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In double color charge exchange of an incident hadron on the various nucleons of a nucleus it is 
possible to diffractively excite a color dipole, the decay of which leads to emission of one of the 
nucleons of the target into the backward hemisphere. We have calculated the contribution of this 
mechanism to the cross section for the process pd+pBX, which turned out be very large in the 
hard part of the momentum spectrum p, 2 500 MeV/c. We have analyzed in a quantum-me- 
chanical approach the dependence of the significant longitudinal distances on the cumulative 
momentum. We discuss the predictions for production of dibaryon resonances with color separa- 
tion, elastic pd backscattering, polarization effects, and other effects. 

1. INTRODUCTION 

Study of the dynamics of the peripheral interaction of 
hadrons encounters the principal unsolved problem of quan- 
tum chromodynamics-color confinement. Nevertheless 
the ideas of QCD in this region have turned out to be ex- 
tremely fruitful and have led to the emergence of a definite 
phenomenological picture of the interaction. In hadron scat- 
tering color charge exchange occurs, and the structure, 
called color which connects the color objects that 
move apart with a large relative momentum stretches and is 
eventually broken as the result of formation in the color field 
of quark-antiquark pairs of gluons from the vacuum. The 
tube breaks up into individual colorless clusters with mass of 
the order of hadronic masses, the momentum spectrum of 
which forms a plateau on the rapidity scale. The time of 
hadronization, i.e., the process of complete breakup of the 
tube, is E/p2, where E is the energy of the incident hadron 
and p is a characteristic mass associated with the param- 
eters of the model. Since in a real experiment the detecting 
apparatus is located at macroscopic distances from the tar- 
get, only the colorless products of the hadronization process 
reach the apparatus. For direct observation of the effects of 
color forces it would be necessary to place counters at a mi- 
croscopic distance from the target, which of course is impos- 
sible. However, in the interaction of hadrons with nuclei 
there is a sequence of several nucleon targets separated from 
each other by a distance of the order of one fermi. At this 
distance the hadronization process is not yet complete (if E / 
p2>R, ) and the existence of color forces can be manifested 
in various observable effects. One of them is the emission of 
nucleons into the backward hemisphere, the so-called cumu- 
lative effectY4 in hadron-nucleus collisions at high energies, 
and the present paper is devoted to this phenomenon. 

In the second section we describe a mechanism, based 
on the action of color forces, of cumulative-nucleon produc- 
tion. The essence of the model is readily explained in terms of 
classical mechanics. In Section 3 we calculate the cross sec- 
tions for the process hd-+hp, n and the inclusive reaction 
hd+pBX, where p, is a proton emitted into the backward 

hemisphere. In Section 4 we consider the quantum-mechani- 
cal description of the present mechanism and show that in a 
certain region of the cumulative momenta p, 2 550 MeV/c 
the process occurs mainly through formation of dibaryon 
resonances with separated color. We calculate the param- 
eters of these resonances and show that they should be mani- 
fested in the form of peaks in the momentum spectrum of 
cumulative protons. In Section 5 we show that the mecha- 
nism considered gives an appreciable contribution also to 
the cross section for elastic pd backscattering. In the energy 
dependence of the cross section we expect peaks at an initial 
energy of several GeV due to dibaryon resonances with sepa- 
rated color. In Section 6 we discuss polarization effects in the 
cumulative process. In the last section we discuss proposals 
for experiments which are sensitive to the contribution of the 
mechanism under discussion. 

2. PRODUCTION AND DECAY OF A COLOR DIPOLE IN 
HADRON-DEUTERON SCATTERING. CLASSICAL 
DISCUSSION 

In Ref. 5 we proposed for the cumulative effect a mech- 
anism based on diffractive excitation of a color dipole in the 
deuteron. Below we give a classical calculation of the contri- 
bution of this mechanism with correction of several inaccu- 
racies. 

In calculation of the dynamics of the process we shall 
make use of the color-tube model.'-3 In this model it is as- 
sumed that the emission of colored objects occurs adiabati- 
cally, i.e., energetic bremsstrahlung is neglected and it is as- 
sumed that the color field carries only energy and does not 
have momentum. The tension coefficient of the tube x can be 
estimated from the spectra of hadronic masses: 
x = ( 2 ~ a k ) - ' z  1 GeV . fm-', where& is the slopeparam- 
eter of the Reggeon trajectories. In reality the effective ten- 
sion of the color tube in a hadron-hadron interaction can 
differ appreciably from this value, since in such processes 
color octets are emitted, and not color triplets, and in addi- 
tion the adiabatic approximation may turn out to be very 
crude. Below we have also used another parameter of the 
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FIG. 1. Diagram of the longitudinal coordinate2 as a function of the time t 
for the process hd +p, hn: the solid line shows the trajectories of colored 
objects and the dashed line shows the trajectories of colorless hadrons. 

model-w-the probability of formation of a quark-anti- 
quark pair from the vacuum in a color field per unit time per 
unit tube length. This quantity can be estimated either from 
the Schwinger formulaZ or from analysis of data on e+e- 
annihilati~n,~ which gives w ~2 fmp2. 

The parameter w can be estimated also from the proton 
momentum spectrum in the reaction pp+pX. In the target- 
fragmentation region the recoil proton has a momentum 
equal in order of magnitude to p ~ x r ,  where r is the time 
from the moment of color charge exchange to the first rup- 
ture of the tube. The quantity r is determined by the condi- 
tion ?w/2= 1 if it is assumed that the length of the color 
tube is IZT (this is true only for small values of r and 1-mx 
as r--+m). On the other hand the momentum p is related to 
the Feynmann variablex by the equation p = m(l - x2)/2x. 
Since the inelasticity coefficient is (x) ~ 0 . 5 ,  we have 
( p)  z 1 GeV/c. From this we find w z 2/72 z 2xZ/pZ = 2 
fmp2. 

Let us now consider the interaction of a high-energy 
hadron with a pair of nucleons, as illustrated in Fig. 1. At 
point 1 color charge exchange of the incident hadron occurs 
on the first nucleon of the deuteron, after which both are 
color charged and the nucleon with mass m begins to be 
accelerated with an acceleration x/m. We note that as the 
velocity of the colored nucleon approaches the velocity of 
light the length of the color tube stops increasing, having 
reached a value m/x z 1 fm. 

