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Formulas are obtained for the shift of energy levels E F'(r; 2in a field Vf(r) under the influence of 
a short-range potential U(r) of radius rc in terms of low-energy scattering parameters (scattering 
length and effective range) corresponding to angular momentum I in this potential. For a nonre- 
sonant interaction between the particle and the center of force, this approach is equivalent to 
perturbation theory in the scattering length. The theory is generalized to systems with random 
degeneracy (Vf is the Coulomb potential). Formulas describing the quasicrossing of levels are 
obtained for the case ofresonant interaction between acenter offorce and a partial wave with I #O 
when both Uand Vf contain closely spaced levels. The properties of the level shift are indicated in 
the case where the corresponding binding energy is anomalously low and the wave function 
becomes delocalized as the binding energy is reduced to zero. The level shift when Vf is a potential 
well surrounded by a relatively impenetrable barrier is examined. Some applications of this theory 
to the problem of a particle in the field of two short-range potentials, or in the field of a short range 
and a Coulomb center, are discussed. Formulas are also obtained for the shifts and widths of 
Landau levels, and for a shallow level with arbitrary angular momentum that perturbs these 
levels. 

1. INTRODUCTION 

The solution of many problems in atomic and solid- 
state physics relies on a knowledge of the effect of various 
types of impurity center with short-range interaction on the 
energy spectrum of electronic states, where the interaction 
itself is not small and perturbation theory cannot be used. 
Such systems are described by the Hamiltonian 

f i  = m = 1, where U(r) is the short-range central potential of 
radius rc and Vf (r) describes the external field or the interac- 
tion with other centers which themselves can bind a particle. 
Depending on the nature of the potentials Uand Vf, we may 
have to consider the level shift in the potential U under the 
influence of an external field, or the effect of a center with a 
short-range interaction on levels in the potential Vf, includ- 
ing the rearrangement of the spectrum when the levels in 
both U and Vf are closely spaced. 

Many such problems are discussed within the frame- 
work of the zero-range potential method in Refs. 1-5 on the 
assumption that the short-range potential affects only parti- 
cles with zero angular momentum (I = 0). A generalization 
of this method to nonzero angular momenta and some of its 
applications are examined in Refs. 6 and 7. 

In this paper, we develop an analytic theory of the shift 
of the energy levels of a particle under the influence of a 
short-range center of force. Simple formulas for the level 
shifts in terms of the parameters of low-energy scattering by 
the center U are obtained for levels E satisfying the condi- 
tion E ',O)(r, 2, in the potential Vf(r). These formulas are val- 
id in a wide range of values of these parameters, including 
the level crossing region. Some applications of these results 
to particular physical problems are discussed. 

2. LEVEL SHIFTS PRODUCED BY A CENTER OF FORCE 

Consider the influence of the short-range potential U (r) 
on levels with energy E = k 2/2(rc- 2, in the field Vf(r). The 
interaction Vf is assumed to be small (Vf (r-2) for r<Lf, 
where Lf >rc . Thus, for 

the particle may be looked upon as free with zero energy. 
There are no restrictions on Vf for r 2  Lf. Assumptions 
about the potential U will be formulated below in terms of 
the parameters of low-energy scattering with angular mo- 
mentum I :  

1 
(21-1) !! (21+1) !!B,  ( E )  =k2'+' ctg 6, ( k )  = - - + r,E + . . . , 

a1 

where S,, a , ,  r, are the phase shift, scattering length, and 
effective range in the potential U, respectively. It will be con- 
venient to have the values of these parameters for an impen- 
etrable sphere of radius rc : 

- 2 1 - 1  2 (21+l )  -2l+1 
B1 ( E )  x-r, - - r, E.  

(21-1) (21+3) 

We begin by deriving the formula for the shift of a dis- 
crete nondegenerate level E in the potential Vf (random 
degeneracy is discussed in Section 4). The normalized wave 
function for this state at short distances r(Lf, k -' has the 
form 

The wave function for the level En = E F' + AE,, shifted by 
U can be represented by the following expansion8 that is 
valid in the overlap region (2): 
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Multiplying the Schrodinger equation 

by Y,* and !P:)*, respectively, and subtracting one from the 
other term by term, we obtain the following result after inte- 
gration over all space with the exception of a sphere of radius 
d (r, (d(Lf, k - ') near the origin: 

