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The effect of a nonuniform magnetic field on the rate of production of fermion pairs by a constant 
electric field is investigated. It is shown that, in quantum electrodynamics, the stimulation of 
e+e- pair production by a strong magnetic field is an essentially topological effect that is deter- 
mined by the magnetic-field flux. The effect of a longitudinal magnetic field on the Zener current 
in the two-band model of tunnel phenomena in semiconductors is examined. The effect of boun- 
daries on the probability of pair production by an electric field is discussed. 

It is known that a constant electric field E gives rise to 
the production of charge pairs by tunneling. In the single- 
loop approximation, the mean number of particles created 
by the field in a state with momentum p and a given spin 
component is independent of the particle spin and is given by 
(see, for example, Ref. 1) 

where m is the particle mass, e is the modulus of its charge, 
and p, is the particle momentum in the plane perpendicular 
to the direction of the electric field. 

The situation changes radically when a magnetic field is 
applied.2.3 As noted in Ref. 3, a uniform constant magnetic 
field H parallel to E gives rise to the production of bosons 
and to the enhancement of the production of fermions. In 
this paper, we shall discuss the physical reason for this peh- 
nomenon and will show that the stimulation of fermion pro- 
duction by a magnetic field is due to the supersymmetry of 
the problem, and is of topological origin in the limit of strong 
fields HSE. This will enable us to obtain simple analytic 
expressions for the rate of production of e+e- pairs by uni- 
form electric fields for a sufficiently wide class of nonuni- 
form magnetic fields H (x, y). 

The recently published general results on the spectrum 
of a two-dimensional electron in a nonuniform magnetic 
field4-6 will be the starting point for our analysis. It was 
shown in Refs. 4-6 that, both for fields with a finite flux4 and 
for infinite magnetic the number (density) of zero 
modes of the Pauli Hamiltonian (ground-state degeneracy) 
does not reflect the local symmetry properties of the magnet- 
ic field but is due to its global characteristic, namely, its flux. 

Let us consider pair production by an electric field (ly- 
ing along the z axis) in the presence of a nonuniform magnet- 
ic field H (x, y) parallel to it. The quantity p: in (1) is an eigen- 
value of the two-dimensional Laplace operator - A  (,, 

= a + a:. When the magnetic field is present, this opera- 
tor must be replaced by the two-dimensional "Hamiltonian" 
as follows: 

for scalar bosons 

-A,= (8,-ieA, (I, y )  ) 'f (8,-ieA, (I, y ) ) ' ;  (2) 

for spin 4 fermions 
-A,={d,-ieA, (x, y )  )2+{d,-ieA, (x, y )  ]'+03eZi (x, y) , (3) 

where A is the vector potential, H =Hz (x,y) 
= d,A, - d,  A, and a, is a Pauli matrix. 

For weak fields, E(E, = m2/e we may consider the 
rate of production of charged-particle pairs by the field: 
I = 2 ImTeff  (YeR is the effective Lagrangian, Im TeR 
(Re Yeff), which is readily derived from ( I )  by integrating 
over the momenta1 

eE 
I=-exp -- nh (HI 

2n ( ",) ~ v ~ ~ e x p [ - ~ ] ,  ( A )  (4) 

where {il ) is the set of eigenvalues of the operators given by 
(2) and (3), and ~ ( i l  ) is the degree of degeneracy of the spec- 
trum. 

We note that, in the limit of strong magnetic fields 
H)E, the principal contribution to the sum in (4) is due to 
terms with minimumil. Since I is an exponential function of 
A, we shall be interested in the case where the ground state is 
separated by a gap from excited states. This will probably 
occur for magnetic fields of constant sign and infinite flux 
[this question was examined in Ref. 5 for fields of the form 
H (x, y) = Ho + h (x, y), where Ho is a uniform field and 
h (x, y) is a doubly periodic magnetic field]. 

Let us being by considering the simple case of a uniform 
magnetic field (H = const) for which the spectrum of the 
operators (2) and (3) is known exactly (Landau spectrum): 

h : ' = e ~ ( 2 n + l ) ,  h k O ' = e ~  ( 2 n + 1 + ~ )  (5) 

fp = & 1, n = 0, I,...). Each "energy" level characterized 
by a particular (n, p )  is in addition infinitely degenerate: 
Y(H) = eH / 2 ~ .  The simple form of (5) enables us to find the 
explicit form of the pair-production rate as a function of the 
magnetic field.233 

The question is: what is the physical reason for the sup- 
pression of the boson-production probability by a magnetic 
field and of the enhancement of fermion production? It is 
readily seen that when the magnetic field is applied, all low- 
momentum states that make the principal contribution to (4) 
in the absence of quantization ofp, have "condensed" in the 
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momentum plane on the n = 0 orbit having a major radius 
pH = (eH ) ' I 2 .  Boson pair production for H)E is therefore 
additionally suppressedby thesmalifactor(H /E ) exp( - H / 
E). On the contrary, for fermions, condensation of states 
from a circle of radiusp, takes place to the zero-energy level 
(N = 0, ,u = - I),  and the rate of fermion production is in- 
creased by a factor of H /E (because of the high degree of 
degeneracy v(H ). 