At point 2 the color-charged hadron charge-exchanges 
on the second nucleon and becomes colorless. The nucleon 
which is at point 2, after the second charge exchange, begins 
to be accelerated with an acceleration - x/m in the direc- 
tion opposite to the incident beam. It  reaches its maximum 
momentum p, at point 3, where there is a third color charge 
exchange, after which the nucleons are emitted in a colorless 
state. Generally speaking, the tube can be broken with a 
probability of the order of unity if L is large. We shall take 
into account this possibility below, and for the present we 
shall consider the pion-free process hd-+p, hn. 

The momentum p, of the nucleon emitted into the 
backward hemisphere is easily found from the condition 
Ap, = AE, = xL for the incident hadron if its momentum 
is sufficiently large: p, )m and p, ,xL, where L = z, - z,. 
From this condition it follows that 

2 (E-m)/ (2m-pL-E) =xL/m, (1) 

where E = (mZ + p i  + p$)lf2 is the energy of the cumulative 
nucleon. From this relation it is evident that with increase of 
the internucleon distance the momentum p, increases and 
approaches a kinematic limit which at 6 = 180" is 
p,""" = 3m/4. Note that the increase of the principal longi- 
tudinal distances with increase of p, is consistent with the 
principles of quantum mechanics. Large momenta p, cor- 
respond to formation of a color dipole with a large mass and 
consequently a large rms radius. Nevertheless we shall show 
in Section 4 that taking into account quantum effects can 
change the relation of the principal distances with the mo- 
mentum p,. 

3. THE REACTION hd+p,X 

The contribution of color-dipole production to the 
cross section for the reaction hd-+p, hn can be written as 
follows: 

(2) 
The cross section for color charge exchange on the first 

nucleon is 4,". The probability of color charge exchange on 
the second nucleon is suppressed by a small factor of the 
Glauber-correction type and is equal to 4,"I +hd (L ) I  'dL. 
Note that the length of the color tube is less than the distance 
between the centers of the nucleons, which is taken into ac- 
count in Eq. (2) in the argument of the deuteron wave func- 
tion L ' = L + R,, where R , ~ 0 . 5  fm is the radius of the nu- 
cleon core. 

The probability that during the entire process no quark- 
antiquark pair is produced from the vacuum is taken into 
account in Eq. (2) by the factor 

where / dldt is equal to the area of the hatched region in Fig. 
1. 

Note that for L)m/x D (L ) ~ e x p (  - wLm/x). The co- 
efficient 1/8 in Eq. (2) takes into account the relative prob- 
ability of emission of nucleons in a colorless state. Since the 
first two color charge exchanges "selected" a deuteron con- 
figuration with the nucleons at one impact distance, the 
probability of the third color charge exchange does not con- 
tain an additional smallness of the Glauber-correction type, 
but gives only a factor pa:, where a, = $/4r and the nu- 
merical coefficient fl is estimated below. 

The dependence of thr cross section (2) on the trans- 
verse component of the momentum p, of the proton emitted 
backwards is represented at small pT in Gaussian form with 
a slope B. 

In order to estimate the quantities p and B more accur- 
ately, let us consider the Feynman graphs in Fig. 2, which 
describes this process, in which the color charge exchange is 
modeled by gluon exchange. Naturally the calculation of 
such a graph cannot take into account confinement effects, 
but it is natural to assume that these effects do not influence 
the total cross section of the reaction, but only change the 
shape of the proton momentum spectrum. Therefore the 
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FIG. 2. Feynman diagram with three-gluon exchange in the process 
hd -pBhn. 

contribution of the graph in Fig. 2 to the total cross section 
for the reaction hd-hpn can be equated to the integral of the 
expression (2) (after omitting in the latter the suppression 
factor D (L )) and in this way we can find the parameters 0 
and B. 

In the Appendix we have calculated the contribution of 
the three-gluon graph, which is shown in Fig. 2, and find 
B z  13 (GeV/c)', Pz0.17. 

In Fig. 3 we have shown a calculation in accordance 
with Eq. (2) of the momentum spectrum of protons in the 
reactionpd-pB pn emitted at 180". In order to demonstrate 
the sensitivity of the results to the parameters, the calcula- 
tions were carried out for values x = 1 and 2 GeV/fm and 
iii = 2 and 3, where iii = wm2/x2 is a dimensionless param- 
eter which is convenient to introduce instead of w. In order 
to see the effect of the factor D (L ), we have plotted also the 
curve with w = 0. In the calculation we used the Hamada- 
Johnston wave f ~ n c t i o n . ~  It is evident that for a momentum 
p, z 500 MeV/c the spectrum has a maximum. To this we 
must add the contributions of other mechanisms: the specta- 
tor mechanism,' which is dominant in the region of small 
momenta, the isobar mechanism,' which is dominant at low 
energies of the incident hadron, and so forth. 

Experimental data at high energies exist so far only for 
the inclusive process pd-pB X.9 Since the process is diffrac- 
tive, the excitation of the incident hadron, which does not 
influence the shape of the spectrum of protons emitted back- 
wards, can be taken into account approximately by multiply- 
ing the expression (2) by the shower enhancement factor 

FIG. 3. Cross section for the reactionpd +p,pn calculated for various 
values of the parameters 2? and fi. 

C,, = 1 + ds/dy. For nucleons C,  1.4 and for pions 
C, =: 1.6. 

The main channel of decay of the color dipole is the 
formation of qij pairs from the vacuum, i.e., division of the 
color dipole into several dipoles of smaller mass. This cir- 
cumstance leads to a significant decrease of the cumulative 
momentum. Therefore taking into account pion production 
should not greatly change the estimate of the cross section in 
the energetic part of the cumulative-proton momentum 
spectrum (estimates made with a classical approach confirm 
this). The results of the calculation are shown in Fig. 4. In the 
region of small momenta pB 5 400 MeV/c the main contri- 
bution is evidently from the Fermi motion of the nucleons in 
the deuteron. In Fig. 4 we have shown the contribution of the 
spectator mechanism.' Also in that figure we have given the 
experimental data9 for the reaction pd-p, X obtained at an 
initial momentum 8.9 GeV/c. From the comparison it can be 
seen that the mechanism proposed here describes in order of 
magnitude the experimental data at momenta pB 2 500 
MeV/c. 

