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The bremsstrahlung, photorecombination, and line emission spectrum of quasiclassical electrons 
in a central attractive field and, in particular, in an atomic potential is considered. Two inter- 
related aspects pertaining to the region of fairly high frequencies are considered: 1) The high- 
frequency asymptotic form of the spectrum is obtained within the framework of classical electro- 
dynamics, and the effective spatial localization of the emission region for a given frequency is 
demonstrated. 2) It is shown through direct computation of the quantum corrections to the 
classical limit of the radiative-transition matrix element that the classical nature of the spectrum 
of the radiation emitted at these high frequencies is secured by the quasiclassical nature of the 
electron motion, and needs not be supplemented (as is customarily done) by the condition *<E. 
A "rotational" approximation is constructed which is an extension of the Kramers approxima- 
tions to the non-Coulomb case and to the region of low frequencies. The results are used to 
analytically describe the spectra of the bremsstrahlung emitted by electrons with energy of the 
order of several keV on many-electron atoms. This classical description allows the representation 
of the results of the corresponding quantum numerical calculations in the form of universal 
functions, and is in good agreement with recent experiments. 

1. INTRODUCTION 

Underlying the analysis of the processes of radiation 
emission by electrons in an atomic potential-below we shall 
be concerned with the emission of bremsstrahlung (BR), 
photorecombination radiation (PR), and radiation with a 
line spectrum (LR)-is, as is well known, the Coulomb po- 
tential model, for which the corresponding spectra (in the 
dipole approximation) can be computed exactly at both the 
classical and the quantum levels. On going over to many- 
electron atoms (ions), we find the Coulomb model inapplica- 
ble, especially in the case of low-energy electrons, and what 
is more, the question of the applicability of the statistical 
model of the atomic potential becomes, on the whole, a sub- 
ject of interest in itself (see Ref. 4 and the papers cited there- 
in). The latter question was positively resolved recently in 
experiments5 involving the measurement of the spectra of 
BR emitted by electrons with energy of the order of several 
keV on many-electron atoms, the measured spectra being in 
very good agreement (naturally, for not too low frequencies 
w) with the corresponding quantum numerical computa- 
t i o n ~ . ~  As a result of this the problem of computing the spec- 
tra of the BR, PR, and LR emitted in a central attractive 
potential U(r) has risen significantly in "status as a realistic 
problem." The exact solution to this problem, even at the 
classical level,' cannot be represented in an analytic form 
that would not require subsequent numerical calculations. 

We shall, when dealing hot-plasma spectroscopy, be in- 
terested in the region of low, nonrelativistic electron ener- 
gies E and fairly high atomic numbers Z (in, say, the region 
E 5 10 keV, Z 2 20). In this region the well developed Born 
approximation turns out to be inapplicable (e.g., for the BR 
spectrum7 it yields a form that is even qualitatively incor- 
rect, i.e., that falls off with increasing w). On the other hand, 
the elastic scattering of electrons of such energies by heavy 

atoms is well described-in accord with experiment-by the 
quasiclassical appro~imation.~.~ This raises hopes of using 
the quasiclassical approach for the description of radiative 
processes as well. 

By quasiclassicality of the electron we shall mean below 
the fulfillment of the condition it = fi/mv<a, where u is the 
initial velocity of the electron and a is a characteristic dis- 
tance determined by the equation I U (a) I = E = mu2/2. (For 
the Coulomb field U(r) = - Ze2/r this condition reduces to 
Ze2/fiv) 1 .) 

For electrons the atomic potentials are attractive poten- 
tials, in consequence of which we can expect that an impor- 
tant role will be played here by the radiation of high frequen- 
cies, due to the "close" highly curved trajectories. By high 
we shall mean below frequencies satisfying the condition 
w%i3=v/a. 

In the particular case of the Coulomb field the high- 
frequency (w)i3=mu3/Ze2) classical BR spectrum is not ex- 
ponential (specifically, it does not depend on w at 
and the quantum correction to it remains small right down 
to the short-wave limit amax = E /fi of the BR ~pectrum,",'~ 
so that, integrally, it is just the high-frequency region (ama, / 
i3 -Ze2/fiv) 1) that is important. We can see from this that, 
in the Coulomb case, the quasiclassical nature of the electron 
motion can alone guarantee the classicality of the entire BR 
spectrum, and the additional "kinematic" condition h < E  
that is usually introduced in this c ~ n n e c t i o n ' ~ ~ ~ ' ~ - ' ~  is actual- 
ly s ~ ~ e r f l u o u s . ' ~ ~ ' ~  

It is not apriori clear whether the indicated property of 
drawn-out-with respect to w-classicality of the spectrum 
will be preserved when we go over to the case of a non-Cou- 
lomb potential or whether it is peculiar only to the Coulomb 
case, as is the case with the Rutherford formula approximat- 
ed by the nondependence, on Ze2/fiv, of the BR intensity 
integrated over the ~ ~ e c t r u m ' ~ . ' ~  etc. l' Only a direct compu- 
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tation of the quantum corrections to the Coulomb spectrum 
can give an answer. 

The foregoing predetermines the logical structure of the 
present paper. In $2 we find within the framework of classi- 
cal electrodynamics the high-frequency (w)i3) asymptotic 
form of the spectrum of the radiation emitted in attractive 
potential fields U (r) of a certain class (specifically, potential 
fields that behave as r -+ 0 like r - " , 0 < n < 2) encompass- 
ing, in particular, the atomic-potential fields. The obtained 
analytical description of the classical structures allows us to 
compute the high-frequency quantum correction to the clas- 
sical spectrum ($3). The investigation of this correction in 
turn enables us to justify and generalize (in particular, to the 
entire class of potentials under consideration) the indicated 
decisive role played by the quasiclassicality of the motion in 
the securing of the classicality of the emission spectrum ($4). 
In the light of this, of great practical interest is an analytic 
description of the purely classical spectrum in a frequency 
range broader than the range considered in $2, specifically, 
in the range w 2 i3. A corresponding new "rotational" ap- 
proximation (RA) is developed in $5. The RA generalizes in 
two respects-to the non-Coulomb case and to a spectral 
region broader than the w)i3 region-the well-known 
Kramers approximation, which is the "standard" approxi- 
mation for the entire theory of BR, PR, and LR.lO.' In $5 we 
illustrate the application of the RA to the computation of the 
spectrum of the BR emitted by electrons with energy of the 
order of several keV on many-electron atoms, and in $6 we 
compare the results of the theory developed with experi- 
ment.' Some possible generalizations of the theory are out- 
lined in $7. 