1 
AE,, J Y:""Y,, dv = - (Y:")' BY.-Y.' ~ Y . ' ~ ' ) d s ,  

r>d 
2 

r-d 

( 6 )  

where the phases of the wave functions are chosen so that the 
ratio YjP)/!?, is real, so that the terms including E and Vf 
cancel out. For 

B,-I (E")  CL;'+', B , - ~  (E,) c (-E,) -L-''r (7) 

and for values of AE,, much smaller than the separation 
between neighboring levels in Vf, we may put Pn y, Y f), out- 
side the overlap region, in which case 1 Ifm'= R Ifm). Replac- 
ing the integral on the left-hand side of (6) by unity, and 
transforming the right-hand side with allowance for (4), ( 5 ) ,  
and the orthogonality of the spherical harmonics, we obtain 
the explicit expression 

for the level shift [see below about the replacement of En in 
B, (En ) with E :)I. 

The conditions given by (7) are the restrictions on the 
potential U(r) and are definitely satisfied in the nonresonant 
situation when 8, (E )(1 for all E(r; 2. We can then restrict 
our attention to the first term in the expansion (3)  for B, , and 
(8) assumes the form 

so that, since a, 5 rf' + ', only the I = 0 term is in general 
important for an arbitrary interaction Vf (r) in (9). We then 
have IR jpO' 1 = 474 !P y(0) 1 2, and (9) becomes identical with 
the usual r e ~ u l t . ~ ~ ' ~  When the Hamiltonian is axially sym- 
metric, the leading term in the expression for the level shift 
with angular momentum component m is the term with 
I = (ml--p: 

( 0 )  En,--En, = (2p+1) ! I Znm(0)  1' a,, (10) 

where z,, (0) is related to the wave function of the unper- 
turbed level, whose form for p-4 is 

Y ,'2 -pwZ,, ( z )  eimm/ (2n) Ih ,  

andp is the distance from the symmetry axis lying along thez 

direction. If, on the other hand, the interaction is centrally 
symmetric, the sums in (4) and (9) reduce to a single term 
corresponding to the angular momentum 1 of the level, and 
neither the shift nor R ','"I will, of course, depend on m. 

We note that the formula given by perturbation theory 
in the scattering length, i.e., (9), can be formally deduced 
with the aid of a device similar to that employed in Ref. 11 to 
find the ground-state energy of a degenerate and almost per- 
fect gas. In particular, according to the usual perturbation 
theory in the potential, 

AE.= U ( r )  I Y'O I ' dv; 

and, using the asymptotic behavior (4) to evaluate the inte- 
gral, we can express the level shift in terms of the scattering 
length in the Born approximation: 

rn 

a,'=2[ (2L+1)!!]-2 5 U(r)r2'+' dr. 
0 

Replacement of these lengths with the exact scattering 
lengths in the short-range potential U results in (9). Subse- 
quent substitution a,-+[a, ' - r , ~ , ] - '  gives (8). 

The conditions (7) can be violated only in the resonant 
case, when the potential U contains a shallow level with an- 
gular momentum 1 and energy E P)(r,- 2.  For I = 0, the re- 
strictions (7) signify that the potential U contains only s- 
levels with energy of the order of E f). In the expression for 
B,, we can then neglect the term for the effective range and 
the conditions (7) demand that a,(Lf, and ( - E'~ ' )- ' '~ .  If, 
on the other hand, the short-range potential contains an s- 
level with energy of the order of E :I, the spectrum is modi- 
fied. The particular feature of this modification is that, when 
U and Vf operate together, the spectrum may differ substan- 
tially from the spectra corresponding to these potentials tak- 
en separately. 

A totally different situation prevails for angular mo- 
menta I> 1. In this case, conditions (7) can be violated only if 
the potential U contains a level E jP)=: (a, r, )- ', anomalously 
close to E f), so that 

1 r l  ( E , ( ' ) - E ~ )  ) 1 GL,-"-', (-E;) ) I+'". 

The spectrum in the field Vf + U consists of slightly shifted 
levels obtained in the potentials Vf and U individually, and 
the modification of the spectrum reduces to the quasicross- 
ing of levels. This is due to the presence of a relatively impen- 
etrable centripetal barrier that ensures practically indepen- 
dent motion of a particle in the short- and long-range wells. 

