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In the framework of a theory that takes into account radiative effects in stochastic acceleration of
particlesit is shown that a power-law distribution of the fast (tail) particles is formed independent-
ly of the type of random field, the turbulence spectrum, the nature of the correlations (strong or
weak turbulence), and the charge and spin of the accelerated particles. The basic characteristics of
the theoretically obtained spectrum (the power-law dependence 1/£” on the energy with ¥ = 3 for
£>mc?; the flattening of the spectrum of all ions (nuclei) for £ < mc?, i.e., at energies less than 1

GeV per nucleon; the relative concentration of the electrons and protons, and also of the protons
and the heavy nuclei; and the relative concentration of thermal and fast particles) are very close to
the observed characteristics of the electron and ion cosmic-ray spectrum. The theory predicts the
presence of a relatively large number of low-energy electrons, so that the total energy transferred
in acceleration processes to cosmic-ray electrons can be greater than the energy transferred to the
cosmic-ray ions. This changes the estimates obtained from observations of the energy released in

known sources of cosmic rays.

§1. INTRODUCTION. QUALITATIVE PICTURE

The radiative effects associated with the change in the
electromagnetic mass of a particle accelerated in random
fields by wave-particle resonances were discussed in the
framework of the classical approach in Ref. 1 and in the
framework of the relativistic quantum kinetic approach for
spin ] particles in Refs. 2 and 3. In both the classical ap-
proach (for a physically reasonable cutoff of divergent inte-
grals) as well as in the quantum approach the relative magni-
tude of the radiative effects is formally of order g°/%c, where
q is the charge of the particle. However, as will be seen from
what follows, this estimate is somewhat formal in nature,
and it also corresponds to the estimate of the relative fraction
of integrated characteristics such as, for example, the change
in the mean energy of the accelerated particles, etc.

With regard to the energy distribution of the particles,
it can be shown that radiative effects become decisive in the
generation of the small number of very energetic particles.
Their spectrum has a number of universal characteristics,
which will be the subject of the present paper.

By “formal” allowance for radiative effects, we mean
formal expansion of the interaction with respect to ¢°/%c.
Whereas in the first approximation the interaction of the
particles with the random resonance field E,, (in what fol-
lows k; = {k,,,} denotes the 4-momentum vector of the
resonance field, and k is the momentum of the virtual field) is
proportional to ¢*|E, |?, in the following approximation in
the square of the charge it is proportional to ¢*|E) |°.

In a classical description, an additional ¢* can occur
only in dimensionless combinations containing classical
quantities. Since we are considering the effects associated
with the change in the electromagnetic mass of the particles
due to the presence of the resonance fields, the additional g>
must occur in the expression equal to the ratio of the energy
of the self-field of the particle to its total energy
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g, = (p’c® + m*c*)'/2. The electrostatic energy of a point
charge is equal to g*/r as r—0or g*fd k/2m?k 2. It was shown
in Ref. 1 that only the transverse part of the self-energy con-
tributes to the radiative corrections to the stochastic accel-
eration (the retardation of the virtual photon is important;
cf. Ref. 4). Therefore, instead of the Green’s Function 1/
2%k ? of the longitudinal field, the expressions obtained in
Ref. 1 contained the Green’s function of the transverse field:
1/[k % — (kv)*/c?], where v is the particle velocity. Integra-
tion of such expressions over the angles of the virtual photon
k gives divergent integrals of the same type A (v)fd k/k %asin
the case of the electrostatic energy, though the factors A (v)
that depend on the particle velocity (expressions for A (v) are
given in Ref. 1). For eé»mc?, when v—s-c, these factors are in
general certain constants.

In other words, in the classical approach the additional
terms with extra g* for £>mc? contain ¢* in the combination

(€p =cp)

g* ¢ dk
2 . 1
cp j. 25k* M

This result is given here to illustrate qualitatively and nonri-
gorously how the universal power-law spectra are obtained
in the quantum treatment. Before doing this, we note that if
in the integral (1) we cut off k at k,,,,, ~p/#, then (1) gives g2/
fic.

In the quantum treatment, naturally, divergent inte-
grals do not arise, but this is achieved by the renormalization
subtractional procedure. The subtractional procedure must
give expressions that in the limit k— o are also asymptoti-
cally power functions 1/k” with integral v [in (1), v = 2]. Itis
obvious that convergence occurs for v>4. This, of course, is
only an indirect indication that v may be equal to 4. In any
case, this value of v is the smallest possible value that can
“survive” asymptotically, unless, of course, its coefficient
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vanishes for certain symmetry reasons. In fact, this is not the
case, as will be demonstrated in the quantitative calculation
made below. In the present qualitative analysis, we shall as-
sume that the coefficient does not vanish.

From the quantum point of view, the self-energy of the
particles is produced by the emission and absorption of a
virtual photon (momentum #k). Then a particle with mo-
mentum p goes over as a result of emission of, for example, a
photon 7k into the state p — #ik. If #ik is sufficiently large
(and the divergence of the integral (1) gives grounds for as-
suming that very large k can be important in this process), so
that #k>p, the recoil momentum of the particle after emis-
sion of the k photon will be large and |p — #k|>p, i.., a slow
particle is transformed into a fast particle and a fast photon.
This “‘dissociation” occurs only temporarily, and subse-
quently the virtual photon is absorbed by the particle, which
again becomes slow.