Thus, stimulation by a magnetic field of e+e- pair pro- 
duction is due to the zero modes of the operator A,. It has 
recently been that this operator AF/2m is identical 
with the two-dimensional Pauli Hamiltonian for electrons) 
determines the N = 2 (N is the number of supercharges) su- 
persymmetric quantum  mechanic^.^ Hence, according to 
the general properties of supersymmetric theor ie~ ,~  all levels 
with A, > 0 turn out to be doubly degenerate in this case, and 
the existence of zero modes and the degree of their degener- 
acy are determined by the global characteristics of the field. 

For the two-dimensional Pauli Hamiltonian in flat 
space, this characteristic is the magnetic field flux. The exis- 
tence of zero modes ofA, is closely related to the supersym- 
metry of the Dirac particle (normal magnetic moment of the 
Pauli Hamiltonian), and their degree of degeneracy 

turns out to be the same for both the uniform field Ho and the 
nonuniform field H (x, y) = Ho + h (x, y) if (x, y) does not al- 
ter the total f l u ~ . ~ , ~  

Hence, the enhancement, linear in the magnetic field H, 
of fermion pair production is of "topological" origin (it is 
independent of the local symmetry properties of the field) 
and applies to a wide class of nonuniform magnetic fields. In 
particular, in fields H (x, y) having the same flux density as 
the effective uniform field Ho, the rate of production offer- 
mion pairs by the electric fields E for Ho$E is 

We note that fermions produced by the electric field at 
the rate given by (7) are completely polarized. This is also a 
rigorous consequence of the supersymmetry of the "Hamil- 
tonian" (3).  In fact, all states with A, > 0 are doubly degener- 
ate in spin, and the zero modes do not have a superpartner 
and correspond to one direction of polarization, i.e., the di- 
rection of the magnetic field. 

Thus, enhancement of fermion pair production by a 
strong magnetic field Ho)E is due entirely to the flux-a 
global characteristic of the two-dimensional magnetic field. 
However, according to Maxwell's equation, this particular 
magnetic-field configuration H, = Hy = 0, Hz = H (x, y) 
can exist only when there are local currents J - curl H. On 
the other hand, when we solve the problem, we implicitly 
assume the existence of a nonuniform magnetic field Hz (x, y) 
in vacuum. We must therefore ensure the mutual consisten- 
cy of the two conditions H,, Hy (Hz (necessary to reduce 
the problem to the two-dimensional case) andj, zj,, zO. It is 
readily verified that this can be achieved for weakly nonuni- 
form fields Hz (x, y). 

The problem of the effect of a magnetic field on e+e- 
pair production by an electric field in a vacuum is quite ab- 
stract from the point of view of a laboratory experiment. It is 
more natural to look for manifestations of this effect in atom- 
ic physics and solid-state physics. 

It was noted in Ref. 9 that a strong uniform magnetic 
field leads to the saturation of ionization of atoms and nega- 
tive ions by a constant electric field. When the long-range 
Coulomb forces are ignored, the enhancement in high fields 
H k E /U (U is the velocity of the electron in the atom in units 
of the velocity of light) is linear in the field and is entirely due 
to the existence of the zero-energy level of the two-dimen- 
sional Pauli Hamiltonian. Stimulation of ionization of nega- 
tive ions by a magnetic field9 is therefore also topological in 
origin. Since the electric field producing the ionization of an 
atomic system is relatively low, the experimental verifica- 
tion of this prediction is a practical proposition. 

Another example is provided by interband (Zener) tun- 
neling in semiconductors. In narrow-gap semiconductors in 
which E, 4 W,, , , W,, , is the width of the conduction band 
and the valence band), direct quantum transitions can be 
satisfactorily described by the so-called two-band model 
(see, for example, Ref. 10) in which the spectrum of electrons 
(holes) has the Dirac shape and the quantity s = ( ~ , / 2 m * ) ' / ~  
plays the role of the velocity of light (m* is the effective band 
mass of the electron). Tunneling calculations based on this 
model are analogous, subject to slight modification, to calcu- 
lations of quantum-electrodynamic processes in strong 
fields. However, in contrast to quantum electrodynamics 
(QED), para- and diamagnetic interactions between elec- 
trons in crystals are characterized by different masses. The 
effective band mass m* and the effective spin mass m, of an 
electron are not equal and differ widely for different materi- 
als. In the two-band model, the difference between the orbi- 
tal and spin effective masses can formally be taken into ac- 
count by introducing the anomalous magnetic moment 
p = m*/m, into the integraged Dirac equation. 