The replacement ofE, with E in B, in (8) relies on the 
assumption that the level shift is such that IAE, I (lE',O) 
- E )'"I. On the other hand, when this replacement is not 
introduced, (8) remains the equation for the level shift, the 
solution of which is 

LIE,!;' G ~ / , { ~ E , ! ~ )  +aK,& [ (6~: ;  -a,,) 2+pL,]"2) (1 1) 

and describes the quasicrossing of levels, where 

6~::)  =E:" +Vf (0) -Ed;, 
( w x ,  

a,='/2[(2p+1)!!]21R,, )'a,, (12) 
p L m = 2 [ ( 2 L + 1 ) ! ! ] 2 1 ~ ! , ~ '  121rLI-I. 
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Equation (1  1) is written for the axially symmetric Ha- 
miltonian. It includes the contribution of the two most im- 
portant waves, namely, the nonresonant wave with the low- 
est possible angular momentum I = p ( I  = 0 in the absence of 
symmetry) and the resonant wave with angular momentum 
L > p  (for central symmetry and for L = p> 1, we must put 
a,, = 0). The appearance of Vf(0) in (12) corresponds to 
allowance for the action of the field Vf (r) for r 5 rc , which 
leads to the renormalization of the scattering length. When 
Vf ( r ) ~  Vf (0) for r 5 rc , the renormalization is equivalent to 
the replacement 

al-'-+al-'+rlVf ( 0 )  , (13) 

which reflects the shift of the unperturbed level in U by 
Vf (0): 

Equation (I  1) describes the quasicrossing of levels, and 
is valid for AE,, , much smaller than the separation between 
levels in Vf. As the detuning from resonance increases, both 
this condition and (7) are violated for one of the roots: AE 
for SE 0 or AE for SE < 0. However, the root that 
corresponds to the level in the short-range potential becomes 
identical with (14) well away from resonance. Under the 
same conditions, the other root describes the shift of the level 
E in the potential Vf under the influence of U, and repro- 
duces (8) if we confine our attention in this expression to the 
partial waves indicated above, and introduce the level-shift 
correction Vf (0). 

Equation (1 1) is thus seen to describe the spectrum for 
practically all the values of the parameters of the short-range 
potential. We note that the width of the region in which level 
quasicrossing occurs decreases rapidly with increasing an- 
gular momentum 2, and for large detuning from resonance 
for which SE ?A -E ',"A, the relative contribution to the level 
shift due to partial waves with I = p and I = L > p  is of the 
order of a,, SE ?A /PL, cc r ,  2'L -,- " , so that the contri- 
bution of the resonant wave is substantial only for 
L = p + l .  

In view of the foregoing, we must now introduce a re- 
mark about the relationship between binding energy in the 
initial level and its shift when it is the uppermost level and 
lies anomalously close to the continuous-spectrum limit. In 
this situation, the way in which the wave function decreases 
at large distances as the binding energy tends to zero is an 
important factor. If the wave function remains normalized 
at the edge of the continuum, the above result will also be 
valid for states with binding energy as small as desired. This 
is accomplished, for example, in a central potential Vf (r )  of 
finite range for states with angular momentum I> I: Y jp!:=, 
ocr -  1 -' as r-+co. 

The case where the wave function is delocalized as the 
binding energy tends to zero (states with n = 0 in a central 
potential, Landau levels in a magnetic field, and so on) re- 
quires separate analysis. The relation Yn =. Y :) used above 
outside the overlap region will definitely break down at large 
distances for a small change in the energy. However, if the 
function remains normalized at the edge of the continuum, 

such distances become unimportant. For a delocalized wave 
function, large distances provide an important contribution 
to the normalizing integral, and we can no longer assume 
that Yn =. Y r). 

Let us generalize the above results to this case. We shall 
not assume that a shallow level in the field Vf(r) is a true 
bound state (it may be a virtual or quasidiscrete state). Sup- 
pose that Yn (r, En ) is the wave function of a true bound state 
with energy En = En (B, ), normalized to unity and resulting 
from the combined action of Ef and U, whereas Yn (r, En 
+ 6En ) is the wave function of this state for small change SU 

in the short-range potential for which B , '-B , ' + SB ; '. 
These functions have a form analogous to (5) in the region (2), 
whereas, in the essential part of the region in which the field 
acts, they have the same functional dependence on r as the 
function 3/(O)(r, E,) of a level in the potential vf = Vf + S Vf 
for zero binding energy: 

where E, is the continuous-spectrum limit and the specific 
form of SVf is unimportant. Writing down the Schrodinger 
equation for the functions Yn , and preceeding as in the deri- 
vation of (6), we find that 

The relationship between R jfm) and 9;) is the same as 
between R jfml and Y ?]in (4). We note that IN (En )R ;")I2 does 
not depend on the normalization of P',O1(r, E,). 