It is also posssible to have another process, in which a
fast particle, emitting a photon with large momentum, be-
comes slow “for a time.” Because of the renormalization,
this process is absent (is included in the particle mass) for free
particles (not accelerated by external factors). But in the
presence of the external fields leading to acceleration pro-
cesses, this process is included (as an effect additional with
respect to the vacuum), and one can say that in the presence
of accelerating fields the emission of virtual photons causes
the particles to “jitter,” a fast particle becoming a slow one
for short periods and vice versa.

We shall be interested in stochastic acceleration, as-
suming that the accelerating fields are random, and we shall
consider an ensemble of accelerated particles. Let @, be the
mean probability of finding a particle with momentum p.
The averaging is over a mixed state, i.e., it includes the quan-
tum-mechanical probability of finding one particle in the
state with momentum p. The states that arise on the emission
of a virtual photon are also of this kind. Because of the indis-
tinguishability of the particles, it is meaningless to try and
distinguish those that at a given time have gone over virtual-
ly to a state with a different value p’ of the momentum from
those that at the given time have the same momentum p’. It is
only meaningful to speak of the averaged probability over
the mixed state. In fact, @, is a component of the averaged
density matrix (see below).

We assume that when radiative effects are ignored the
rate of stochastic acceleration is described by the operator

I, ie.,

d0,/dt=I,0,. 2)

Let us find how frequently we shall ““see”” the appearance of
fast particles. Let p be the momentum of a fast particle. The
momentum of the slow particle will be p — 7k (where #ik ~p,
so that |p — #ik| <p). We write down Eq. (2) for the slow par-
ticles:

d@p-hk/dt=jp_hkd)p_hk- (3)

The factor (1) can be regarded as the probability of different
k. Replacing 1/k 2 in (1) by the renormalized expression, de-
noted by G (k %), we obtain from (3) for the fast particles
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do 2
— = ;)% [ G k) L@, nicdk. (@)
Replacing p — 7k in (4) by p’, we obtain
d(D,,_ q° N ,
R L PRI (5)

We now consider p>p’, using the asymptotic behavior
for G (k ?) that we have already discussed above. We set

P
G((p—p)")—~ Py Go. (6)
Here, the factor p'>/# is added for dimensional reasons to
make G, in (6) dimensionless. Indeed, for this choice the fac-
tor ¢°p'*/#icp® has dimensions 1/p>. So does dp’. The depen-
dence (6) on p as 1/p* follows from the asymptotic behavior

1w n
T e

Thus, we obtain the rate of generation of fast particles:

fast _ qz Go

do!

ar he prd P I v’ )

This expression gives a universal energy distribution. If, for
example, we integrate (7) over the complete interval of time
during which the acceleration takes place, making the as-
sumption that @, describes only the low-energy particles,
whose number is much greater than the number of high-
energy particles, we obtain from (7)

O w01/p°. (8)

The energy distribution @, (e =cp) differs from P, in (8) by
the phase space 47p?, i.e.,

O™ wo1/s. (9)

In these arguments, we have not particularized the op-
erator J, —it may correspond either to Fermi acceleration or
to the quasilinear acceleration more common in plasmas. In
the latter case, I, <g’|E,, |* (as already discussed above).
The operator I, may also correspond to scattering processes
(for example, for induced scattering, I, « ¢*|E,, |*).

In the present paper, we shall construct a quantitative
theory that confirms these qualitative arguments, using the
equations for the Wigner density matrix of particles of arbi-
trary momenta (nonrelativistic and relativistic) described by
Klein-Gordon equations, i.e., having vanishing spin. This
treatment will show that the main results of the qualitative
treatment do not depend on the spin of the particles [for spin
1, the spectrum (9) was obtained analytically in Ref. 3) and, in
addition, the case of spin O is somewhat simpler as regards
the final analytic result and makes it somewhat easier to find
the integrated characteristics of the radiative effects in sto-
chastic acceleration. For simplicity, we shall discuss only the
radiative effects for quasilinear acceleration by electrostatic
fields (I, <g?|E, |?) in the absence of external magnetic
fields. The resonance condition for the fields E;, then re-
duces to the Cherenkov condition

(l)i=k1v. ( 10)
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We shall assume that the fields £ are classical, i.e., the
quantum effects for them are negligibly small. This means
that  fik,<p,fiv;<€,, the  resonance  condition
£, — €, _ s = fiw, reduces to (10), and the pair production
resonance fiw, =€, + £, , s, is not realized. Then the oper-

ator I, has the form
d
6_p—) . (1)

E
I—1,9—gn jdki | ’“' (
In what follows, we shall use the system of units with
#i=c = 1. The superscript ¢/ in the operator (11) indicates
that the acceleration process is quasilinear.