4. QUANTUM-MECHANICAL APPROACH 

The main properties of the quantum-mechanical ap- 
proach can be studied in the example of a one-dimensional 
nonrelativistic problem. In part 3 of this section the results 
are generalized to a more realistic case. 

1. Scattering of two particles. Dibaryon resonances 

We shall consider first a system of two particles, each of 
which can be found in two states-white and colored, which 
are denoted respectively as (':) and ( A ) .  The Hamiltonian of 
this system we shall write in the form 

Here p, and p2 are the particle-momentum operators 
17i = is the projection operator on the color state of ith 
particle, and V ( x )  is the confinement potential for colored 

FIG. 4. Cross section for the reaction pd + pBx: the points are the data 
from Ref. 9 atp,,, = 8.9 GeV/c; the dash-dot curve is the cross section for 
pd +pBpn calculated from Eq. (2) with 2? = 1 GeV/F and LZ = 2; the 
heavy solid line is the contribution (35) to the cross section at 6 = 180"; the 
thin solid line is for 6 = 140"; the dashed curve is the contribution of the 
spectator mechanism. 
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particles with relative distance x. Note that for a colored 
string we have V(x) = x Ix 1; ui = ( y  A )  is an operator changing 
the color state of the particle. The last term in Eq. (4) corre- 
sponds to exchange of color between particles. For simpli- 
city we shall take u(x) in the form 

The sum of the first three terms of expression (4) can be 
considered as a Hamiltonian Ho acting in two orthogonal 
subspaces: i) a system of white noninteracting particles, and 
ii) a system of colored particles interacting with a potential 
V(x, - x,). The last term in (4), which describes the color 
charge exchange, mixes these subspaces. We shall consider it 
as a perturbation. 

For scattering of two white particles we shall write the 
T matrix in the form of a peturbation-theory series 

which is shown graphically in Fig. 5. Here Go=Go(Z? + iO), 
where Z? is the total energy of the particle system and 
Go(z) = (z - Ho)- ' is the resolvent of the operator Ho; Go can 
be represented in the form of an orthogonal sum of resol- 
vents acting in the two subspaces: 

Go= (I-IIir12) G,+rIlr12Gc. (7) 

Here 

Gf is the resolvent of the free motion; I P,n) is the eigenstate 
of the Hamiltonian 

con, pi2 pz2 
Ha = - + - +V (xi-xZ) 

2 m  2m 
with total momentum P and energy in the c.m.s. E n ;  the 
total mass of the system is M = 2m. 

The matrix element of the operator Gc (8') reduces to 
the form 

where x = x, - x,, X = ( x ,  + x,)/2, E = 8' - P2/2M, and 
gc is the resolvent of the Hamiltonian of the relative motion 

n 

The resolvent of the motion gf (E ) has the form 
- i p  

g, ( E ;  x', 2 )  = - exp ( i  (2pE)"  1 x'-x 1 ) , 
( 2 p E )  '" 

where p = m/2 is the reduced mass. The series 

vg,v+vg,vg,vgev+. . . (12) 

(which is illustrated in Fig. 5) is easily summed and the am- 
plitude of the reflection is obtained in the form 

FIG. 5. Expansion of the amplitude for elastic scattering of two colorless 
particles in series of color charge exchanges. 

where k is the momentum of the particles in the c.m.s. and 

We note that in investigation of the poles of expression 
(13) one can show that the system of two particles has one 
state with negative energy and a set of dibaryon resonances 
in the N, Nc system with energy E = En - i r  z1/2, where 

rne1=u21 T, (0) lZrn/lz. ( 14) 

The resonance width r f is due to the possibility of decolor- 
ization and decay to the channel NN. 

In the case of a linear potential V (x) = xlxl the wave 
functions of the resonances have the form 

rp, ( x )  = ( ~ / 2 a , ' ) ' ~  Ai ( E  Ix 1 - a n f )  /A i  ( -an1) ,  (15) 

where E = ( 2 , ~ x ) " ~  Ai( y) is the Airy function, and - a:, are 
the zeros of the derivative of the Airy function, 
Ail( - a;) = 0. The energy spectrum of the resonances in 
this case has the form 

En=cnr ( % ? / m )  '". (16) 

The possibility of production of qij pairs in the tube can 
be taken into account by introducing an imaginary part of 
the potential by means of the substitution x+x - iw/2, 
where w is the probability density of production of qij pairs 
which was introduced in Section 2. Carrying out this substi- 
tution in Eq. (16), we find the combined width of multiparti- 
cle decays 

I?,'"=2wEn/3x. (17) 

When this is taken into account it is necessary in Eq. (10) to 
make the substitution En +En - ir :/2. This approxima- 
tion is valid only for the condition r : #En + , - E n ,  which is 
not satisfied for large values of n. This condition means that 
the lifetime of the resonance must exceed the time of rotation 
in the classical orbit. However, for heavy states the probabil- 
ity of breaking of the string is so great that the concept of a 
resonance loses its meaning. 

Nevertheless in the case of a linear potential we can 
obtain an exact expression for the propagation function 

g. ( E ;  x, 0) = ( P I & )  Ai (& 1x1 - E E / x )  /Air(-&El%) . (18) 

If at high energies we use the asymptotic behavior of the 
Airy function, lo then this expression acquires the form (1 I), 
i.e., the propagator of the free motion. This result has a more 
general nature and can be understood in the following way. 
If we represent the propagation function of the particles in 
the form of a sum over their trajectories of motion, then in 
the region of a pole the contribution of the classical trajector- 
ies for which the Bohr condition is satisified is enhanced as 
the result of multiple crossing of these trajectories. The pos- 
sibility of production of qij pairs from the vacuum, i.e., the 
removal into the other subspace, limits the time of motion of 
a particle along the trajectory. With increase of the energy E 
the length of the trajectories increases, And the particle is 
able to travel without breakup along the shortest of them. 
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Therefore, the influence of the potential can be neglected, 
i.e., the propagation function goes over into the free func- 
tion. 

2. Dual properties of the scattering amplitude 

The amplitude (13) has the property of duality. At high 
energies, as we have already mentioned, the propagation 
functiong, can be replaced by the free function, which is the 
simplified model considered above corresponds to pomeron 
exchange. On the other hand the amplitude at low energies 
has a resonance behavior, which can be seen from the repre- 
sentation (10) for gc . 

