due to the anomalous Doppler effect is possi- 
ble in the emission of transverse waves in an isotropic medi- 
um. At the same time, in the considered quantum system of 
spin interaction with radiation, a situation in which the ac- 
tion of the anomalous Doppler emission in the isotropic me- 
dium predominates over the normal Doppler emission is 
quite possible. 
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