1%) 8 (,—kyv) (k,

§2. BASIC EQUATIONS. RADIATIVE COLLISION INTEGRAL

In accordance with Ref. 5, a particle of spin O can be
described by a scalar wave function ¢ and the fourth compo-
nent ¢’ of the 4-vector {1',i3'}. Although the two functions
¥ and ¢’ are related to each other, the relativistic quantum
density matrix can be conveniently constructed by writing
the basic equations

(ps—gqA,) Yu=—m1p, (Pu—qAL) p=mp,

in the form of two equations for ¢ and ¥’ in the momentum
representation:

e (t)e™ / _ Pp’ (¢) e™dp
'llJ(l‘, t)_ (23’&) 5 dp’ IP (l‘, t)"‘S (2313);/’ ’

o )= gu(t)e™dk,
A(r, t)=f A(t)e™dk, A,={A,ig}.

The initial equations are

by R . -
iy (044 [ bon B, (12
Iy’ (¢ : . A
20 50+ [ ) Yo ()
2q k,
SA((p-5) A )bt L [
X Ay (1)) Pp-wr- ks (13)
and also
iM=—mu3p'+<t>—q [ ®eu@®dk, (14
awpl+(t) gy ~ Nz ~
at = =% (1)~ [ bl (O () dk,

+ ; ju?pik.u) (p +—l;i,z§k.(t) )

Q-+ N N
a— L [t (Ak‘(t)Ak,(t)) dk,dk, (15)

At the sametime & =p+ m?, and the potentials @, (¢)and
Ak (T') are determmed from Maxwell’s equations, whose
right-hand sides contain the charge and current densities

ou(t) = [ s (0 9" (@) " ()0 (1)

qm
2(2n)3
F T () By () Fhpr () i () 1,
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jk<t>=(—;—fg [ (o =) b O 0y

(2m)®

J T () () A, (1) + A () B i (0) o (1) 1"

The charges and currents are introduced in such a way that
their vacuum expectation values are zero.

The introduction of two functions, ¢ and ¥/, is dictated
by the presence of particles with two possible signs of the
energy (particles and antiparticles), but for both free parti-
cles the operators 1 and 3’ contain both terms with positive
and negative energy.

It can be seen from the commutation relations

B, ()W () — ¥ (1) B, ()
=3, OB O— B OB, O =—00—0), (16

b, OB 0 — byt (0) B, () =B, )9 (1) — ¥y (1) B ()=0
(17)

that in fact the “conjugate” of the operator ¢p (¢)is 1[/,, "),
and not 1//, (¢), and the “conjugate” of the operator ¥ (¢) is
Byt ie).

It is convenient to introduce the sign 4 = + 1 of the
energy of the free partlcles (superscript (0) of the operator ¢)

- (0) —_ S —i\ept),
‘q’P (t) (28;;)'/’ ,'Zlap exP( 2 SP)
% 'O ()= ( 2) Z' Aay* exp (—idept),
ap=ap+,ap_’=b_p+, . anda, and b ;" and b, are, re-

spectively, the operators of creation and anmhllatlon of par-
ticles and antiparticles.

We introduce density matrix operators in the Wigner
representation f 3 2'(¢) and in the representation of the signs
of the energy of the free particles (4,4 ' = + 1):

Ep T mAN Erx ) )

Epik/2 Ept+k/2
(18)

E€p—x/2

v 1 _
f..,‘k"=—4(x'f,,,k+x1”’ LIS

where
Foc (8) = (b2 () Woira (£) TBpsira () Yniea (£)),

B (8) =1 (e (8) Poaira () Fbmsra (1) 2 (2)), 19

‘ a;.k(t)=m<u3pfk,z<t>¢.,+k,z<t>+¢p+k,z<t>$:_k/z(t>)—%a(m,

E0 £(8) =m (o it () Yo sara () Fbpaira (8) Yoifa (£)) — %"6 (k).

For free particles,{(a, + a, ) = ®,8 (p — p')- In the absence
of antiparticles, (b, + b, ) = 0. The particle concentration
n is related to @, by

(D, dp

0 ; (20)

n=
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we have

>=0,6(k),

—1,1(0)

1,~1(0)
<fp.k >=<]‘n,k

=1,-1(0)

>={fpx

1,1(0)
(fp,k
The averaging symbol corresponds to averaging over the
vacuum and over the statistical ensemble.

In the general case, one can introduce the averaged den-
sity matrix

Ot =Chv >

>=0.

and the operator of fluctuations
AL’ 2 A
ok =Fox —<Fon ).
In the approximation of free particles,

6fox ™ ()=0fA (0)exp{—i(Aepsrn—h'es-ra)t),
and the mean values of the fluctuations do not vanish only
for the products
(0) 813" (0)>=p126 (p—p') 8 (k+K'),

1,1(0)

<ot
B (0)8/5 %™ (0)>=®psra0 (p—p") 8 (kHK’).