It is interesting that the duality property exists also on 
the average. Actually the contribution of dibaryon reson- 
ances, averaged over an interval AE, to the imaginary part of 
the elastic NN scattering amplitude is 

If we use the asymptotic form of the amplitude, i.e., if we 
replace the propagator g, by the free propagator, then we 
obtain 

Im A =aZ (p/2E)  ". (20) 

Equations (19) and (20) coincide if one has the relation 

This relation is satisfied approximately for various confine- 
ment potentials and has a ready physical interpretation. By 
means of the quasiclassical relations 

where v,, ( x )  and T,, are the velocity and period of rotation in 
the classical trajectory, we can rewrite (21) in the form 

This relation signifies equality of the quantum-mechanical 
and classical probabilities of finding a particle in the interval 
dx . 

One can hope that the Pomeron-dibaryon resonance 
duality is preserved also in a more realisitc approach. We 
note that in meson-nucleon scattering the pomeron corre- 
sponds to 5-quark resonances with separated color. 

3. Scattering of three particles 

The Hamiltonian (4) is easily generalized to the case of 
several particles: 

We shall discuss the amplitude of scattering of three white 
particles 1 + 2 + 3-1' + 2' + 3'. The Hamiltonian H, 
which consists of the first two terms of (22) does not mix the 
orthogonal subspaces of the states, in which all particles are 
white, and in which particle 3 is white and free while parti- 
cles 1 and 2 are colored and interact with the potential 

FIG. 6. Amplitude of elastic scattering of three colorless particles with 
participation of all particles in lowest order in the coupling constant. 

V ( x ,  - x,). We shall again assume that the complete solution 
of the corresponding two-particle problem is known, and the 
last term in (22) will be regarded as a perturbation. 

In the lowest order in a the amplitude for scattering 
with participation of all three particles is illustrated in Fig. 6. 
This is the analog of the diagram of Fig. 2 which describes 
the cumulative process. 

We need the three-particle resolvent which acts in the 
subspace where particles 1 and 2 are colored and 3 is white. 
The matrix elements of the resolvent are simply expressed in 
terms of gc , which was determined in (10): 

( x l r ,  x z f ,  2 3 '  1 (E+iO) lx l ,  5 2 ,  x3 )  

X ~ ~ P [ ~ P ~ ~ ( X ~ ~ ' - X ~ , )  lg, (Ei2+iO; x,,'? x,,), 

where 

X12= (x,+xz) 12, xiz=xi-Xz, 

E,,=E-p3Z/2m-P,,2/2M (M=2m) 

is the energy of relative motion of the system (1-2) (here p, ,  
p,, and p, are the particle momenta and P I ,  = p ,  +p, ) .  
The amplitude corresponding to Fig. 6 is written as 

A ~ ( p i ' ,  pz', ps' l T 1 p i ,  pz, ps) 

= ( P i r ,  p:, psl 1 v ( ' ~ ) G : ~ ~ '  (ESiO) v ( 1 3 ) ~ d 2 3 )  

x(E+iO) v(23) I P , ,  P Z ,  p3), 
where 

i- 1 i=l 
Going over to the coordinate representation, after simple 
calculations we obtain 

From this we obtain the scattering amplitude in the case in 
which particle 1 is scattered by a stationary "deuteron"- 
the bound state of particles 2 and 3: 

where p, = q, p, = - q, and 8, (q)  is the wave function of 
the "deuteron" in the momentum representation. We shall 
make several approximations in (23). We shall assume that 
the incident particle is very fast: p,)q, p i ,  p; , and that here 
p1 + p; ( 4 ,  p;, p ; .  Then, neglecting this difference, we 
have p; = - p; = - p ,  . The last factor in (23) can be re- 
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placed by the free propagation function, which we find from 
Eq. (18) using the asymptotic behavior of the Airy function: 

-im 
gc (E12+iO; x, 0 )  -t - 

P i  

The appearance of the last factor is due to the inclusion of the 
imaginary part of x in Eq. (1 8) and corresponds to the factor 
D (L ) which takes into account the possibility of breaking of 
the string in Eq. (2). 

Then from Eq. (23) we obtain 

where E ; ,  =pi/m. The physical meaning of Eq. (25) is 
clear: the potential V accelerates and brings closer together 
particles 2 and 3 from an initial relative distance x down to 
zero, and in so doing gives them momenta _f p, . 

If we substitute the expansion (10) into Eq. (25), then the 
overlap integral of the wave functions of the resonances and 
the deuteron appears. However, this approach does not 
mean that states with spatially separated color are present 
with appreciable weight in the deuteron. The color is carried 
by the incident hadron, and the amplitude for formation of a 
color dipole with dimension x is proportional to the deu- 
teron wave function $d (x). 

The main difference of Eq. (5) from the classical expres- 
sion (2) is that in (25) there is no unique correspondence 
between the value of the cumulative momentum p, (i.e., the 
energy E ;, ) and the distancex which has been "prepared" in 
the deuteron. 

We shall investigate the dependence on p, of the prin- 
cipal longitudinal distances x in Eq. (25). If the momentum 
p, is sufficiently large, it is possible to use the quasiclassical 
approximation: 

where 

q(x) = [pB2-mV(x)  I". (27) 

The second term in the argument of the exponential takes 
into account the possibility of breaking of the string and ap- 
pears with use of a complex potential V (x) - (i/2) W (x). The 
function y(t ) is a solution of the classical equation of motion 

with the boundary condition y(0) = x.  The integral over 
time T = T(x) is determined by the requirement y(T) = 0. 
For a string with a potential (x - iw/2)lxl we have 

We shall evaluate the integral (25) by the stationary- 
phase method: 

where the value of x = L ( p, ) determined by the stationary- 
phase condition is 

and is the classical distance corresponding to Eq. (1). 
The function D (x) in (28) includes the exponential fac- 

tors from (25) and (26) which take into account breakings of 
the string; D (x) coincides with the classical expression (3) for 
the nonrelativistic case. From this we have 

Substituting this expression into (28), we obtain finally 

This evaluation of the expression (25) corresponds to Eq. (2). 
Thus, in the quasiclassical approximation the principal 

longitudinal distances in (25) increase with increase of p,. 
However, from Eqs. (25) and (27) it is evident that this in- 
crease is limited as the result of the falloff of the wave func- 
tion $, (x) and the factor D 'I2(x) at largex. For real values of 
the parameters the integral (25) is cut off by the factor D '12(x) 
at distances x =:x/wm =: 1-2 fm, which corresponds approx- 
imately to p, ~ 0 . 5  GeV/c. At larger values of p, the sta- 
tionary-phase approximation no longer works. With further 
increase of p, the meaning of Eq. (25) can be interpreted as 
follows. The energy E ;, is made up of the work of the color 
forces -x2/wm and the nucleon kinetic energy which has 
been "prepared" in the deuteron. However, if the latter be- 
comes too large, the two-nucleon interpretation of the deu- 
teron wave function loses its meaning and it is necessary to 
take into account the quark structure of the nucleons. 