52. HIGH-FREQUENCY ASYMPTOTIC FORM OF THE 
CLASSICAL SPECTRUM OF THE RADIATION EMITTED BY AN 
ELECTRON IN A CENTRAL ATTRACTIVE FIELD 

Let us consider the high-frequency spectrum of the di- 
pole radiation emitted by an electron within the framework 
of classical electrodynamics. The results will pertain not 
only to BR-from the formal standpoint the only purely 
classical radiation-emission mechanism among the three- 
but also to PR and LR, since at high frequencies they all have 
the same physical b a ~ i s , ~ '  viz, the decisive role played by 
those sections of the highly curved trajectories which are 
closest to the field center. Here and everywhere below we use 
the usual term "spectrum" to designate the distribution of 
the radiation intensity over w, summed over all the momenta 
M = mpv (this distribution naturally plays the greatest prac- 
tical role in the case of the BR), and for the intensity distribu- 
tion at jxed  M we shall, following Ref. 18, use the term 
"subline" (such a distribution is of greatest importance for 
the LR). 

We shall, to begin with, carry out the Fourier analysis, 
necessary for the computation of the spectrum (and the sub- 
line), of the acceleration of an electron moving along a curvi- 
linear trajectory at the classical level. On account of the gen- 
eral properties of the Fourier analysis, the radiation 
intensity for w)Zi is not exponentially small only if by 
chance frequencies of the order of w are present in the elec- 
tron motion itself. In an attractive-potential field only the 

highest angular velocities w,,, of revolution of the electrons 
moving along the highly curved trajectories with impact pa- 
rameters p(a can be such frequencies. 

The quantity w,,, at the turning point, i.e., at the dis- 
tance roof closest approach of the electron to the field center, 
is equal to 

o,,=u-/ro=Mlmro2=[2 (E+ IU(ro) ))/mrOz]"', (1) 

where vmax is the velocity at the turning point. From the 
relations w,,, -w, (I),  and the definition of G($l) we can see 
that the trajectories with I U (r,) I )E are responsible for the 
emission in the region w>G of interest to us. In this limit, 
according to (I),  ro and w,,, depend only on M (but not on the 
initial energy E ). 

We shall consider the class of monotonic potentials for 
which U(r) + - a/? as r + 0, where a > 0, 0 < n < 2 (the 
latter limitation is necessary to obviate a fall to the center). 
For this class the dependences ro(M ) and Me,(@) for small M 
are monotonic, so that for not too low w (i.e., for the corre- 
sponding re&)) this class encompasses, for example, the 
Thomas-Fermi atomic potential. For this same class of po- 
tentials the quasiclassical nature of the electron motion is 
destroyed at small r (see $4). 

Thus, for waG and the indicated class of potentials the 
radiation frequency w turns out to be roughly "embedded" 
in a chain of electron-trajectory characteristics, M, ro, and 
wrOt, interrelated in a one-to-one manner, which yields 

In this approximation the high-frequency asymptotic form 
of the emission spectrum of an electron stream is given sim- 
ply by the distribution dx@) of the "effective radiation" 
emitted by this stream over or,, . For a homogeneous stream' 
dx@) = 2npdpA $@), where A $@) is the energy emitted 
from all the trajectories: 

2eZ e2 
A s  (PI = - 3c3 J id" (t) dt- - w,,,~ ~ t , ,  c3 

Here 

is the acceleration of the electron at the turning point and 
At,, -rdvmax = l/wr,,(ro) is the effective duration of the 
emission process for a given trajectory. Using (2) and (3), we 
find that 

For the Coulomb case (n = 1, a = ZeL) we obtain from (4) 
the relation3' 

The foregoing qualitative analysis is confirmed by the 
results of the rigorous treatment. It is convenient to trans- 

666 Sov. Phys. JETP 60 (4), October 1984 V. I. Kogan and A. B. Kukushkin 666 



form the expression1 PI and F2 are functions significantly more unwieldy than 
Q 

2  .. S (n, N )  (we shall not write them out here), 
-- ax - J A 8 .  ( P )  2np dp, A&'. (PI = =Idw 1 ' (5) 
do 0 

~ ~ = ~ z  (2amn+ton) - z / ( z + n )  

for the spectrum into the form (obtained earlier by V. I. Ger- 
vids) 

" dU 
1. = l- cos o r  cos p dr, 

dr 

where J, is obtained from J, by replacing the cosines by sines 
in the integrand in (7), q2 = 2mE, 

mdr' r(1) Mdrl 

P (r', M, E )  ' p = J r f2p  (rf, M, E )  7 

re TO 

In the limit w$Z, only the small values of T are impor- 
tant in the integral (7). But it is not possible to carry out the 
calculation through expansion in a series of powers of 7, 

since the expansion severely distorts the behavior of the inte- 
grand at high T values, so that the terms of the corresponding 
series turn out to be divergent integrals. This is explained by 
the fact that, for w -+ co and fixed M, the integral (7) is ex- 
ponentially small. 

As shown in Ref. 21, in this situation we must go over to 
contour integration in the plane of the complex variable T, 
since the dominant contribution to (7) is made by the region 
around the singularity of the integrand, where the function 
r(r) vanishes. From this it follows that the necessary expan- 
sion in powers of l/w is guaranteed by going over in (6) and 
(7) to the new variables Nand R (cf. (2)), where 

and the corresponding expansion of the potential energy 
(Y > 0): 

The final result for the subline (the leading-in l/w-term 
and the corrections to it) has the form 

where the functions R (v, N )  and p(R ) are given by the rela- 
tions 

R 7 
y = ~ ~ z ( z 2 - m - 1 ) - 1 1 a d z ,  p = G  arctg (R2-"- l) '", ( 14) 

1 

Using (S), we obtain for the spectrum the expression 

" 
9. ( n )  = ( 2 - n )  ~ ( n ,  N )  N- (7n+2) / (2+n)  d N ,  (17) 

0 

where f, and 5, are numerical coefficients corresponding to 
the terms with FI and F2. 