The equations for £ can be obtained from (12)(15).
They can be most readily obtained for the second terms of
(19) containing the operators ¥ and ' in an order which
ensures that the operators A and @ occur only in front of or
after the combinations containing the operators 3. Further,
using (16) and (17) we can show that the first terms of (19)
satisfy the same equations. The equation then obtained has a
form very similar to the classical kinetic equation:

8w , "
i— ol (= (eprp—h e B3 (=Y | dk

A

~ Ep— " " oar X
x {cpk. @) ( 14N 2okt ) Foetyz, i (B) =Pt ora ko (£)

Ep+x/2

x( a+ Sk

_Srkz )\ o (t
\ Eptki—k/2 ) P )}

A k k
e Y fad((er 7).
q;ZJ. ‘ Ep+k/2 P 2 2

Aw(t) ) o e (£)-

A aart k k, -
R — 'I -nt ——_+_)’Ant )}
eprrts Fosx /2,k—k (¥) ((P 2 3 x (2)
o x ~ ~ e ’
+¢* Y [k, dkz{ (Ax, () Aw (1)) Fotra oz ki (1)
o . €pik/2

A

Eptkitke—k/2

AR’
—fp+k./z+kz/z,k-k|-h (t)

Ru®Au®)}.

(22)
For A =A' =1 and k<p, the left-hand side of (22) has the
standard classical form idf /dt + (k-v)f.

JFrom (22) we can obtain by averaging an equation for
®** , and by subtracting the averaged equation from (22) we
can obtain an equation for the fluctuations §/** . The rela-
tions given above are sufficient to obtain the radiative colli-
sion integral.

We use the Coulomb gauge. We assume that there is a
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random external classical electrostatic field:

E.|*
«P:NP:’ >=J hzl
ky

Besides this, there is the self-field g7, A? of the particles and
the vacuum electromagnetic field A’ (the field of the zero-
point fluctuations).

To obtain the quasilinear equation, it is sufficient to
take into account in §f only the terms linear in @® and ignore
the terms associated with the self-fields and vacuum fields,
while on the right-hand side it is necessary to use the asymp-
totic behaviour (as t— )

O (kitky). (23)

sin(@;—€psi,T€p) 1

—>nd (0.)1—3p+k|+5p)1 (24)
©;—&psx,TEp

which is valid for t>max{1/w,,1/k,v}; finally, it is neces-
sary to expand the resultin k,/p, assuming k,/p<1. Then for
0, (r,t)= [ @, (t)e™ dk

we obtain
d®,/dt=I,70,,

where 1 g’ is described by Eq. (11). In the same approximation
we obtain expressions for the nondiagonal components of
the density matrix,

1,1 -1,1 q’:rc (DilEmlz o0,
(Dp =—(Dp =~4—Sp—2-j Tﬁ(m;—k;V)Kki ap ) dkg,

(25)
which contain # in the numerator [in (25), #i = 1] and, there-
fore, describe quantum effects. They must be taken into ac-
count in the calculation of the terms of the following order in
g i.e., the radiative effects. To describe the latter, it is neces-
sary, as we have noted, to take into account the self-fields
and the vacuum fields and to renormalize. These calcula-
tions are very lengthy, but they actually correspond to a sim-
ple procedure of expansion with respect to g and averaging
by means of (21) and (23), and also to the standard renormal-
ization procedure. We shall give here only the final result
(for details of the calculations, see Ref. 5, and also Refs. 2 and
3):

d0,/di=1" 0, +1,0,, (26)

. ra dp’ )
Iy dd)p=”q2 J'(_Z::)—a{Gp,p’Ig'l o,
_Gp',pjp ®p+IA:‘ Gp',pq’p_jp Gp,p'q)p’}y (27)
where

__ sipxp’l*(lp—p’|+es)
ep|p—p I°[(|p—Pp' | t&5)*—ep’*]*

p.p' (28)
The radiative collision integral satisfies the particle
number conservation law

[1, 0,22

Y

Its characteristic feature is the integral [and not differential,
as in (11)] nature of the interaction of particles of different

momenta. For the fast (“tail”’) particles with momenta
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greater than those that quasilinear diffusion has “reached,”
all the terms containing @, can be ignored, it being assumed
that the number of low-energy particles greatly exceeds the
number of fast particles. In addition, the last term of (27) is
also usually small compared with the first (p>p’). We have

d(D fast p/ [p,xpl]zqu'

‘(2n)*
Thus, the really rigorous analytic treatment confirms the

validity of the relation (7) obtained from the semiqualitative
arguments. Moreover, for the isotropic case

(29)

—_— 2
[p,p’ 1¥/pp"*= 5 Go=1/12n*

(the bar denotes averaging over the angles).
For nonrelativistic fast particles p>p’, p<m,

GP~ l"zz [pv p,]z/mzp51

w0 g (30)
P ~ ’ i 7
Ta "~ epsmznzf ply @y dp

and, therefore, the distribution with respect to the kinetic
energies € = p*/2m is

‘D: == (7] .
2n? P e

In the general case we have for p’<m and for arbitrary rela-
tionship between p and m

Gy, »=2[p,X P’ 1*/P’es (ptes),
dm.fauz 2qz ‘ p,z-[pq'l (Dp' dp'
dt 3ne(e+2m) J (2n)°[e+ (e(e+2m))"+m]

(31)

where £ = (p?> + m?)'/? — m. This distribution describes the
universal variation of the spectrum at £ =~ m, i.e., for nuclei at
an energy of 1 GeV per nucleon.