Note that in the spectator mechanism7 the entire cumu- 
lative momentum must be prepared beforehand in the deu- 
teron. Therefore the region of applicability of the present 
mechanism extends to much larger energies E ;, than that of 
the spectator mechanism. 

4. Generalization to a realistic case 

The problem considered above contains all of the main 
features of the quantum-mechanical approach. However, it 
was solved in the one-dimensional case, in the nonrelativistic 
approximation, with a 8-shaped exchange potential v(r) with 
an extremely simplified color structure. We shall generalize 
the problem to a more realistic case. 

We shall assume that the color state has eight compo- 
nents (a color octet). Here the generalized potential in the 
Hamiltonian (4) has the form 8,,~(r)/8'/~, where a, b = 1, 
. . ,  8. 

The wave functions (15) of dibaryon resonances in the s 
state are modified as follows: 
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where a, = 2.3, 4.1, 5.5 . . . are the zeros of the Airy func- 
tion: Ai( - a, ) = 0. 

We note that instead of the potential V (r) = x r it is pos- 
sible to use a more realistic potential 

v(.)={ " for r t R o  
x(r-Ro) for r>Ro' 

Here we have taken into account the repulsive nucleon core 
with R0z0.5 fm. The corresponding modification of the 
wave function (30) is very simple: it is sufficient in the argu- 
ment of the Airy function to make the substitution 
r-tr - R,, assuming p, = 0 at r < R,. The masses of the cor- 
responding resonances are 

It can be seen that even the first dibaryon resonance with 
separated color has a large mass of about 3 GeV/c2. The 
width of the decay into the multiparticle channels (which is 
close to the total width) is given as before by Eq. (17) and for 
the first resonance amounts to about 200 MeV. We note that 
these mass and width values are preliminary since the values 
of x and w are poorly known. 

The expression (14) for the decay width of the resonance 
into two nucleons is replaced by 

- a  
r n e l =  2 I hrv (r) q~. (r) e i ~ n r  I , 

2n 
where Q, = (M Z, - 4m2)'I2/2 is the nucleon momentum in 
the c.m.s. Let us estimate the value of r:'. We shall take the 
potential v(r) in the form 

v (r) =U (0) exp (-r2/4B). (33) 

The parameters u(0) and B can be found by calculating the 
NNscattering cross section. The parameter B turns out to be 
equal to the slope parameter of the NN elastic scattering 
cross section B z  10 (GeV/c)-', and 

Here we have taken into account that the color exchange is 
not scalar, but vector, which provides a total cross section 
which does not depend on the energy. Then from (32) we find 
for the first resonance r i'z 10 MeV. It is evident that P' 4- 
P.". We note that r f is calculated much less reliably than 
r t ,  since the decay into 2N occurs as the result of color 
charge exchange inside the resonance, i.e., it is important to 
take into account the quark structure of the nucleon. In ad- 
dition, as can be seen from Eq. (32) P' depends exponential- 
ly on x and with increase of x by a factor of two P' increases 
by almost an order of magnitude. 

It must also be emphasized that the parameters of the 
potential u(r) depend on the energy. The estimate (34) applies 
to high energies, and at energies of the order of the masses of 
the lower dibaryon resonances u(r) can differ significantly 
from (34). This corresponds to the fact that in the color 
charge-exchange amplitude it is necessary to take into ac- 
count quark exchanges in addition to gluon exchange. At 
low energies these corrections can increase u2(0) by a factor 
of the order of 2. 

The cross section for the reaction hd-+p, nh takes the 

form (compare with Eq. (25)) 

(35) 
Here Q = m(a - l)/[a(2 - a)]'12 is the relative momentum 
of the nucleon pair in the c.m.s.; M = 2m/[a(2 - a)]"2 is the 
effective mass of the pair; a = (E, +~; ) /m is the light-front 
variable. Here we have introduced the combinatorial factor 
4 which takes into account permutation of the nucleons. 

Figure 4 shows the results of calculations carried out 
according to Eq. (35) with inclusion of the shower enhance- 
ment coefficient for proton emission angles 180 and 140". 
The value of r:' which determines the value of the cross 
section (35), as we mentioned above, was calculated very un- 
reliably. In the calculation we set r;'= 30 MeV. It can be 
seen that the curve for 180" is in good agreement with the 
result of the classical approach. From comparison of the 
curves for different angles it is evident that the angular de- 
pendence of the cross section changes considerably with 
change of p, . Generally speaking, the differential cross sec- 
tion has the following scaling behavior: for a fixed value of a 
the cross section does not depend on the angle. It is easy to 
verify that this property is present also in the spectator 
mechanism for scattering by a deuteron, and consequently, 
the relative contribution of the two mechanisms does not 
depend on the scattering angle. We note also that since the 
masses and widths of the dibaryon resonances have been cal- 
culated approximately, the real position of the peaks in the 
momentum spectrum can differ from those in Fig. 4. 

The general normalization of the cross section also was 
determined with a large uncertainty as the result of poor 
knowledge of the parameters of the theory. Nevertheless 
from Fig. 4 we can conclude that the results of the calcula- 
tion agree in order of magnitude with the experimental data 
for p, 2 550 MeV/c. 