For an arbitrary n (let us recall that 0 < n < 2) we cannot 
carry our an analytical calculation, nor can we even simplify 
the integral (17) because the values y -N- 1 are important in 
(1 3) and (17). In the particular cases n = 1, n + 2, and n -t 0 
we arrive at the following results. 

For the Coulomb case (n = 1, the K,(x) are modified 
Bessel functions of imaginary argument) 

which leads, after substitution into (12) and (16), to agree- 
ment with Ref. 1 and, in the latter case, to the Kramers high- 
frequency limit,'' in units of which all the BR and PR spec- 
tra can, as is well known, be expressed (in terms of the Gaunt 
factors g(w)). 

For the case n --+ 2 ("advanced fall" to the center) 

MZ 2/(2-") nZ 
N = ~ u (  -) =- , pa= - ~ 4 . 9 3 .  

2mm (0 rot 2  

The physical characteristics of this case manifest them- 
selves, first, in the narrowness of the subline (an obvious 
result of the multiple, - 142 - n) times, twisting of the tra- 
jectories around the field center) and, second, in the stiffen- 
ing of the condition that the energy E be negligible and, con- 
sequently, that (12) and (16) be applicable: w>Ze2'(2-n' 
instead of w)Z. For the case n -t 0 we have 9, = $/4. 

Notice that the expansion in powers of l/w does not, in 
the general case, reduce simply to an expansion in Z/w; the 
latter exists only for power-law potentials: here A, (w) = (i3/ 
42n'(2 + n' . 

The shape of the subline (12), which has a complicated 
functional form, admits of some model simplification. Anal- 
ysis shows that, for w)Z, the integrally (with respect to o) 
important part of the subline can be qualitatively described 
by the function 

AS, ( P )  w o 4 ( n - l ) l ( n + 2 1 ~ - 2  eEl ( 0 )  q (19) 

where Me,@) is given by the formula (2) and ~ ( x )  is the unit 
step function. The truncation, corresponding to (19), of the 
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subline at the frequency w,,, reflects the fact that the profile 
of the subline slopes down exponentially in the region 
w,wrot. The indicated form of the subline models the sub- 
line's principal property: the integral concentration in the 
region w - wro, . 

Three important conclusions can be drawn from the 
foregoing. First, in the region w,i3 the subline (see (12)) de- 
pends functionally on only one parameter N, (9). It is this 
"self-similarity" that allowed us to determine the parame- 
tric structure of the spectrum (16) without computing the 
subline's form itself, which still remains fairly complicated 
in the limit w)Z. Second, the existence of the indicated self- 
similarity parameter, together with the fact that only the 
section of the trajectory close to the turning point is integral- 
ly important, indicates the realization in the region wsi3 of 
an approximate unique relationship between the emitted fre- 
quency w and the electron trajectory or, equivalently, the 
distance re, (a)-ro(Me, (w)) of the electron from the field 
center (cf. the qualitative analysis performed above). Finally, 
in the region w)5, the analytic properties of the formulas for 
the spectrum and the subline are determined by the "compe- 
tition" between the centrifugal energy of the particle and 
only its potential energy at small r, as a result of which the 
functional dependence on the total energy E (and, hence, on 
the type of trajectory, i.e., on whether the motion is a finite or 
an infinite one) disappears. The last property allows us in $3 
to analytically describe the high-frequency quantum spec- 
trum in the quasiclassical case, in which the analytic proper- 
ties of the corresponding matrix element are entirely deter- 
mined by its essentially classical structure. 

53. QUASICLASSICAL DESCRIPTION OF THE HIGH- 
FREQUENCY SPECTRUM. CRITERIA FOR CLASSICALITY OF 
THE SPECTRUM AND THE SUBLINE 

1. Let us proceed to compute the limits of applicability 
of the classical description of the spectrum of the radiation 
emitted by quasiclassical electrons in an attractive field of 
the class under consideration on the basis of a formal expan- 
sion in fi. The rigorous criterion for the applicability of such 
an expansion can naturally be determined only from the final 
result, but a preliminary condition is the inequality &<a (in 
the Coulomb case, ZeZ/fiu) 1) indicated in $1. This inequa- 
lity is the condition for the scattered-electron motion to be 
quasiclassical in the entire region r s r , ,  where r, is the char- 
acteristic distance from the field center of the electron in the 
ground (bound) state (in the Coulomb case this is the Bohr 
radius (see $49 in Ref. 22)). 

To find the quasiclassical emission spectrum, we use its 
representation in the form of a partial-wave e x p a n s i ~ n . ~ ~ ~ ~ ~  
Let us transform the corresponding sum into an integral 
over the continuous parameter M = fi(I + 4) (see, for exam- 
ple, Ref. 24)4': 

(20) 
Here E'  = E - &a, R is the radial-coordinate matrix ele- 

ment connecting quasiclassical radial wave functions (WF): 
OD - 

R (B+B1) = J xoxorr dr. 
rm 

where 
r,=max {ro(p), r0(P1) ), 
p(r, I ,  E)=[q2-2mU(r)--A21(l+l)/r2]'", q2=2mE. 

Such a representation will allow us to investigate at the same 
time the classicality criterion for the quantum sublines cor- 
responding to the transitions nl -+ n'l ', with I ' = I f 1, and 
having A&, @) ( 5 ) ,  (1 1) as their classical analog. 

Let us go over in (21) to the limit fi -+ 0, w -+ co , and let 
us do this in such a way that E - E ' = &a remains arbitrary. 
This is admissible because, according to $2, the small quanti- 
ties will be the E and E ' themselves, so that the need for the 
imposition of the limitation &a<E does not arise when car- 
rying out analytical simplifications. We then arrive at the 
result 

R(E, I-kI-tE', 1) =R:" +R'" , 

m 
rdr :(r) 

~ 2 ' = 2  j cos @,(r, M)-, @, = (or0,(r1)*w)dt'. 
70 

P 0 

(23) 
LO 

rdr A ' dr' Am2 
~:~'=-2jsin@,(r,M)-- - - { 2 j pr" + (dp2/dr), 

Q* (7.0) 
70 

P 
70 

1 dr' dp2 8p2 Q*(rr) 
X -+ - -- - I p ro 2p3 (dr '  ( 8r 

rdr 2f2mro (20m,,-o-oro,(ro) ) 
x(20m.,-o-w., (r) )--;- +' 

P (3p2/dr) ,# (r', M) ). 
(24) 

Everywhere here ro = ro(M) is a root of the equationp = 0, 

p=p (r, M )  =[2m ( U (r)  I -M2/r2]'", o,,,(r) =Mlmr2, 

Q, (r) = (w,,(r) *w) (2wmm-0-oro,(r) ), 

where u,~, (r, M )  is the "local" angular velocity of revolution 
[when r = ro(M, E )  it goes over into (I)]; the function t (r) is 
found from the equation 

t = mdr/p. 5 
0 

The quantity R 'O' is the classical limit of the radial ma- 
trix element for high frequencies, and it is obtained as such in 
Ref. 25. 