§3. MEAN CHANGE IN THE ENERGY OF PARTICLES DUE TO
RADIATIVE INTERACTIONS

We determine the total energy of the particles by the
relation

E= j e, @ (2 ) S
By virtue of conservation of the particle number, the change
in the mean energy is proportional to the change in the total

energy. The change in the energy due to the quasilinear ac-
celeration is

dE" dp
= (e 00, —2__
dt f e 2n)?

E, |*dk
=-—nq2‘[ka;l-—‘6(mi—kﬂV) (k,
1

dp
) (2m)* "
(32)
This expression will be compared with the radiative ef-

fects:

4E™ dp dp’
P — =n
dt ) 2n)*

{(ep—£5) oy Iy Dyt (eply —epf3 ) Gpr p®p}. (33)
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We have here replaced the integration (p'=2p) in all terms
containing @, to ensure that only ®, occurs. The operators
I 7 and I a contam two derivatives w1th respect to the mo-
menta We use the first of them, integrating by parts in (38).
We obtain

dE™ dp dP lE"'l {(sp—ep ) (k‘ i )

Tt i =l

90 G,
X6 (0, —kv) (ki ")—(k,v) (k, LI ) 5 (0,—kwv) D,
ap Jp

.0G"'"’) cp.,}.
’ dp .

The relation (34) already differs in structure qualitative-
ly from (32), since it contains not only the derivative of the
distribution function (which can decrease fairly rapidly in
the case of quasilinear relaxation) but also the function @,
itself (a further integration by parts leads already to deriva-
tives of § (w, — k,-v), indicating that the derivative of @, still
occurs in the result). Such terms could occur if I rad were a
Fokker-Planck operator and contained a frlctlon force.
However, I r2d describes a nonlocal coupling between parti-
cles of dlfferent momenta and is not a Fokker-Planck opera-
tor (the quasilinear operator / z’ does not contain a friction
force). Therefore, the last two terms of (34) describe some
effective mean friction force.

The relation (34) is convenient for calculating the
change in the energy for the nonrelativistic part of the parti-
cle distribution ®,, i.e., for p&m. At the same time, it is
possible to use the expression (31) averaged over the angles,
bearing in mind that characteristically p’ ~m, i.e., p'>p:

Gy, y=4p"[3p ey (p'+ep'). (35)

(34)

+ (k') 8 (oK) (k‘

For p<m, the second and third terms of (34) are p?/m? times
smaller than the first. With allowance for (35) and only the
first term of (34), we have

dE™
—

8:n;2q J- | E; Izm (epr—m) 6 (@,—k,v)
k’p%ey (p’+epr)
a0

(k, F) dko,dpdp’/(2n)%.  (36)
Here, in the first approximation in p<m we have set
&y — €, ~€, —mK;p=mo. The same expression can be
obtained from the first term of (33) if we set ¢, =m. Thus, the
difference between the first terms of (33) and (34) has the
relative order p?>/m?, i.e., for p&m it is small. On the trans-
formation of (33) into (34) some of the first term is transferred
to the second and third terms of (34). They both have the

order p?>/m? relative to the first term.
Integrating in (36) over p’, we obtain

Er 1 E\|*
d =—£(ln2—_)q4j| hl

at 3 2 e 00 (k)
1

( 00, ) dp dk, (37)

@n)*

Comparison of the radiative effects described by (37) with
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the quasilinear effects described by (32) shows that the result
differs by a numerical factor (i 1,c#1)

8 1 N g s
?m(l 2 E’) 2 0164h ~1,2-10-°22, (38)
The last number is written down for ¢ = Ze (where e is the
electron charge), e*/%ic ~1/137.

It is appropriate to recall that the quasilinear change in
the energy is an inversion of Landau damping. Therefore the
radiative corrections 7 to the Landau damping " are

R e [1 + -58?‘ (ln 2— 12—) %}] . (39)

The second and third terms of (34), like the corrections p*/
m? to the first term (which have the same order), diverge
logarithmically at small p’ if the approximate expression
(35), which is valid for p'>p, is used. If we are interested in
these corrections with logarithmic accuracy, we can trun-
cate the integration over p’ at p’ ~p.

It should here be pointed out that G,,,, has a singularity
as p'—p, and therefore the integration at p’ ~p must in gen-
eral take into account all the terms of Eq. (27), which does
not have a singularity as p’—p.

The correctness of this last remark can be seen by re-
placing p’ by p + k and using for k<p the expansion

1
Gn,n+kz (1 + —z‘ka ) * (k)

1 9
Gz( 1+2—k55) G (—k);
2[k,Xp]?

m
k ATt
(k)= k’ep*(k—kp/e,)?

Equation (27) then reduces to a form corresponding to the
classical result of Ref. 1, which does not contain a divergence
as k—0 (p'—p):

ra El 0
n“o _——j L2 {(k—)6(m‘—k‘v)
ap

(s 220 5;‘;*’)
(5 ) 8ok (k %}ﬂ)
() = (15 () 657 0 (. 20

+ (kla—i)ﬁ(mi—klv)@p (kla—‘l) (k, %) G (k)}.