Standard QED calculations of the rate of production of 
electron-hole pairs by a constant electric field (Zener cur- 
rent) in the presence of a longitudinal (HIIE) nonuniform 
magnetic field yield 

When H = 0, this expression becomes identical with the 
well-known formula for the tunneling current." In QED, we 
have p = 1, s = c, and we obtain the rate of production of 
e+e- pairs by an electric field in a vacuum in a constant 
magnetic 

In strong magnetic fields H 2 (c/s)E, 

and the effect of the longitudinal magnetic field on tunneling 
depends on the ratio of the orbital to spin effective masses. A 
different situation arises in transverse fields HIE. When tun- 
neling takes place (H < (c/s)E ), the magnetic field can be eli- 
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minated by transforming to a moving coordinate frame, the 
tunneling current is independent of m, in the first approxi- 
mation, and the magnetic field always leads to the exponen- 
tial suppression of the Zener current.'' 

Experiments on the effect of a longitudinal magnetic 
field on Zener tunneling in a number of compounds, indicate 
the presence of an exponential suppression effect. Theoreti- 
cal papers explaining this effect either ignore the interaction 
between the electron spin and the magnetic field alto- 
gether,13 or find that calculations of the spectrum of particu- 
lar compounds indicate that the contribution of the para- 
magnetic interaction between electrons is smaller than that 
of the diamagnetic interaction.' It is therefore common to 
find in the literature1'-l4 the statement that a strong longitu- 
dinal magnetic field will always produce the exponential 
suppression of the tunneling current. Here, we merely wish 
to emphasize that, in materials in which interband tunneling 
is satisfactorily described by the two-band model (see the 
discussion in Ref. 12) and m* > m, , a longitudinal magnetic 
field will produce an exponential rise in the Zener current. 

According to (8), for m* > m, and H+Hc, we have 

and even arbitrarily low electric fields will produce consider- 
able tunneling currents. This means that the semiconductor- 
metal phase transition will take place in such ultraquantum 
magnetic fields. l5 

In conclusion, let us consider the effect of boundary 
conditions on the rate of pair production by a constant elec- 
tric field. In the simplest case, when the motion is quantized 
only in the plane perpendicular to the direction of the elec- 
tric field, and boundaries define a rectangular region, the 
spectrum of the mass operator is known exactly, and the 
problem can be solved analytically. However, we shall be 
interested in only the "topological" aspect of the problem. 

We begin by considering the conditions for the confine- 
ment of particles within the boundary r surrounding a re- 
gion with characteristic linear dimension L (such conditions 
are usually imposed on particles in the "bag" model).16 It is 
physically clear that, in this case, the minimum particle mo- 
menta in the system arep, - L  -' and pair production in the 
presence of "two-dimensional confinement" will be expon- 
entially suppressed independently of the particle spin for 
eEL '41, i.e., it will be described by the factor exp( - C /  
eEL '), C -  1. The absence of zero modes of the two-dimen- 
sional Laplace operator A (,, for boundaries of arbitrary 
shape in the example that we are considering is an elemen- 
tary consequence of a theorem on the maximum and mini- 
mum of a function that is harmonic in a bounded region (see, 

for example, Ref. 17), which is well-known in complex anal- 
ysis. 

On nontrivial manifolds, the Laplace operator may ac- 
quire normalizable zero modes separated by a gap from the 
positive spectrum. (In this case, it is more natural in a phys- 
ical formulation to consider the creation of particles not by 
the electric field but by the metric.) For example, let us re- 
place the xy plane by a two-dimensional torus, and impose 
periodic (antiperiodic for fermions) boundary conditions on 
the fields. For bosons, the zero mode [reflecting the 
U (1) X U (1) symmetry ofthe problem] will then appear in the 
spectrum of A (,, , and boson production on this particular 
compact manifold will occur with a much higher rate than 
fermion production. 

The authors are indebted to D. V. Volkov, L. E. Gen- 
denshtein, V. A. Miranskii, A. I. Nikishov, and A. S. Roz- 
havski: for their interest in this research and for useful dis- 
cussions. 
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