The radial-motion wave function (21) used by us in the 
computation led to a quasiclassical asymptotic form with a 
quantum correction to it: 
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$=A exp (iSIA) [I+ifiA ]+c. c. , (25) 
where A,  S, A do not contain fi. In the wave function (21) the 
correction A stems only from the expansion of the centrifu- 
gal energy (fi21 (I + 1) z M  - fi2/4). As to that correction to 
the wave function (21) itself which is the next term of the 
series in fi for a fixed (in terms of fi and I ) effective potential 
en erg^,^' it is not reflected in (21) at all, since it does not make 
a contribution to (24). 

The quantum correction, stemming from the quantity 
A in the radial wave function, to the spectrum is the contri- 
bution of the non-classicality of the radial motion. The re- 
maining quantum corrections to the spectrum result from 
the presence of fi in the final energy E'  and from the corre- 
sponding expansion of the term outside the curly brackets in 
(20). 

2. The expression (20) with R given by (22) is quite com- 
plicated, but for U (r) of the form (10) it is possible to establish 
(using a procedure similar to the one used in §2) the func- 
tional forms of the subline I, (w) and the spectrum d d d w :  

oqZ do 
z r ( ~ ) ~ ~ - & -  ( I ,  E+E') 

Here the function 17(n, N)  is obtained from (20), (22)-(24) as 
the leading term of the expansion in l/w of the term propor- 
tional to fi (we do not write it out because of its extreme 
unwieldiness) and B (n) is a numerical coefficient correspond- 
ing to the term with n ( n ,  N); all the remaining quantities 
have the same meanings as in the "classical" formulas (9), 
(11)-(17). 

In the particular case of the Coulomb field all the com- 
putations can be carried out to the end. Thus, from (23), (24) 
we obtain the correction R "' to the classical high-frequency 
limit R 'O' of the radial matrix element: 

(30) 
We can isolate in (29) the above-defined contribution of 

the nonclassicality of the radial motion. It turns out to be 
equal to 

where 

and we have dropped the factor in front of the square brack- 
ets in (29). 

The expression (28) coincides, as it should, with the 
expression obtained from the corresponding formulas of the 
classical BR theory' in the limit w,G. This same result for 
R 'O' is obtained by the quasiclassical approach in Ref. 25 (the 
quantum correction R "'is not considered in that paper). The 
agreement of (28) with the result obtained in Ref. 25 is up to 
the "academically" necessary replacement of I in Ref. 25 by 
(I + i), and up to the normalization factor, proportional to 
(EE ')-312, which we took into account earlier in (20). (Notice 
that the quantum character of this factor is due only to the 
arbitrariness in the normalization of the wave function, and 
therefore it is not at all important in the "quantumness-clas- 
sicality" aspect under consideration.) 

We must emphasize in connection with the results (23) 
and (28) that the leading term of the quasiclassical expansion 
of the radial matrix element, i.e., the matrix element of the 
quantity r-lrl, (21), does not reduce to the Fourier trans- 
form of this same quantity r a t  any w (including low a!). Nor 
is the correspondence principle in any way contradicted 
here, since this principle pertains only to the total transition 
matrix element, but the radial matrix element (21) is only a 
part (i.e., is only the radial factor) of the total nl- n'l' 1 
transition matrix element and besides this transition matrix 
element is for another quantity, the vector r. (For the quanti- 
ty r the total matrix element of such a transition is generally 
equal to zero.) 

The final result for the "near-classical" Coulomb 
(BR + PR) spectrum has, in terms (as usual) of the Gaunt 
factor g(w), the form 

The formula (32) was obtained by Babikov" through a 
corresponding expansion of the hypergeometric function in 
Sommerfeld's exact result for the spectrum of the BR emit- 
ted in the Coulomb field.' The result (32) is also confirmed by 
the expansion of the exact Coulomb formulas for the PR 
~ ~ e c t r u m , ~ ~ , ~ '  which are an analytic continuation of the 
Sommerfeld formula. 

3. Let us now determine the criteria for classicality of 
the emission subline (26) and the spectrum (27). For the sub- 
line a "practical" classicality criterion is, as can be shown, 
the inequality 1 ~ 1 ,  since it guarantees the smallness of the 
quantum correction in (26) in the entire region 
i3(o 5 w,,, (M)  where the intensity of the (classical) subline 
itself is not yet exponentially small. For example, in the Cou- 
lomb case, according to (29), the frequency 07 at which the 
classicality condition for the subline is substantially violated 
is of the order of mZ 2e4/(M5)"2, and here, because 

the subline is already exponentially small. Notice that the 
"academic" classicality condition wgo? for the subline also 
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does not reduce to the criterion h<& for example, in the 
Coulomb case h T / E  - - ' I 2 ,  and is by no means - 1. 

For the spectrum, the characteristic frequency w* cor- 
responding to a significant destruction of its classical nature 
is, according to (27), approximately given by the expression 

@ * -  (u2mn/hZ+n) l l ( 2 - n )  (33) 
(in the Coulomb case this is the Rydberg frequency Z 'me4/ 
fi3). 

When the basic assumption itga is realized, we have 
o*)o,,, ( = E /fi))Z, which guarantees the existence of a 
broad region where the spectrum is simultaneously a high- 
frequency (w)Z) and a classical (w<w*) one. In particular, in 
the case of the purely power-law potential U = - a/r" , for 
which there are explicit expressions for a and i3: 

we have 
o * / ~ -  ( a / k )  (Z+n'1 '2-n '>> 1. 