To use (1 5) to obtain the expression for the level shift, we 
must know the dependence ofthe normalizing factorN (E ) on 
the binding energy E = E, - En = x2/2. In particular, when 
the function Y ',0) with zero binding energy is normalizable, 
we have N2=. 1 and integration of (15) leads to (8), which 
demonstrates its validity in a wider range: (8) is valid even for 
energies exceeding E, and describing quasidiscrete levels 
(the determination of their widths requires separate analy- 
sis). In particular, in the nonresonant case, it is clear from 
(10) that the initial real level becomes quasidiscrete at 
(2p + l)!lZn,(0)12ap >E, - EfA. 

Delocalization of the function Y f' means that N (E ) be- 
comes strongly dependent on thebinding energy: N (E )A as 
x 4 .  Usually, N (En ) -- ~ ( ~ ' x " ~ ,  in which case integration of 
(15) yields 

For x, > 0, the parameter x, determines the binding energy 
E, = xi/2 of the original real level in the field Vf. When 
x, < 0, ( - E,) is the energy of the virtual level. Similarly, 
when the potential U is present, (16) gives the energy of a 
level that is real for x > 0 and virtual for x < 0. When the shift 
is much less than the binding energy, (16) becomes identical 
with (8), in which case, we must remember that R Em) 
- ~ ( o l ~ , ' / 2 ~  - (1,) . On the other hand, when the binding ener- 
gy is low, these formulas describe different laws of variation 
of the position of the level under the influence of U, depend- 
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ing on the localization of the wave function at the continuum 
limit. This corresponds to the well-known laws whereby lev- 
els become depressed under the influence of a perturbation 
SU<O: the variation in a central potential is quadratic for 
I = 0  and linear for I> 1. 

The above dependence of the normalizing factor 
N W X ' / ~  for a wave function that becomes delocalized as 
x-0 is usually preserved for values of x  satisfying the condi- 
tion xrf ( 1 ,  where rf is the range of the field V f .  This is so 
because contributions to the normalizing integral from the 
region in which the potential Vf is localized and from the 
"external" region are - I !P ( 1 )  1 2rj  and - 1 !P (2)  1 'Gx- ' ,  re- 
spectively, where !P (1,2) are the characteristic values of the 
function in the region of localization of the potential and just 
outside the region in which it operates. Generally speaking, 
I  P - I !P (2)  1 2 . .  However, when Vf takes the form of a po- 
tential well surrounded by a relatively impenetrable barrier, 
we have I IV (2)  1 - D I !P ( 1 )  / 2 ,  where D( 1 is the barrier trans- 
mission. It then turns out that, even for small values of x,  the 
contribution to the normalizing integral due to the "exter- 
nal" region becomes unimportant, and N ( E )  ceases to de- 
pend on the binding energy. Let us now consider the effect of 
the short-range center on the shift of a level with angular 
momentum 1 = 0  when Vf = V (Ir-b I )  is the central potential. 
Suppose that the wave function 

with I = 0  and zero binding energy in the potential V ( r )  is 
normalized by the condition rR f1(r)-l as r-w . We then 
have 

The effective range in the field V is then given by12 

where Lo and L define the walls of the barrier surrounding 
the well (see Ref. 12 for further details). For a barrier with a 
low transmission factor, the termpox in (17) becomes impor- 
tant. Integrating (15) with N Z ( E )  as given by (17), we obtain 

which describes the change in the level energy in the poten- 
tial Vf under the influence of the central potential U. When 
p+( 1 ,  ( 1  8) becomes identical with (16) and, forp,+, 1 ,  with 
(8) .  It generalizes the results reported in Ref. 12 to the case of 
an arbitrary short-range potential. When b  = 0,  the right- 
hand side of ( 1  8) assumes the form - I R r ) ( O )  1 2ao, in the non- 
resonant case, and the final result follows from Eqs. (12) and 
(13) of Ref. 12 if we use the above chain of replacements: 
OD 

1 J ~ u [ R : "  ( r )  1'9 dr -r -[RiO' 
1 

2 
( 0 )  ]'aoB - _[A:.' ( 0 )  12a.. 