As we have already mentioned, the contribution of the 
present mechanism to the cross section for the cumulative 
process at high energies does not depend on the energy. 
However, at intermediate energies of a few GeV there is a 
specific dependence on energy. Indeed, the expression (23) 
for the amplitude of the process involvesg, (El,)-the propa- 
gation function of the system of the incident hadron and the 
target nucleon after their charge exchange. At high initial 
energies we replaced it by the free propagation function (26). 
However, at intermediate energies gc (El,), as can be seen 
from Eq. (lo), has a resonance dependence on El, = (2mT- 
kin + 4m2)lJ2, where Tkin is the kinetic energy of the incident 
hadron. If we assume that the mass of the first resonance is 3 
GeV/c2, then in the energy dependence of the cross section 
for a fixed value of p, the first maximum should be observed 
at Tkin ~ 2 . 6  GeV. In fact, just beginning with these energies, 
the mechanism under discussion gives a substantial contri- 
bution to the cumulative production of protons. We note 
also that in the case in which the incident hadron is a pion the 
resonance functions gc (El,) are not the dibaryon type, but 
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FIG. 7. Diagram describing the process of  elasticpd scattering backward. 

rather pion-nucleon five-quark resonances with separated 
color. The spectrum of excitations of these resonances is 
close to that for the dibaryon spectrum. 

5. ELASTIC pd BACKSCATTERING 

In the pion-free process pd-p,pn at intermediate en- 
ergies the proton and neutron which are emitted forward can 
have momenta comparable in magnitude and can form a 
bound state-a deuteron. Thus, the color-force mechanism 
contributes also to elastic pd backscattering. The corre- 
sponding diagram is shown in Fig. 7. The amplitude corre- 
sponding to this diagram has the form 
A pd+dp 

= J q d ( q ' )  ~ ( ~ ' ) g ~ ( E 2 3 ' ;  x', Z) v ( x - Y ) ~ . ( E I z ;  Y ,  x ) v ( x ) & ( ~ )  

~~exp[ix'q~~'-iz(~/~P~~'-p~) + i y ( 1 / Z P , 2 - p l ' )  +ixq121do, (36) 

where 

If the propagation functiong, is represented in the form 
of a sum over resonances and if we neglect the momentum 
distribution of the nucleons in the deuteron, we can obtain 
the following expression for the cross section: 

do 251$d(0)) '  
-= 

c m s  18Q2 
(I',"I',~") '"F,,, ( p ,  p') I ' I (M-Mn+iI'.'/2) (M-Mn,+iI':'/2) I ' 

n,nV 

(37) 

where 

x exp [ i  ( p ' + p / 2 )  r / 2 - i  ( p + p ' / 2 )  r ' / 2 ] .  (38) 

HereM = 4m2 + 2mTkin andQ = mTkin /2, where Tkin is 
the kinetic energy of the incident proton in the laboratory 
system; p and p' are the initial and final momenta of the 
proton in the c.m.s. The combinatorial factor 25 takes into 
account permuation of the nucleons. 

Equation (37) is readily interpreted (see Fig. 7). In colli- 
sion of the incident proton with a target nucleon a dibaryon 
resonance is formed with a probability proprotional to r f. 
Then the resonance is scattered backward by the second tar- 
get nucleon by exchange of a colored nucleon. The ampli- 
tude of the latter process is described by Eq. (38). It is inter- 
esting that this scattering process occurs at a c.m.s. 

E ,,, , GeV 

FIG. 8 .  Cross section for the reactionpd + dp at 0 = 180": the points are 
data from Ref. 1 1 ,  and the curve is a calculation on the basis of  Eq. (37). 

momentum equal to -p/2. 
We shall evaluate the expression (38) for scattering an- 

gles close to 180" for n = n' = 1, using in the expression (30) 
for the Airy function the approximation 

Ai (x-a,) - 0 . 7 0 ~  exp ( -0 .29x2) ,  

where a, = 2.34 is the first zero of the function Ai( - x). 
From (38) we find 

F , ,  ( p ,  p') = v  ( 0 )  (4n /h )"  exp [ -p2 /16  (A-1 /B)  - 9 ~ ~ ' ~ / 6 4 h ] ,  

whereA = 2 ~ .  0.29 + 1/B (see Eqs. (15) and (33)). 
(39) 

For evaluation of the elastic pd-scattering cross section 
at 180" we shall neglect in the sum over n and n' in (37) the 
nondiagonal term and the dependence of F,,, on n. The re- 
sults of the calculation with the parameters specified above 
are compared in Fig. 8 with the experimental data of Ref. 1 1. 
It should be noted that the normalization of the cross section 
has an additional dependence proportional to re,v2(0) in 
comparison with the cross section for the reaction pd--+p, X. 
For the values of these parameters which were fixed in the 
preceding section the cross section for the reaction pd-tdp 
turns out to be underestimated by almost an order of magni- 
tude. However, the values of these parameters, as we have 
already explained, are known with a very large uncertainty, 
within which it is possible to change the normalization of the 
calculation, as was done in Fig. 8. 

As can be seen from Fig. 8, the experimentally observed 
change in the energy behavior of the curve at rkin -- 2.5 GeV 
can be due to the contribution of a dibaryon resonance with 
separated color with mass about 3 GeV/c2. The contribution 
of this mechanism at lower energies, as can be seen from Fig. 
8, is negligible. It is very important to obtain experimental 
data at higher energies. 

6. POLARIZATION EFFECTS 

Effects associated with the polarization of the incident 
particle in the reaction hd-p, Xat high energies are small in 
the present mechanism and fall off as a power of the energy. 
However, the polarization of the nucleons emitted backward 
does not approach zero with increase of the initial energy 
and in principle can be large. Nevertheless in the region of 
dominance of the first dibaryon resonances ( p, 2 550 MeV/ 
c) the polarization of the cumulative nucleons is equal to zero 
if we can neglect the interference of the different resonances 

647 Sov. Phys. JETP 60 (4), October 1984 0.2. Kopeliovich and F. Nidermaler 647 



and also of the background. If the momentum is close to the 
kinematic limit, a source of polarization of cumulative pro- 
tons is the interference of gluon and quark exchanges in the 
process of color charge exchange, which occurs at a finite 
energy. Therefore the polarization will depend on p, but 
not on the incident energy. It is interesting that in this case 
also one can expect that the polarization is close to zero. In 
fact, in elastic NN scattering the polarization is due to inter- 
ference of the imaginary pomeron amplitude without spin 
flip Im f + with the real part of the contribution of leading 
Reggeons to the amplitude with spin flip Ref - . The ex- 
change degeneracy of the pairs of Reggeons f - o and 
p - A ,  brings about a compensation of their contributions 
to Im f R  and an addition in Ref R ,  which leads to a large 
polarization. In the reaction considered here with color ex- 
change Nc Nc +NN the polarization is due to interference 
of the real amplitude of gluon exchange without spin flip 
Ref + with the imaginary part of the Reggeon amplitude 

R with spin flip Im f +'- , which is equal to zero if the colored 
Reggeons have exchange degeneracy. However, if the ex- 
change degeneracy of the colored Reggeons is strongly 
broken, then in the protons emitted backward there can be a 
polarization at the level of several p e r ~ e n t . ~  We note that the 
value of this polarization is equal to the azimuthal asymme- 
try of proton emission in the case in which the deuterons are 
polarized. 