It follows from the foregoing that the broadening, fol- 
lowing from Refs. 1 1 and 12, of the classicality region for the 
BR emission spectrum of quasiclassical electrons in com- 
parison with the usually cited condition h < E  is not limited 
to the Coulomb cse, but is the case for all the potentials of the 
class under consideration. Here the classicality region en- 
compasses not only the entire BR spectrum, but also almost 
the entire PR spectrum, since, in the case when itga, the 
latter terminates precisely at frequencies6' w -w*. 

Here we were right to treat the BR and PR emission 
processes as processes describable by a single formula, since 
the virtual discreteness of the PR spectrum for a fixed initial 
electron energy E reflects only the quantization of the energy 
of the electron in the final state, a quantization which does 
not destroy the classical nature of the emission spectrum 
(this spectrum is obtained by the standard additional contin- 
uous-spectrum "discretization" procedure, which can be 
traced back to Ref. 10). This quantization is due to the fact 
that the probability for radiative transition in the case when 
o>i3 functionally depends not on the energies E and E '  
themselves, but only on their difference. 

It should be noted again that the quantum correction in 
(27), which was obtained above through simultaneous pas- 
sages to the limits fi -+ 0 and w -+ oo in the case of arbitrary 
h / E ,  can also be obtained through a "universal" power 
series expansion in only fi (and, thus, in h / E )  with subse- 
quent passage to the limit w + w (as is done in Ref. 2 1). This 
is due to the nontrivial fact that the expansion in fi is also 
automatically realized when we perform the expansion 
(which is therefore more general) in Z/w. Thus, for the case 
of the power-law potential the formula (27) with allowance 
for (34) can be represented in the form 

ax ax 'O' -- 
d o  - ( do) 

This fact can be explained by the fact that i;i is an increasing 
function of the velocity u, which, for the class of potentials in 

question, in turn enters into the key parameter a/# of the 
problem in "cooperation" with fi (for example, in the case of 
the power-law potentials a/+- (amn - ' /fin uZ - )l'n ). 

54. ON THE RELATION BETWEEN THE QUASICLASSICALITY 
OF THE MOTION OF THE ELECTRONS AND THE 
CLASSICALITY OF THEIR EMISSION SPECTRUM 

1. Above we showed that the quasiclassical nature of the 
initial electron (in the sense that *<a) is sufficient for the 
emission spectrum in the region w<w* to be classical (this 
was demonstrated for w)Z; for o 5: i;i the spectrum is all the 
more classical). This is a generalization to the non-Coulomb 
case of the corresponding assertion made in Refs. 16 and 17, 
and essentially exhausts the practical aspect of the problem. 
For the subline the classicality criterion is the condition I )  1. 

The above-formulated relation between the quasiclassi- 
cality of the motion and the classicality of the spectrum per- 
tains to the entire frequency range. At the same time, from 
(27) we can obtain the corresponding relation for a fixed w, 
interpreting the quantum correction in (27) in terms of a 
departure from quasiclassicality of the electron motion at 
small distances from the field center (including here the con- 
dition for the nondeformability of the trajectory (along its 
emissive section) by the effect of the emission of h). To do 
this, let us represent the quantum correction in (27) in the 
following mutually equivalent forms: 

where r, and M, are given by the formulas in (2), 

x ( r , )  =A/ [q2+2ml U ( r , )  I ]  '"-Al[ml U ( r , )  I ]  '" 

is the local wavelength of the electron (not to be confused 
with 72 = fi/q!), and E ,, (r) is the local kinetic energy of the 
electron. Indeed, the condition it (r, )(r, is the quasiclassi- 
cality criterion for the motion, which can be obtained direct- 
ly from the criterion 

Ap-2 ( r )  div p ( r )  K 1, (38) 
where p(r) is the total momentum of the electron (a general- 
ization of the standard criterion I& (x)/dx 1 < 1 to the three- 
dimensional case (see, for example, Ref. 28)), as applied to 
the "rotational" sections of the trajectories (along these sec- 
tions the momentum for the radial motion is small and the 
local radius of curvature -r, ). Further, on account of (2), 
the condition fi/M, < 1 is practically equivalent to the stan- 
dard criterion I) 1, on the basis of which the correct limita- 
tion on the classicality of the Coulomb spectrum of the BR is 
obtained in Refs. 20 and 23. Finally, the condition 
h < E  ,, (r, ), which has a "dynamical" character, replaces 
the usually cited (and, as we have seen, superiluous) "kine- 
matic" condition h < E .  

Let us note further that the classicality limitationogw* 
for the spectrum is related through the condition 
E - E ' = h with the condition for the electron to be quasi- 
classical in the final state as well. Thus, for example, in the 
Coulomb case, when Ze2/fiu)l and h ) E ,  the quantum 
correction in (27) reduces to a quantity - (nl)-'I3, where n' is 
the principal quantum number of the final (bound) state. 
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2. The principal meaning of what we have said in con- 
nection with (37) amounts to the assertion that the spectrum 
of the radiation emitted at the frequency w is classical to the 
extent that the electron motion in the region of space respon- 
sible for the emission of this frequency is quasiclassical. (No- 
tice that this assertion is valid not only for the above-consid- 
ered "spatially localized" frequencies w)Z, at which the 
nonclassicality parameter for the spectrum is it (r, )/r,, but 
also for the "delocalized" frequencies w 5 5) .  

The simplicity of this relation is explained by the fact 
that, as it turns out, the nonclassicality of the radiative-tran- 
sition matrix element (its deviation from the corresponding 
classical Fourier coefficient) is characterized by the same 
parameter that characterizes the contribution of the non- 
classicality of the electron motion itself [i.e., the contribu- 
tion of the deviation of the wave function from the quasiclas- 
sical asymptotic form (see (25))l. The separation of the 
indicated contribution from the total quantum correction to 
the spectrum can be carried out only within the framework 
of the two-dimensional quasiclassical description. This de- 
scription consists2' in the fact that, in the matrix element, we 
reduce the total wave functions (and not just their radial 
components, as is the case in $3) to the form (25), after which 
we compute the matrix element by the two-dimensional sta- 
tionary-phase method. This, in particular, furnishes an ex- 
plicit demonstration, not found in the literature, of the cor- 
respondence principle for the matrix element of an arbitrary 
inelastic (not necessarily radiative) transition between con- 
tinuous-spectrum states that are described by wave func- 
tions of the type $+, $- given in $136 of Ref. 22: 

where do/df2 ' is the classical cross section for scattering 
from a state with momentum p into a state with momentum 
p' 1 p l/lpll, A, is the Fourier transform of the quantity A for 
the trajectory corresponding to the indicated scattering act, 
and w = (E - E ' ) / f i  (for more details, see (41) in Ref. 21). 