This result together with (39) shows, among other things,
that Eq. (27), and also the expressions (33) and (34) for the
mean change in the energy do not contain either infrared
(k—0) or ultraviolet (k— o or p'— 0 ) divergences.

Note also that (33) is effectively identical to the expres-
sion for the change in the mean energy of the fast particles,
which are described in the limiting cases p>m and p<m by
(29) and (30), and in the general case by (31). Thus, for the
considered case of nonrelativistic background particles the
radiative corrections are entirely due to the generation of
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fast particles. The analysis shows that a relatively small
transfer of turbulence energy is associated with the genera-
tion of fast particles; the main expenditure of turbulence en-
ergy is on the quasilinear heating of the main background
particles.

Equations (26), (27), and (32)—(34) describe the general
case of arbitrary distributions. We have here restricted our-
selves to the most real case, when the number of background
(almost thermal, and in a number of cases for low-frequency
oscillations simply thermal) particles greatly exceeds the
number of fast particles, i.e., the case having direct bearing
on the problem of fast (cosmic ray) particles in cosmic plas-
mas.

§4. COMPARISON OF THEORETICAL SPECTRA WITH
OBSERVED COSMIC RAY SPECTRA

For the comparison, we shall consider the most realistic
picture of inhomogeneous unsteady turbulence with inter-
mittent regions of turbulence in space and in time® (the mod-
el of so-called spike turbulence). It is important that in each
bounded region or during the time of each intermittent burst
the same spectra (31) are generated. Therefore, the particles
produced in different spatial regions and at different times
are simply superimposed on one another (if, of course, the
losses in the intervals are small).

We discuss the question of the extent to which the re-
sulting spectra are universal. In the general case, Egs. (29)-
(31) give only the source of fast particles, but there may also
be losses. For e>m, for example, we obtain

90, 00, Q 9

P +v 3 F-I—;;P(e)d)g, (40)
where P (¢) is the power of the loss of the fast particles, and
the term vd @, /dr describes the convective transport of the
particles out of the acceleration region. We discuss two ques-
tions: 1) when losses are important in the forming of the
spectrum, 2) the extent to which the sources are universal.

The answer to the first question differs from the tradi-
tional answer for the mechanism we are discussing. The
source formation time is determined by the attainment of the
asymptotic behavior (24) after the turbulence has been
“switched on,” i.e., by a term of order 1/w,. The higher the
characteristic frequency of the turbulence, the smaller the
part played by the losses. However, in cosmic plasmas the
losses in the acceleration process are usually not very impor-
tant even for very small @,. This is also indicated by the
estimates for the known loss mechanism.>” In any case, it is
easy to satisfy the conditions of small losses for the genera-
tion of even the particles of the highest energies.®> When ac-
celerated high-energy particles pass through a certain thick-
ness of substance in the source, cascade showers must
naturally arise, and this may limit the contribution to the
high-energy particles from sufficiently dense turbulent re-
gions of space. However, the question of the particles of the
highest energies in cosmic rays is now posed in a quite differ-
ent framework, since their generation by close sources is not
ruled out.

The second question concerns the universality of the
source Q /¢ giving a spectrum 1/¢ with ¥ = 3. It was al-
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ready noted above that the integral (36) depends on the total
integral of the correlation function of the fields, i.e., a spec-
trum with ¥ = 3 is obtained for any correlation function
with width greater than or less than the characteristic pulsa-
tion frequency or, in other words, in both the case of weak
and strong turbulence. It does not depend on the type of the
turbulent pulsations. Although (36) is written down for the
case of electrostatic oscillations, generalization of the result
to any oscillations of another type (not electrostatic) is tri-
vial, since (36) simply contains a different operator /% by the
operator describing the process of induced scattering. Simi-
larly, an external magnetic field has little effect on the result
for #iw; <mc?. Finally, comparison of (29) and (30) with the
results of Ref. 3 for spin ! particles shows that the basic
characteristics of the spectrum do not depend on the spin of
the particles (only the numerical coefficient of order unity is
somewhat changed, and then only for £>mc?).

The emergence of the particles from the source can
slightly change the spectrum through the excitation of Alf-
vén waves and the diffusion process. However, for cosmic-
ray electrons the excitation of Alfvén waves is difficult.
Therefore, their spectrum must be close to ¥ = 3, whereas
for protons and nuclei 2 < ¥ < 3 possibly (see Ref. 8). These
theoretical ideas agree well with the observations. First, the
spectrum of cosmic-ray electrons is close to 1/&>. For the
relativistic cosmic-ray nuclei the spectra are almost indepen-
dent of Z, the atomic number of the nucleus, in accordance
with the theoretical results.

Thus, we have found an explanation for the two most
mysterious properties of the observed cosmic-ray spec-
trum—the constancy of ¥ in a very wide range of energies
and the Z-independence of 7.

Further, one must expect changes in the spectrum of the
nuclei at the energies at which the escape of the nuclei from
the sources is significant. For the escape of cosmic-ray nuclei
from the Galaxy, the energy is 10'°~10'7 eV, at which certain
changes in the spectrum are in fact observed.