0 

(19) 
The coefficients R jf") in (4), which appear in (8)-(11) and 

(16), can be found by direct differentation of the wave func- 

tion of the unperturbed level, using the formula 

(the coefficients R I fm) can be expressed in terms of in a 
similar way). In these expressions, the differential operator 
Y,, (V)  is obtained by replacing ni with /ax in the spherical 
harmonic 

Y l ,  (n)  = E { .  . . k(l,  m) ni . . . n k ,  

where E~ . . . is a tensor of rank I and zero trace, which is 
symmetric in any pair of indices. The derivation of (20) is 
based on 

~ [ f , ,  ( V ) r l Y l , ( n ) = [  ( 2 1 f 1 )  ! ! / 4 ~ t ] 6 ~ ~ ~ 6 ~ ~ ~ .  (21) 

On the other hand, when Vf = V ( ( r -b  I )  is a central potential, 
the coefficients R I fm) corresponding to the leading partial 
waves can be expressed directly in terms of the radial wave 
functions of these states 

( 0 )  ( 0 )  
Y n l m  =rlRn[ ( r )  YlnL (n) 

in the potential V(r ) :  

~ ; ; ; ) = ~ l - v  [ 21+1 ---I ( l + p ) !  '" bl-~R'I'  ( b )  . 
( 2 p + l )  ! ( I -p)  ! 

(22) 

In deriving these formulas, we used the relationship between 
the polar angles p and 9- at the point r  relative to the centers 
r  = 0  and r  = b,  and the explicit form of the spherical har- 
m o n i c ~ . ~  

We must now consider some applications of the forego- 
ing approach to specific physical problems. 

3. PARTICLE IN THE FIELD OF THE TWO SHORT-RANGE 
CENTERS U(r) and V,(r) = V(lr - bl) 

The wave function of a bound state in the potential V (r)  
with a finite range rf has the following form outside the 
range of forces: 

~ , !y ! , , ( r )  =2x0CKl (nr)-"2KL+l,J (%or) Y l m  (n), (23) 

where K ,  is a modified Bessel function of imaginary argu- 
ment, E 2) = - x: /2  is the level energy, C,, is the asympto- 
tic coefficient which for weakly bound states is given by 
[xorf ( 1 ;  p, is the effective range in the potential V (r)]  

The approach described in the last section can be used 
as a basis for discussing various problems connected with the 
influence of the central field Uon the spectrum in the field Vf 
for b)r,. r f .  Here, we shall confine our attention to a few 
remarks. 

The shift of a level with angular-momentum projection 
m is given according to (8),  (22), and (23), when Uis a nonre- 
sonant interaction for angular momenta I ' >p- (m I, by the 
following expression: 
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This formula is valid for states with m  = 0  provided 
a,(b, x; '. When the latter conditions are satisfied, formula 
(24) becomes identical with formula (9) of perturbation the- 
ory in the scattering length. However, as noted above, for 
I = 0  and anomalously low binding energies, for which the 
condition AE, 4%; is violated, the above formula is no long- 
er valid. We then have x,b( 1, and the level shift is given by 
(16):x = x ,  -a,b -'. 

When m#O, and if the potential U does not contain 
shallow levels with angular momentum I '  = p  and energy 
Er'(r: ', the formula (24) again becomes identical with the 
formula obtained by perturbation theory in the scattering 
length. However, it is also valid even when such levels are 
present. We then have 

and (24) with r, < 0  leads to the following property of the 
level shift in the potential Vf under the influence of the cen- 
ter of force: the signs of the level shifts AE,,, are uniquely 
determined by the relative disposition of unshifted levels E 2) 
and EF), so that AE,,, > 0  for E 5 > E;), and vice versa. 

As noted in Section 2, the presence of a level with energy 
E f)- E 2' in the potential U has an important effect on the 
shift of a level not only with Iml = L, but also with 
Im 1 = L - 1. In particular, using the above formulas and 
confining ourselves to the case x,b(l, we find that 
(L = p  + 1) 

This indicates a limited validity of the zero-range approxi- 
mation of the short-range center when it contains a shallow 
p-level (this restriction does not arise, generally speaking, for 
angular momenta L 22. 

In the region of the level crossing, the level shifts are 
determined by (1 1) and (12). In particular, when the initial 
level in the potential Vcorresponds to 1 = 0, the coefficients 
a,, andp,, in (12) are given by (L> 1) 

(26) 
[to obtainp, , from (4) and (12) we used the addition theorem 
for cylinder functions with index u = 1/2. 