The quantum correction, obtained by the indicated 
method, to the classical limit of the matrix element contains 
as a separate term a contribution (due to corrections of the 
typed from (25) in the wave functions of the initial and final 
states) of the nonclassicality of the two-dimensional motion, 
so that the remaining part of the correction can be interpret- 
ed as the contribution of the nonclassicality of the emission 
event itself. (Notice that the above-described two-dimen- 
sional approach enables us to investigate the classicality of 
the matrix element of an arbitrary operator; on the other 
hand, it does not allow us to use the summability over I for a 
particular case, namely, the case of the dipole moment oper- 
ator (see (20)). This summation simplifies the final result for 
the spectrum, but then it leads to the mixing of the contribu- 
tions of the nonclassicality of the azimuthal motion and the 
nonclassicality of the emission event.) 

The expression for the quantum correction in the two- 
dimensional quasiclassical formalism has an extremely un- 
wieldy form. Nevertheless, it is possible to establish2' the 
fact that, for the class of potentials in question and for w)Z, 

the formal structures of the contributions of the nonclassica- 
lity of the motion and the emission event (which together 
give, as they should, the quantum correction in (27)) are the 
same. 

Moreover, a situation is possible in which the initially 
"motional" nonclassicality parameter determines first and 
foremost the contribution of the nonclassicality of the emis- 
sion event, since the numerical coefficient attached to the 
indicated parameter in the contribution of the nonclassica- 
lity of the motion turns out (in this order) to be equal to zero. 
This is true for all fields within the class under consideration 
that satisfy the condition n = 2 - 1/N, where N is a whole 
number (N = 1 corresponds to the Coulomb field), and is 
connected with the symmetry properties of the trajectory 
with zero angular momentum. 

The vanishing of the indicated numerical coefficient in- 
dicates the following: for the Coulomb field-manifestation 
of a general inherent "tendency toward classicality," for the 
remaining fields of this subclass-the possibility of their pos- 
sessing an additional (classical) symmetry of the Coulomb 
type, and on the,whole-the unimportance of the indicated 
"classicality" of the field for the classicality of the spectrum, 
which predetermines the very possibility of that the property 
of drawn-out-with respect to w-classicality of the Cou- 
lomb emission spectrum (see $ 1) can be extended to a broad 
class of fields. 

3. The foregoing conclusion that the quasiclassicality of 
the motion is sufficient for the classicality of the emission 
spectrum pertains, strictly speaking, to the case of radiation 
intensity that is not exponentially small. For those frequen- 
cies w at which this intensity is itself exponentially small, its 
classical nature can be destroyed when the motion is quasi- 
classical. For the class of potentials under consideration 
such a situation arises only for the subline. Thus, when the 
condition 1% 1 (which, foriE&a, is the quasiclassicality condi- 
tion for the motion along the entire corresponding trajec- 
tory) is fulfilled, the subline is nonclassical at frequencies 
lying even in the region of exponential smallness (see Subsec. 
3 of $3). 

55. THE "ROTATIONAL" APPROXIMATION. SPECTRUM OF 
THE BR EMITTED ON A MANY-ELECTRON ATOM 

The results of the analysis of the limitations imposed on 
the emission spectrum by the quantum effects ($83 and 4) 
make the description of the spectra within the purely classi- 
cal framework quite expedient. 

The physical picture of radiation of frequencies w)Z 
emitted in an attractive-potential field (the spatial localiza- 
tion of the region responsible for the emission at a given 
frequency), together with the fact that the unsimplified (in 
the sense that E is neglected and a power law is assumed for 
U (r)-as opposed to what is done in $2) structure of a,,, (1) 
actually enters into the exact classical formulas (6)-(8), al- 
lows us to construct a new, model approximation that de- 
scribes the classical BR spectrum in a significantly broader 
frequency range, namely, in the range w 2 5. It is natural to 
call this approximation, which is a development of the ap- 
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proach proposed in Ref. 16, the "rotational" approximation 
(RA). 

To the indicated approach corresponds the replace- 
ment of the actual subline by S (w - a,,, ) given by (1). To find 
the corresponding spectrum (the superposition of all the sub- 
lines), it is convenient to use the exact formula for the inte- 
grated effective radiation x, namely, the formula (1) from 
Ref. 16. Interpreting the dummy integration variable r in 
this formula as r,, and introducing the above-indicated S 
function under the integral sign, we obtain 

Although this formula pertains, from the standpoint of its 
derivation, to fairly high w, because of the "indestructibil- 
ity" of its functional structure (in the sense indicated above), 
it is equivalent to the entire series in l/w, and not just to the 
leading term in it. It is precisely this property that guaran- 
tees the broadened region of applicability of the RA: w 2 Z, 
and not just w)G. The first terms of this series in l/w have 
the form 

where A,  and A,  are given by the expressions (IS), which 
pertain to the exact expansion (16)." The remaining as yet 
undetermined numerical coefficient should be extracted 
from a comparison of the leading term in (41) with the corre- 
sponding term of the exact asymptotic form, and turns out to 
be equal to Po(n) / r .  Such a procedure reflects the fact that 
the accurate replacement of the actual subline by a model 
one should be carried out at a fixed value of the subline area 
(i.e., of the integral over the frequencies). 

For the practically most important potentials of the 
class under consideration (§2), namely, the atomic potentials 
(which go over into the Coulomb potential U = - Zez/r as 
r + 0) we finally obtain from (40) the Gaunt factor 

where the effective radius r, is a root of the equation (cf. (1)) 

[E+ I U (r,) I ]  lr,Z=mo2/2. (43) 

Let us consider two examples of the application of the 
RA (42), (43) to the BR spectrum. 