Another characteristic property of the theoretical spec-
trum is that for all nuclei a characteristic change in the spec-
trum [see (31) and (36)] occurs at £ ~mc?, i.e., at the same
energy per nucleon (1 GeV per nucleon). This is also in agree-
ment with the observations.

However, these are not all the possibilities of theoretical
explanations of the observations. One of the most important
characteristics is the chemical composition of cosmic rays,
i.e., in (40) the distribution of Q with respect to Z. The frag-
mentation of nuclei and the change in the chemical composi-
tion as the cosmic rays travel from the sources is a well-
studied problem.” This however cannot explain the
relatively large (large by almost two orders of magnitude)
number of nuclei in cosmic rays with Z> 10. According to
the latest data,® the abundance of nuclei in cosmic rays for
Z > 10is in general close to the abundance of the elements in
cosmic space (with some not very significant deviations for
some isotopes). But the ratio of the number of protons to the
number of nuclei with Z > 10 is about 102,

This can be partly understood by means of (36) if it is
assumed that the acceleration takes place in a plasma of suf-
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ficiently high temperatures, so that nuclei with relatively
small Z are fully ionized. Then

/ 1 my\h
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q=Ze;
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and for Z ~ 10 this gives ~ 3 X 10%. We note that the theory is
not valid for Z ? > fic/q* and in accordance with (39) it is also
invalid at least for Z*> 10° or Z > 30.

An important characteristic is the relative number of
electrons and protons in the cosmic rays. The observations
indicate that the number of cosmic-ray electrons with energy
greater than 1 GeV is approximately two orders of magni-
tude less than the number of cosmic-ray protons. It is neces-
sary to consider what theory gives for particles of different
masses but Z = 1. In accordance with (30), the number of
particles with e~mc® is 1/mvro<1/m*?,  since
$pL @, dp' < 1/vr eom'?, 8w, — kv)~1/kw~1/kw,.

For spin | particles (electrons and protons)it is, natural-
ly, necessary to use the results of Ref. 3. However, as we have
noted, the corresponding expressions differ from (30) only by
numerical factors of order unity, and therefore for estimates
we can here use the expression (30). If we compare the num-
ber of electrons with £~m,c* with the number of protons
with exm, ¢?, there will be more electrons by the factor
(m,/m,)*'*. But in accordance with (29) the number of elec-
trons withe>m, c?is (m, /m, )’ times less than the number of
electrons with €2 m,c?, i.e., the theory indicates that the
number of electrons with £ X m,c*~1 GeV must be (m,/
m,)"/? =3 x 10~ times less than the number of protons, and
this is somewhat greater (by 1.5 times) than the observed
number. It is however clear that our estimate cannot claim
high accuracy. In addition, it is well known that for electrons
radiative losses of various kind are more important.

These qualitative and quantitative agreements between
the theory and observations make it possible to reexamine
the general question of the origin of the cosmic rays and,
specifically, on the basis of theory find the parameters of the
cosmic plasma of the sources (density, temperature, etc.)
that can ensure the observed characteristics of the cosmic
rays at the Earth, due allowance being made, of course, for
the effects associated with their propagation. For high-ener-
gy particles this gives us a requirement on the density; for the
chemical composition, a requirement on the degree of ioni-
zation (i.e., the temperature) and so forth. This program is
also of interest for particles of maximal energies in cosmic
rays.

Also of interest is the question of new effects that can be
predicted by the theory. The first and most important of
them is that the main component of the cosmic rays in the
interstellar medium may be electrons and not protons and
nuclei. The maximum in the electron spectrum, at ~1 MeV,
cannot be observed near the Earth due to modulations by the
solar wind. However, these electrons may be the most signif-
icant as regards the number of particles in the interstellar
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cosmic medium outside the solar system. True, this conclu-
sion is obtained without allowance for the energy loss of the
electrons on ionization, emission, and so forth, i.e., in the
regions of their generation (acceleration). With allowance
for the losses, the energy in the electrons may be of the same
order or even less than the energy of the protons.

Another conclusion is that the nonrelativistic compo-
nent of the cosmic rays, both electrons and ions, may be the
main fraction of the cosmic rays (they are sometimes called
subcosmic rays). Indeed, for a distribution ~ 1/¢ for £ <mc?
the total number of subcosmic rays (i.e., particles with
£ < mc?) will be in order of magnitude In(c?/v%) times greater
than the total number of cosmic rays (i.e., particles with
£> mc?) of the given species (i.e., with the same g and m). For
the electrons, this estimate is not always true. If, for exam-
ple, ionization losses are important, P (€) £~ /2, then for the
source Q /e the spectrum £~ ' is replaced by £'/? ie.,
In(c?/v3), which gives an estimate of the relative numbers of
nonrelativistic and relativistic electrons, is changed by
In(c®/v?,,), where v, is the electron velocity below which
ionization losses are important (it is assumed that v,;, €c).
The large number of electrons leads, for example, to strong
heating of the interstellar medium.'°