4. PARTICLE IN THE COULOMB V,(r) = V,(lr - bl) 
= - (1r - bl-' AND A SHORT-RANGE U(r) CENTER 

In the Coulomb problem E - x2/2 = - { '/2n2 
and the condition xr, ( 1 assumes the form rc (nu,, where 
a, = f - ' is the Bohr radius (when rc is of the order of the 

atomic dimensions, the above approach is valid only for 
highly excited states). We shall now confine our attention 
mostly to the case1 where b>r,. The condition { Ib(r; ', is 
then definitely satisfied, i.e., we can neglect the Coulomb 
potential in the region of the U (r) center. 

The specific feature of this problem is random degener- 
acy in the Coulomb potential. For generality, let us consider 
the case where the potential V,(r) is distorted at short dis- 
tances, so that the random degeneracy is lifted. We then have 

and the Coulomb wave functions (r - b), remain the 
eigenfunctions in the zero-order approximation. The shifts 
AE,,, of these levels under the influence of the short-range 
center can be determined directly from the formulas of Sec- 
tion 2 on the assumption that AE,, (SE,, . 

Let us now consider the case AEnlm 2 SE,, . This gives 
rise to "mixing" of states with different I and the same n and 
m. The perturbation matrix has the form 

where I and I ' label the angular momentum and run through 
thevalues I, I '  = p,p  + 1, . . . , n - 1 ; p ~ I m I .  The first term 
in (27) represents the perturbation that lifts the random de- 
generacy in the absence of the center U, and U t m )  is the 
perturbation matrix associated with this short-range poten- 
tial. The explicit form of U tm)can readily be found by taking 
into accout the short-range potential by the method noted 
above in connection with Eqs. (9) and (19) and based on con- 
sidering the action of the potential as a perturbation, fol- 
lowed by the replacement of the Born phases with the exact 
phases: 

where the quantities R are related to the Coulomb wave 
function by the expansion (4). 

The level shifts are determined, as usual, by diagonaliz- 
ing the perturbation matrix. If we neglect the first term in 
(27), and confine our attention in the sum (28) to the contri- 
bution of the first most significant two lowest partial waves, 
this diagonalization process yields 

* ( 0 )  ( n m )  ( n m )  (nm) 
En,, -En = l / 2  ( g ,  +g;+t ) f l / 2  { ( g ,  -g:+n:' ) 

where 

and the quantities R are expressed directly in terms of the 
radial Coulomb wave functions R $'(b ) in accordance with 
(22). According to (29), the random degeneracy is partially 
lifted: given n and m,  only two states experience level shifts 
(one at Im 1 = n - 1). The states that are unshifted under the 
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influence of U correspond to those combinations of the un- 
perturbed functions Y 2,,, (r-b) which, near r = 0, do not con- 
tain partial waves with angular momenta j =p  and 
j = p + 1. Thus, the initial n2-fold degenerate level splits 
into 2n components at n>3, and three components at n = 2 
(further lifting of degeneracy occurs when higher-order par- 
tial waves are taken into account). 

The expression (29) becomes much simpler when U does 
not contain a shallow level with angular momentum 
j = p + 1: terms containing B ,-2, can be discarded. If, in 
addition, there are no shallow levels with j = p ,  we can con- 
fine our attention to the term involving the scattering length 
a, in B ;  '. For states with m = 0, we then obtain the well- 
known result of the perturbation theory in the scattering 
length." 

The approach to the analysis of level quasicrossing, pre- 
sented in Section 2, can be generalized to the problem with 
randon degeneracy. If we take into account only the interac- 
tion in the resonant wave with L #O (this is definitely valid 
for states with (m / = L ), the level shifts in the region of qua- 
sicrossing of the Coulomb (E ?') and ionic E ?) - { / b  terms 
are given by 

n-t 

+ 2 1 r L l - ' [ ( 2 ~ + 1 ) ! ! ] 2 ~ ~ ~ : ~ ~ ' 1 2 ] ' 6 } .  (30) 

where E is the level energy in the isolated potential U, and 
- g / b  = Vf(0) is its shift under the influence of Vf (r). Quasi- 
crossing regions correspond to BPI. We note that, in this 
particular approximation, the remaining n - I m 1 - 1 states 
with Im 1 <L and the states with Im 1 > L remain unshifted. 