For the purely Coulomb case we find from (42) and (43) 
that 

(2v) '"+R (v) ZeZ 
grot(v) = y=- 

( 2 ~ )  ' t z / j R  (v) ' mu3 0, (44) 

where 

1 
v 2 --= = 0.192, 

313 
2" 

(45) 
1 

R (v) = ,v-lh cos - arctg - - 1 

13 [ ( 2  l):i'] ' v G 3 ~ '  

A comparison of (44) with the numerical tabulation of the 
exact classical Coulomb BR spectrumz9 shows that, even for 
Y = 4, there is only a 5% difference. 

For a many-electron atom, let us use the Thomas-Fermi 
(TF) model: 

wherex ( x )  is the TF  universal functionz2 and b = 0.885. In 
this case the exact classical Gaunt factor depends on two 
dimensionless parameters8': 

and the RA (42), (43) yields 

wherex (y), the prime denotes differentiation, and y(f2,~) 
and Z(E) are roots of the equations 

The role of the quasiclassicality parameter a/* (53) is 
played in the present case by 'l I/&, so that the smaller E is 
the more classical the spectrum should be. 

The effectiveness of the RA can clearly be seen from the 
good agreement between (48) and the results of the corre- 
sponding numerical quantum ca l~u la t i ons~~*~ '  in the region 
Z2 20, ~ < 2 .  Here even at the (lowerLwith respect to f2 ) 
limit of applicability of the RA, a limit which in its simplified 
form is described by the straight line f2 = k ,  there is only a 
10-20% difference. 

To describe the remaining "nonrotational" part of the 
BR spectrum (f2 5 fi ), it is sufficient in practice to carry out a 
linear inter-polation between grot ( k , ~ ) = g ~ ( ~ )  and the value 
of the exact classical Gaunt factor at the point w = O:g(O, 
E ) = ~ ~ ( E )  (the "transport" limit).32 

The natural variables, f2 and E, of the classical spectrum 
are (for the indicated E and E regions) approximate scaling 
parameters of the initially quantum, more multiparametric 
spectrum. This allows us to represent all the corresponding 
~ p e c t r a ~ ~ . ~ '  in a universal form by reconstructing them in 
terms of the variables f2 and E. It  is sufficient here to illus- 
trate the overall comparison of the quantum results with the 
classical results at the level of the "reference" functions g , ( ~ )  
and go(&) (Fig. 1). 

Moreover, even within the classical framework the RA 
is able to furnish the scaling law for the short-wave limit 
om,, = E / f i  of the BR spectrum3': g(fl,,, , E) --, G (E / Z  ). As 
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FIG. 1. The universal critical functionsg,(&) andg,(&) (curves) and a com- 
parison with them of the corresponding (reconstructed) results of the nu- 
merical quantum calculations of Lee et ~ 1 . ~ '  

o decreases to zero, a transition occurs to the scaling law 
Go(E /Z 4'3). 

It should be noted separately that in the emission of low 
frequencies there occur those quantum effects which are 
characteristic of the elastic scattering of slow particles in a 
potential field that falls off faster than the centrifugal poten- 
tial. We have in mind the nonuniqueness of the dependence 
of the scattering angle 8 on the impact parameter p, a cir- 
cumstance which leads to the interference of the classical 
branches of the scattering and, consequently, to oscillations 
in the differential scattering cross section. In the case of the 
Thomas-Fermi potential such a situation (including, in par- 
ticular, the interference in the scattering of trajectories in 
terms ofp-the "rainbow") already obtains, as the numeri- 
cal calculation shows, when E-0.2. But in the 8-integrated 
quantity, i.e., in the transport scattering cross section (to 
which, in the general quantum case, the low-frequency limit 
of the BR spectrum is proportional), the indicated quantum 
effect turns out to be suppressed in the E region under consi- 
deration which can be seen from the good agreement 
between the purely classical g,,(~) and the results of the nu- 
merical quantum calculation (Fig. 1). 

Thus, the classical description, in the indicated region 
of its applicability, provides at the same time a simple phys- 
ical explanation of the main features of the quantum spectra 
of the radiation: the degree of effective screening of the nu- 
cleus, the overall sluggish behavior of the spectra, their in- 
crease with increasing w, to be replaced by a decrease when E 

attains a value - 2 (Fig. 1). This shows the adequacy of the 
classical approach precisely as a description method, where- 
as the specific choice of a model for the atomic potential (the 
Hartree-Fock potential in Ref. 30 and the Thomas-Fermi 
potential in Ref. 31) does not play an important role (see 
Figs. 2 and 3 in Ref. 32). 

56. COMPARISON WITH EXPERIMENT: THE ANGULAR 
DISTRIBUTION OF THE SPECTRUM OF BR OF AN ATOM 

Let us carry out the comparison of the developed theory 
with experiment for the particular case of the spectra of BR 
of many-electron atoms. Such spectra have been measured 
only for a fixed photon-emission angle 8 = 90", measured 
relative to the direction of incidence of the electrons.' 

The formulas for the differential-with respect to 6- 

spectrum that are needed for the comparison with Ref. 5 can 
be obtained on the basis of the results of §§2-5. Indeed, the 
structure (the separation of the angular dependence 
P2(cos 6 )) of the classical formula (68.5) in Ref. 1 for the an- 
gular distribution of the spectrum of the dipole radiation 
emitted in a central field, a formula which preserves its form 
on going over to the quantum case to within a replacement of 
quantities in accordance with the correspondence principle 
(39), itself guarantees the applicability of the classicality cri- 
teria obtained in $3 to the differential-with respect to 8- 
spectrum too. 

The normalized angular distribution S (8, w) (JS (w, 
6 )dO = 1, d o  = 2~ sin 8d8 ) that follows from the formula 
(68.5) in Ref. 1 has the form 

1 
OD' 

A (a) = - [ I -  J (1.1 COB' q1-+12 r p - ) ~  d ~ ]  9 (5 1) 2 
0 

where J, (J,) is given by the formula (7); p, -p(r = w ), by 
the formula (8). 

For the class of fields under consideration (§2) we find 
in the limit w>Z that A ( w )  = 1/2[1 - B,(n)/P,(n)], 
where 9, (n) is obtained from 9 , (n)  (17), (13) by multiply- 
ing the first term in (13) by cos2 [I742 - n)] and the second 
term by sin2[ZZ/(2 - n)]. For atomic potentials (in thew limit 
under consideration, these are effectively Coulomb poten- 
tials) we have A ( w ) = +. In the limit w = 0 we obtain 

J s i n z e  do, A(O)=- 
401, 

where o,, and do are the transport and differential cross 
sections for elastic scattering of an electron and 8 '  is the 
scattering angle. 