The energy in the cosmic-ray electrons must be (m,/
m,)"/? times greater than in the ions if, of course, the ioniza-
tion losses for relativistic electrons do not have an effect for
e>m,c? Let &,, >m,c? be the value of the electron energy
below which the ionization losses are important; then for
£ <&, the spectrum becomes £ ~2. Extrapolating this elec-
tron spctrum to £ ~m, ¢, we obtain a ratio of the energy of
the cosmic-ray electrons to the energy of the ions that is
smaller than (m, /m,)"/?. If €, ~ 100 keV, then the electron
energy will be of approximately the same order as that of the
ions. But this is a consequence of the losses (in the given
example, on ionization and heating of the medium). The
sources are such that they will transfer to the cosmic-ray
electrons (m, /m, )!/2 times more energy. This energy then
goes on heating of the medium through ionization losses.
The formation of the electron spectrum can also be affected
by reabsorption, which leads to the creation of a turbulent
plasma reactor.'!

Thus, the energy of the cosmic-ray electrons (at the time
of their generation) is approximately (m,/m,)"? times
greater than the energy of the ions. In turn, the energy trans-
ferred to the cosmic-ray electrons is 1.2 10~* times less
than the energy transferred to the background (thermal)
electrons, i.e., the energy expended on heating the electrons
in the sources (turbulent regions).

With regard to the well-known general energy esti-
mates’ leading to the conclusions that the cosmic rays are
generated in the envelopes of supernovae or active stars, they
remain as before. In these regions there is merely generated a
more intense turbulence, leading to a greater contribution of
the corresponding region to the generation of the cosmic
rays. Essentially new is the result that low-activity regions
can also make a contribution, since the spectrum is univer-
sal, and the superposition of all the existing sources deter-
mines only the total concentration of the cosmic rays. Many
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weak sources can give the same effect as a small number of
strong ones. A more careful analysis of the number of weak
sources is therefore needed. Shock waves can also be sources
of cosmic rays, since turbulence develops at their shock
fronts, but Fermi acceleration of the first kind at a shock
front cannot ensure the common power-law spectrum in the
observed wide range of energies and therefore cannot be the
main mechanism of generation of cosmic rays. For suffi-
ciently low (above all nonrelativistic) energies, quasilinear
acceleration is predominant, and this gives distributions of
exponential type: f. «e ~ exp( — £7). This explains why ex-
ponential rather than power-law spectra are observed in
weak flares on the Sun.

The effects of the generation of the fast electrons are
naturally important only only for cosmic but also laboratory
plasmas. They must be a necessary concomitant of reso-
nance microwave heating of plasmas in facilities with mag-
netic confinement. If they are not confined in the system,
then their flux to the walls must be accompanied by the ap-
pearance of impurities. The energy loss in the fast-electron
channel may be comparable with the energy lost by brems-
strahlung.

Thus, we formulate the main conclusions.

The first is that the very simple expression (31) provides
an explanation for five independent observations: 1) the uni-
versality of the spectrum and the fact that it does not depend
on the particle species or the nature of the turbulence; 2) the
power-law nature of the spectrum with exponent close to the
observed value; 3) the change in the spectrum of all nuclei at
energies of 1 GeV per nucleon; 4) the chemical composition
of the cosmic rays and the predominant abundance of heavy
nuclei with Z>10; 5) the deviation of the number of cosmic-
ray electrons from the number of ions at energies greater
than 1 GeV.

The second is the prediction that the main fraction of
the energy in the sources is transferred to cosmic-ray elec-
trons (about 40 times more energy is transferred to the elec-
trons than to the ions), which then in general is expended
partly on heating and ionizing the medium. The energy
transferred to the cosmic-ray electrons is approximately 10°
times less than the energy transferred to heat and ionization.
These estimates can give more reliable ideas about the ener-
gy balance of the cosmic sources.

The third is the prediction that the cosmic rays of the
highest energies can be generated in fairly near and, possibly,
galactic sources. The generation of cosmic rays is a general
physical phenomenon, and sources with different power
must change only the number of particles but not their spec-
trum. In this sense, all solar flares must be accompanied by
the generation of fast ions and give radiation in ¥ lines.

The fourth conclusion is the possibility of a laboratory
test of the considered mechanism of generation of a universal
spectrum of fast particles. This is most readily done for elec-
trons. The efficiency of such a quantum accelerator, as it
may be called, decreases rapidly with increasing energy.
Thus, for the plasma-beam intereaction the number of rela-
tivistic electrons with energy greater than £,»mc? estimated
by means of (29) is
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where 7, is the quasilinear time, v, is the velocity, and n, is
the density of the beam. For v} /c*~0.1, (mc*/g,)*~0.1,and
T~Tg ~@pe Ny /Ny We have ng,, /n, ~107>, and already for
£0~0.01 GeV when (mc*/e,)*~10"* we have ng,/
n, ~107%7/7,,. The maximal 7~ /c is determined by the
flight time (if there is no confinement). Therefore, observa-
tion of the spectrum of relativistic electrons in a restricted
energy interval in a sufficiently large volume of turbulent
plasma is an experimental task that is not without hope.
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