We now introduce a few remarks about the Coulomb 
problem with a short-range potential in connection with the 
theory of hadronic atoms. In accordance with the gen- 
eral analysis given in Section 2, the spectrum of states with 
I> 1 in the potential V, (r) + U (r) consists of slightly distort- 
ed (on their own scale) levels in the nuclear and Coulomb 
potentials. Outside the narrow quasicrossing region, the 
shifts of the Coulomb nl-levels are given by the following 
expression in accordance with (8): 

where a, and r, are replaced with the Coulomb-nuclear scat- 
tering length aj'") and the effective range rj'"), respectively, 
which corresponds to the inclusion of the Coulomb interac- 
tion at short distances. The position of the shallow nuclear 
level can be found from the usual perturbation theory in the 
potential V, : 

where X ,  (r) is the radial wave function at the instant of ap- 
pearance of the level in the strong potential (for the relation 
between a, and up), see Ref. 19). 

If we suppose that E, >[ '/n2, we have from (3 1) and (32) 

the following simple formula for the energy of the nuclear 
level in terms of the shift of the Coulomb level: 

In particular, for kaonic helium K - 4He, assuming that 
AE, = 43 eV, TZp = 0, r, = 47,5, g = 1,53 fm-' 
(E, = g = 92,8 keV), we find from (33) that the binding 
energy of the nuclear state is E, ~ 0 , 7 9  MeV. This result 
agrees with the value E, = 0,74 MeV to within the limits of 
precision of the theory developed in Refs. 18 and 19. The 
latter result was obtained by numerical methods in Ref. 20. 

We note that ifE, - (rc /a, ) ' I-  '6 ', i.e., the nuclear level 
is anomalously close (on the Coulomb scale) to the contin- 
uum limit,Eq. (3 1) ceases to be valid for highly-excited Cou- 
lomb states. These states experience a rearrangement similar 
to the rearrangement ofs-states in the case where the nuclear 
level energy is of the order of the Coulomb energy. 

5. ELECTRON IN A UNIFORM MAGNETIC FIELD IN THE 
PRESENCE OF A CENTER OF FORCE 

We can now use (16) to determine the shift of Landau 
levels 

which are virtual levels with zero binding energy x,  = 0 
(against the background of the continuous spectrum for 
N >  0) and correspond to the limit of the continuum E,. The 
function@(,O)(r, E') must be understood as the wave function 
for transverse motion8 

where p = lm 1, n = N - (,u + m ) / 2  is the radial quantum 
number (n = 0, 1, . . . ), p = (h ) l l ' r  sing, and the function 
Yn (r, En ) corresponds to 

YNm (r, ENn,)  = ~ . " ~ e - ~ l ~ l ~  N~ ( O )  ( r ) ,  rBrer 

so that N"' = 1. When rc (Lf = w-'12 and ~ ( ( w r f ) - ' ,  the 
formula given by (16) yields 

In the expression for B, (E ), we have introduced the replace- 
ment E+E - mu, corresponding to the inclusion of the 
term 01, in the Hamiltonian at short distances r 5 rc (formal- 
ly, this is a renormalization of the scattering length in the 
first order in H; the relative size of the second-order effects is 
-we). In accordance with (4), the coefficients R $7 are de- 
termined by the expansion of @EL for r ( ~ - " ~ .  They are 
nonzero only for values of I with the same parity, I = p + 2k, 
k = 0, 1, 2, - . . . In particular, 
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We now supplement the results reported in Refs. 21-25 
and 6 with a number of remarks about the spectrum of weak- 
ly-bound states in the above problem. The Landau level 
shifts are described, in general, by the simple expression 

(2p+I) ! (p+n) ! 
AE,,--~{ (p!) 'n!  

For xNm > 0 and n> 1, their widths associated with transi- 
tions to Landau levels with lower values of n are 

and are calculated from the imaginary part of the level shift 
in second-order perturbation theory, using the transition 
matrix element 

N'mk ( p m ) * R f z ) B p - l  
U,,, =- (P+ ' /~)  (x/2n)'"RN-, (38) 

[see the discussion in connection with (28)]. 
From (36) and (37), we have 

which reflects the general property of the energy spectrum 
Em - mw = E -, + mw in an arbitrary axially symmetric 
potential U @ ,  z) in the presence of a uniform magnetic field, 
directed along the z axis, for states with opposite values of 
the projections of the angular momentum onto this axis. 