7. DISCUSSION 

A high-energy hadron interacting with a deuteron can 
transfer color from one nucleon to the other, converting the 
deuteron into a color dipole. The dipole, breaking up into 
colorless objects, can emit a nucleon into the backward 
hemisphere. This mechanism exploits directly the popular 
model of color strings, which reflects the space-time struc- 
ture of hadron-hadron interactions in QCD. The study of 
hadron-nucleus interactions gives a unique possibility of 
verifying these ideas. 

Note that the formation and decay of a color dipole 
kinematically recalls the mechanism considered in Ref. 8 
with formation of a resonance in the intermediate state 
which, interacting with the second nucleon by the channel 
N *N+NN, as a result of the excess of mass forms a nucleon 
emitted into the backward hemisphere in the lab. At low 
momenta of the incident proton p,, z 1.5 GeV/c a large 
contribution to the cross section comes from formation of 
the A,, i ~ o b a r , ~ . ' ~  which falls off with energy according to a 
power law. The contribution of diffraction excitations in the 
intermediate state does not depend on the initial energy. 
However, the cross section for diffraction dissociation 
summed over all final states is suppressed by about an order 
of magnitude in comparison with a,, . This smallness enters 
into the cross section for the pd-tp, pn reaction quadrati- 
cally, which at high energies makes the contribution of white 
intermediate states negligible in comparison with colored 
states. 

Another mechanism whose contribution does not die 
out with increase of energy-the spectator mechanism7- 

has been mentioned above. This mechanism is dominant in 
the cross section for the reaction pd+p, X in the soft part of 
the momentum spectrum p, 5 500 MeV/c. At high mo- 
menta p, the calculations lose their meaning,7 since at small 
internucleon distances it is impossible to use the two-nu- 
cleon wave function of the deuteron. 

For the same reason there is a limitation of the region of 
applicability of the calculations described above, but this is 
much broader than for the spectator mechanism. A color 
dipole of large mass can be obtained not only by increase of 
the internal momentum which has been prepared in the deu- 
teron, as in the spectator mechanism, but also as the result of 
the energy stored in the color tube. 

The comparison made above between the calculations 
and the existing experimental data has permitted us only to 
conclude that the contribution of the mechanism considered 
corresponds in order of magnitude to the data on the cross 
section for the reaction pd+pBX at p, 2 550 MeV/c and 
the cross section for elastic pd scattering backwards at 
T,, 2 2.5 GeV. A significant fraction of the existing data on 
the cumulative effect has been obtained in nuclei with A  > 2. 
Cascade multiplication of hadrons inside nuclei and the Fer- 
mi motion of the nucleon pair as a whole make it impossible 
to study any detailed effects in complex nuclei. Therefore it 
is necessary to recommend that the experimental study of 
the various processes be carried out in a deuterium target. 
Below we have given some examples of such processes. 

1. One expects a change in the nature of the process 
hd-tpBX with increase of the momentum p, . At p, 5 500 
MeV/c the spectator mechanism is apparently dominant, 
and this is characterized by a high average multiplicity 
(n),, z (n),, and a large loss of momentum by the leading 
particle (x,) ~0.5, wherex, is the Feynman variable. 

If at p, 2 500 MeV/c the contribution from decay of 
the color dipole is dominant, then since the process is diffrac- 
tive the leading hadron should have the quantum numbers of 
the incident particle and a value of x, in the diffraction re- 
gion. Correspondingly the average multiplicity of the parti- 
cles produced in this process is small. 

From this description we can see if we separate the dif- 
fraction contribution in hd-+p,X, considering for example 
the reaction hd+p, hn, then the background from the spec- 
tator mechanism will be suppressed. 

2. The observation of peaks in the momentum spectrum 
of cumulative protons would be a serious argument not only 
in favor of the mechanism considered but also in favor of the 
existence of heavy dibaryon resonances with separated col- 
or. These resonances are analogous to giant resonances in 
nuclei, which are collective excitations of nucleons. It must 
be emphasized that the calculation of the spectrum of dibar- 
yon resonances carried out above has in part an illustrative 
nature, since it did not take into account the quark structure 
of the nucleons, it used a linear confinement potential, and so 
forth. For example, allowance for the nucleon size in the 
potential V ( r )  can change the mass of the dibaryon resonance 
by several hundred MeV. The values of the parameters x and 
w also strongly influence the masses and widths of the reson- 
ances. 
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We note that the search for such dibaryon resonances in 
NN scattering is made difficult by the smallness of their 
production cross section. In fact, the contribution to the 
cross section of a dibaryon resonance E = En is 
( h / k  ')T f/r 7, which amounts to about 1 % of 6%;. 

Thus, the search for heavy dibaryon resonances in 
events with emission of energetic nucleons with p, 2 500 
MeV/c into the backward hemisphere appears optimal with 
respect to the signal-to-background ratio. In fact, at a high 
initial energy it is hard to find a mechanism capable of com- 
peting with the contribution of resonances (the spectator 
contribution can be suppressed by separation of diffraction). 

As a target it is possible to use also light nuclei if in 
cumulative events one studies the distribution in the effec- 
tive mass of a pair of protons, one of which is emitted into the 
backward hemisphere. 

3. It is evident from Fig. 8 that it is important to obtain 
data on the cross section for elastic pd scattering backward 
at T,, k 3 GeV. We note also that the mechanism consid- 
ered contributes to the cross section for elastic n-d scattering 
backward. In this case in the first and second nucleons of the 
deuteron there are excited not dibaryon resonances (see Fig. 
7) but five-quark resonances with separated color of the type 
.rr, N, . Here the cross section for n-d scattering backward is 
suppressed in comparison with the pd cross section by the 
combinatorial factor 4/25 which takes into account permu- 
tation of the nucleons and the smaller number of quarks in 
the pion. 