Investigation of the function A (w) in the case of the TF  
atom shows that in the E region under consideration 

For the 6 = ~ / 2  case of interest to us we find from (50) 
and (52) that 

whereg(f2, E) is given by the formula (3) in Ref. 32. In Fig. 2 
we compare (53) with the experiment reported in Ref. 5 (as 
well as with the numerical quantum calculations performed 
in Ref. 6) for E and Zvalues falling within the region ~ < 2  (see 
$5). The agreement is good. The observed intensity peaks are 
the result of the super-position of the characteristic x-ray 
lines on the BR spectrum (this has been experimentally veri- 
fied by the authors of Ref. 5 themselves). The steep drop in 
the spectra at the short-wavelength limit (and, consequently, 
the destruction of the "rotational" character of the spectrum 
on going beyond the framework of the BR) is due simply to 
the fact that here we are dealing (in view of the absence of 
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FIG. 2. The Gaunt factor of the BR emitted by electrons of energy E on 
neutral Kr, Xe, and Hg atoms for a photon-emission angle of 0 = 90" and 
for: a) E = 6 keV and b) E = 6.5 keV. The points indicate the results of the 
measurements performed by Semaan and Quarles5; the continuous 
curves, the results of the numerical quantum calculations of Tseng etaL6; 
and the dashed lines, the results of calculations performed with the use of 
the classical formula (53). 

vacancies in the electron shell of the neutral atom) not with 
PR, but with photoattachment. 

Let us also note that, even though the relativistic effects 
begin to show up in the angular distribution of the radiation 
(in contrast to the 8-integrated spectrum) already at E- 1 
keV, for the angle 8 = 90" under consideration their influ- 
ence is minimal, and is insignificant at E z  6 keV (see Ref. 6). 

§7. CONCLUSION 

The results of the present paper are, on the whole, a 
generalization, to the non-Coulomb case, of the analytic de- 
scription of the classical and quasiclassical high-frequency 
spectra of the radiation emitted by electrons in a central at- 
tractive field. It is shown that the high-frequency radiation 
emitted by quasiclassical electrons in the fields of a broad 
class of attractive potentials (52) have a common physical 
basis consisting in the dominant role played by the electron 
motion along the highly curved trajectories, of which effec- 
tive spatial localization of the region of emission of a given 
frequency is characteristic. In classical electrodynamics this 
leads to the emission by an electron stream of high-frequen- 
cy radiation (BR, PR) of high (nonexponential) intensity. In 
the quantum formalism the quantum correction to the clas- 
sical limit of the radiative-transition matrix element remains 
small in the high-frequency region under consideration. 

Analysis of this correction shows that the quasiclassicality 
of the electron motion in the region of space responsible for 
the emission of a given frequency w is a sufficient condition 
for the corresponding part of the spectrum to be classical 
(with the exception of only the case when w lies in the region 
where the classical intensity is itself exponentially small (see 
Subsec. 3 of Sec. 4), and therefore does not need to be supple- 
mented (as is usually done) by the "kinematic" condition 
h (E .  In the successful scheme the formulated relation 
between the classicality of the motion and the classicality of 
the emission spectrum amounts, in particular, to the fact 
that the fulfillment of the condition * (a  is sufficient for 
practically the entire BR + PR spectrum to be classical. 

As applied to the spectra of BR emitted on many-elec- 
tron atoms (ions), the foregoing allows us to draw the conclu- 
sion that the classical description is applicable in the case of 
low incoming-electron energies. Within the framework of 
the classical description, the broad (w) region of applicability 
of the "rotational" approximation ($5) provides a basis for 
an analytical description of these spectra32 that agrees well 
with the numerical quantum c a l ~ u l a t i o n s . ~ ~ ~ ~ '  For the differ- 
ential-with respect to the photon-emission angle-BR 
spectra, the classical description (56) is in good agreement 
with the experimental data reported in Ref. 5. 

In conclusion, let us note that the potentialities of the 
method developed in the present paper can be extended. 
Thus, within the framework of classical electrodynamics, we 
can, on the basis of (3), describe the low-frequency (w(i3) 
region of the spectrum as well, and also establish a new phys- 
ical analogy between the mechanisms underlying BR (PR, 
LR) emission and the broadening of the spectral lines by 
"extraneous" particles.21 In the quantum aspect of the paper 
the above-formulated relation between the quasiclassicality 
of the motion and the classicality of the emission spectrum 
can be generalized in two directions. First, we can, in the 
case of an attractive central potential, treat not only radia- 
tive, but also arbitrary inelastic, transitions (e.g., the excita- 
tion of atoms by electrons). Secondly, within the general 
framework of attractive potentials, the validity of the above- 
discussed relation is not limited to the case of central fields. 

The authors express their gratitude to V. I. Gervids for 
valuable collaboration in the investigations published in 
Refs. 16 and 17, V. P. Krainov and V. S. Lisitsa for a useful 
discussion of the results, and S. Yu. Luk'yanov for impor- 
tant stimulating advice. 

 nothe her more subtle effect of this type is indicated in Subsec. 2 of Sec. 4. 
"Let us emphasize that this basis is essentially not affected by the possible 
quantization of the electron energy (see Sec. 3, Subsec. 3). 

3'Similar qualitative derivations of this formula (i.e., the Kramers for- 
mula) are given in Refs. 19 and 20 in treatments of just the Coulomb 
case. 

4'1n the general case the sum over I goes over into a sum of integrals of the 
type (20). For the purposes of interest to us one term is sufficient, since 
the rest are exponentially small in fi. 

"We are talking about the quantity u2 in (46.1 1) in Ref. 22, which as- 
sumes, after a transformation, the form (20)." 

"For example, in the Coulomb case, when Ze2/fiu>l, the classical 
Kramers formula is, even at the short-wavelength limit of the PR, accu- 
rate to within a factor of 1.5 (Refs. 3 and 23). 

"The functional accuracy of the RA is illustrated by the fact that, for the 
Coulomb case (n = l ) ,  the numerical coefficient attached to A, differs 
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