When the potential U does not contain a shallow level 
with I = p ,  we can discard the term containing the range in 
(36) and (37), and the resulting expression obtained from per- 
turbation theory in the scattering length is found to agree 
with that given in Refs. 6 and 25. Equation (34) enables us to 
take into account the effect of the higher-order partial waves 
on the level shift. Confining our attention to the case m = 0, 
and using (34) and (35), we obtain 

(39) 
Let us now examine the case where the potential Ucon- 

tains a shallow level. If its angular momentum is I = 0 and 
rc ( - a,(w-1'2, the shifts and widths of the low-lying lev- 
els with N(Eo/w in the presence of this virtual state are, as 
before, described by the perturbation theory formulas (36) 
and (37) forp = 0, and the effect of the center on the higher- 
lying Landau levels requires separate examination. If the en- 
ergy of the level (virtual or real) is Eo-w, a substantial rear- 
rangement of the spectrum, investigated in Refs. 22 and 24, 
takes place: the level shifts and widths are comparable with 
the widths of the Landau bands. If, on the other hand, the 
level in the potential U is real and IEol >w, it is well-known 
that the level will be slightly shifted by the magnetic field22 
and the Landau levels will become low-energy virtual levels. 

A totally different situation arises in the spectrum when 
the level angular momentum I is nonzero. We note the parti- 
cular features of the spectrum of states with given angular 
momentum projection m. 

1. The unperturbed level E ' O '  corresponds to "well" 

states (i.e., states localized in the region r S r c ) ,  and the 
change in the energy of these states under the influence of the 
magnetic field is largely determined by the paramagnetic 
shift: 

~ ~ ~ = E ~ ( ~ ) + m o ,  I mJ dl.  

The change in the width of these levels as compared 
with the width TI, z2[2Elm]'+ "*/lr, I of the particle state 
with energy Elm > 0 in the potential Uunder the influence of 
the magnetic field will be more substantial. When 
El, < (m + Im I + l)w, such states are truly bound (if the ini- 
tial level is real, all the "well" states with different m remain 
bound; if, on the other hand, the initial level is quasistation- 
ary, application of the magnetic field may result in stabiliza- 
tion of the states, beginning with a certain value of Im I). The 
expression for the width of the "well" state with m = +_ I is 

where the sum is evaluated over all the n for which E$) 
<El,, (when the magnetic field is turned off, i.e., w-0, 
this expression becomes identical with the expression for the 
width of the unperturbed level). 

2) The presence of a shallow level with I #O in the poten- 
tial U has an important effect only on the Landau levels with 
Iml = I. These levels now correspond to bound states (or, 
more precisely, quasibound states for n >  1) only for values of 
N for which E g) <Elm. Their shifts and widths are then de- 
scribed by (36) and (37), as before. Higher-lying Landau lev- 
els with E ;' > Elm become virtual levels [in (34) for xNm < 01. 
In particular, when an isolated level E f" < 0 is real, all Lan- 
dau levels with Im 1 = I become virtual. 

As far as Landau levels with I m I + I  are concerned, they 
are almost insensitive to the presence of a shallow level with 
angular momentum I, and their shift is largely determined by 
the scattering length a,. 

The picture described above must be modified some- 
what when El, is anomalously close to the energy E ;) of the 
unperturbed Landau level. We then have a quasicrossing of 
the Landau and "well" levels, which can be investigated 
with the aid of (34) if we neglect transitions to lower-lying 
Landau levels. Proceeding as in the derivation of (1 I), we 
obtain, for example, for m = + I 

where 
(0 ) 

AE,,=E,,-E;~', 6 ~ 2 )  =E,@),*Z~-E,+ . 
It is clear from (41) that quasicrossing regions corre- 

spond to the following detuning from resonance: 

16~2:) ( G o  (or:) (2f-')'3-y. 

When y( ISE(2, I (w and SE '2, > 0, one of the roots E, 
leads to the results for the shift and width of the "well" level 
mentioned above, while the other gives the shift of the quasi- 
bound Landau level (in the approximation under considera- 
tion, this level does not have a width). When 6E'2,  < 0, one 
of the roots of (41) corresponds to a virtual Landau level and 
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the other to a "well" level (for Im 1 # I ,  the character of the 
Landau level-whether quasibound or virtual--does not 
change as a result of quasicrossing). It is clear from (40) and 
(41) that the width of the "well" state under the conditions of 
quasicrossing is very sensitive to the detuning from reso- 
nance. 

We note that, in the case of a very weak magnetic field, 
the Landau levels lying within the width of the "well" state 
r,, 2 w undergo a substantial rearrangement. 

The authors are greatly indebted to V. S. Popov for use- 
ful discussions. 
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