4. It is important to note that the mechanism considered 
does not contribute to the production of cumulative nu- 
cleons in the deep inelastic scattering of leptons by deuter- 
ons. Therefore we should expect that 

cS'd'~Bx/$d'~Bx<oi~/(Tinh~ 

In the case of dominance of the spectator mechanism the 
equality sign should appear in this relation. This statement 
does not extend to heavier nuclei in which the quark emitted 
by the lepton can, like the hadron, convert the pair of nu- 
cleons into a color dipole. 

In conclusion we note that in dibaryon resonances there 
is an additional decay channel not considered above. The 
octet string can not only be broken transversely as the result 
of formation of quark-antiquark pairs from the vacuum. 
Generally speaking, it can split up longitudinally, into two 
triplet strings. This channel increases r f ,  but it is not possi- 
ble to estimate its contribution. We note that the limit 
r ?/En -+UJ corresponds to the model of dual topological 
unitarization, where for simplicity is assumed that instead of 
the octet string two triplet strings always appear. 

The authors are grateful to V. B. Belaev, L. I. Lapidus, 
M. I. Strikman, and L. L. Frankfurt for useful discussions. 

APPENDIX 

To simplify the notation we shall discuss a problem in 
which all three interacting particles A, B, and Care mesons 
consisting of quarks and antiquarks designated as q,ij,, q3ij,, 
and q,q,. Particles B and C form a bound state on which 
particle A is scattered. We shall use the eikonal approxima- 
tion in quantum chromodynamics, which is valid at large 

relative energies. In this approximation the scattering ampli- 
tude can be written in the formI3 

A ( k ~ ,  k ~ ,  kc)  = 2 ~  jd2Zi  . . . d2X6$i,t2 (Xl-x2)  ( X I - X Z )  ] 

x exp ( - i k , x i 2 )  $i3:' ( x S - X ~ )  [$j:a ( ~ 3 - $ 4 )  I '  exp ( - ikBX3( )  

Here x, is the transverse coordinate of the a t h  quark (anti- 
quark); k, , k, , and kc are the transverse components of the 
momenta of particles A, B, and C after the interaction $G2 
( x ,  - x,) is the wave function of hadron A with quark color 
indices i, and i2; X@ = (x, + x,/2; $d (X,, - X,,) is the 
wave function of the "deuteron"; the summation 2 ' in the 
argument of the exponential is carried over all quark pairs 
belonging to different hadrons; the matrix is defined as 

ta (a) = for quarks a = 1, 3, 5 

for antiquarks a = 2, 4 ,  6 
' 

and A" (a) are the Gell-Mann matrices acting on the quark 
with number a; g is the QCD coupling constant, and 

In Eq. (A. 1) we understand also an implicit dependence on 
the longitudinal momenta of the quarks in the infinite-mo- 
mentum frame. The eikonal approximation is valid if the 
distribution in the longitudinal momenta of the quarks in the 
hadron does not change during the interaction time. Since 
the hadrons are colorless, we have 

The process illustrated in Fig. 2 corresponds to terms of 
third order in g2 in the expansion of the exponential in Eq. 
(A. 1). After summation over color indices and integration, 
the amplitude of the process reduces to the form 

A (kA, k ~ .  kc)  

=16s (g4 /27)  J d 2 p  -- d2q @ ( q t ,  q 2 )  @ (hi, q 3 )  
( 2 ~ ) ~  ( 2 n )  

Here we have used the notation 

yi=q; qz=k,-q; q,=k,-q-p; 

@ ( k ,  q )  = f  ( k + q )  -f ( k - q ) ,  
where 

1 d a  
f ( k ) = J  d 2 x J  4 n a  ( I - a )  19 ( x ,  a)  1 zeihx 

is the single-quark form factor of the hadron. The factor 
[4ra( l  - a)]- '  arises in the conversion form the system of 
reference in which the deuteron is at rest to the infinite-mo- 
mentum system, in which the fraction of the total momen- 
tum carried by the quark is a .  In Eq. (2) we have also used the 
notation 

In the case of baryon scattering the right-hand side of Eq. 
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(A.2) must be multiplied by (3/2)3. 
The dependence of the integrand of Eq. (A.2) on p is 

determined mainly by the function $,(p), which falls off 
rapidly with increase of p. Therefore all remaining factors in 
(A.2) can be determined for p = 0. Then, after integration 
over the longitudinal component of p, we obtain the differ- 
ential cross section in the form 

Here 

The integral over a, in (A.4) is 

In the case k, = 0 Eq. (A.4) can be written as follows: 

where ,u is a parameter with dimensions of mass which en- 
ters into the nucleon form factor f (k ) = ,u2/(k ' + ,u2); 
x = k $/,u2, and 

We note that I(0)  = 1 ,  and therefore 

Numerical integration over k, in (A.7) gives 

do 2l0aS6 
=0,3 - J 1 (L) 1 dL. 

p6 
The slope parameter characterizing the dependence of the 
cross section on k, can be defined as 

In contrast to the cross section, the quantity B (k, ) found 
from (A.4) diverges logarithmically as k, -4. Instead of the 
procedure of cutting off the integrals by the effective mass of 
the gluon which was used in Ref. 5, we introduce the average 
value of the slope B defined as 

(A.  10) 

We note that the momenta of the emitted particles k, , k, , 
and - (k, + k,) enter into the expression (A.7) for the am- 
plitude A symmetrically. Therefore, using the relation 

d2k2 d2ks erp [ -B.  (k,z+k:+k,z) ] S2(kl+k2+ks) 

(A.  1 1 )  

and the definition (A.  lo), we find 

B=3Bo/2. (A.  12) 

On the other hand, the value ofB, can be found, using (A.  1 l),  
from the ratio of expressions (A.8) and (A.9) 

We determine the values of a, and ,u from the elastic and 
rota1 pp-scattering cross sections in the two-gluon approxi- 
mation for the same parametrization of the form factorI4: 

where 

Substituting the values u i N  = 40 mb and = 7 mb, we 
obtain a, = 0.78 and ,u2 = 0.62 GeV2. In this case from Eq. 
(A.lO) we obtain the slope value B = 12.8 GeV-'. 

For the coefficient f l  in Eq. (2) a comparison gives the 
value PZ 0.17. 
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