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In the framework of a theory that takes into account radiative effects in stochastic acceleration of 
particles it is shown that a power-law distribution of the fast (tail) particles is formed independent- 
ly of the type of random field, the turbulence spectrum, the nature of the correlations (strong or 
weak turbulence), and the charge and spin of the accelerated particles. The basic characteristics of 
the theoretically obtained spectrum (the power-law dependence on the energy with y = 3 for 
&)mc2; the flattening of the spectrum of all ions (nuclei) for E < mc2, i.e., at energies less than 1 
GeV per nucleon; the relative concentration of the electrons and protons, and also of the protons 
and the heavy nuclei; and the relative concentration of thermal and fast particles) are very close to 
the observed characteristics of the electron and ion cosmic-ray spectrum. The theory predicts the 
presence of a relatively large number of low-energy electrons, so that the total energy transferred 
in acceleration processes to cosmic-ray electrons can be greater than the energy transferred to the 
cosmic-ray ions. This changes the estimates obtained from observations of the energy released in 
known sources of cosmic rays. 

81. INTRODUCTION. QUALITATIVE PICTURE 

The radiative effects associated with the change in the 
electromagnetic mass of a particle accelerated in random 
fields by wave-particle resonances were discussed in the 
framework of the classical approach in Ref. 1 and in the 
framework of the relativistic quantum kinetic approach for 
spin 4 particles in Refs. 2 and 3. In both the classical ap- 
proach (for a physically reasonable cutoff of divergent inte- 
grals) as well as in the quantum approach the relative magni- 
tude of the radiative effects is formally of order q2/+k, where 
q is the charge of the particle. However, as will be seen from 
what follows, this estimate is somewhat formal in nature, 
and it also corresponds to the estimate of the relative fraction 
of integrated characteristics such as, for example, the change 
in the mean energy of the accelerated particles, etc. 

With regard to the energy distribution of the particles, 
it can be shown that radiative effects become decisive in the 
generation of the small number of very energetic particles. 
Their spectrum has a number of universal characteristics, 
which will be the subject of the present paper. 

By "formal" allowance for radiative effects, we mean 
formal expansion of the interaction with respect to q2/+k. 
Whereas in the first approximation the interaction of the 
particles with the random resonance field Ek, (in what fol- 
lows k, = { kl,w, J denotes the 4-momentum vector of the 
resonance field, and k is the momentum of the virtual field) is 
proportional to q21Ek, 12, in the following approximation in 
the square of the charge it is proportional to q41Ek, 1'. 

In a classical description, an additional q2 can occur 
only in dimensionless combinations containing classical 
quantities. Since we are considering the effects associated 
with the change in the electromagnetic mass of the particles 
due to the presence of the resonance fields, the additional qZ 
must occur in the expression equal to the ratio of the energy 
of the self-field of the particle to its total energy 

E~ = (p2c2 + m2c4)1'2. The electrostatic energy of a point 
charge is equal to q2/r as r-0 or q2$d k /2dk  '. It was shown 
in Ref. 1 that only the transverse part of the self-energy con- 
tributes to the radiative corrections to the stochastic accel- 
eration (the retardation of the virtual photon is important; 
cf. Ref. 4). Therefore, instead of the Green's Function 1/ 
2 d k  of the longitudinal field, the expressions obtained in 
Ref. 1 contained the Green's function of the transverse field: 
l/[k - ( ~ , v ) ~ / c ~ ] ,  where v is the particle velocity. Integra- 
tion of such expressions over the angles of the virtual photon 
k gives divergent integrals of the same typeA (v)$d k/k as in 
the case of the electrostatic energy, though the factors A ( v )  
that depend on the particle velocity (expressions for A (v) are 
given in Ref. 1). For E)mc2, when v+c ,  these factors are in 
general certain constants. 

In other words, in the classical approach the additional 
terms with extra qZ for ~)rnc'  contain q2 in the combination 
( ~ p  ZCP) 

This result is given here to illustrate qualitatively and nonri- 
gorously how the universal power-law spectra are obtained 
in the quantum treatment. Before doing this, we note that if 
in the integral (1) we cut off k at k,,, -p/+i, then (1) gives q2/ 
+k. 

In the quantum treatment, naturally, divergent inte- 
grals do not arise, but this is achieved by the renormalization 
subtractional procedure. The subtractional procedure must 
give expressions that in the limit k-+w are also asymptoti- 
cally power functions l/kv with integral Y [in (I), Y = 21. It is 
obvious that convergence occurs for ~ > 4 .  This, of course, is 
only an indirect indication that Y may be equal to 4. In any 
case, this value of Y is the smallest possible value that can 
"survive" asymptotically, unless, of course, its coefficient 
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vanishes for certain symmetry reasons. In fact, this is not the 
case, as will be demonstrated in the quantitative calculation 
made below. In the present qualitative analysis, we shall as- 
sume that the coefficient does not vanish. 

From the quantum point of view, the self-energy of the 
particles is produced by the emission and absorption of a 
virtual photon (momentum tik). Then a particle with mo- 
mentum p goes over as a result of emission of, for example, a 
photon tik into the, state p - fik. If is sufficiently large 
(and the divergence of the integral (1) gives grounds for as- 
suming that very large k can be important in this process), so 
that a s p ,  the recoil momentum of the particle after emis- 
sion of the k photon will be large and Jp - fik(>p, i.e., a slow 
particle is transformed into a fast particle and a fast photon. 
This "dissociation" occurs only temporarily, and subse- 
quently the virtual photon is absorbed by the particle, which 
again becomes slow. 

It is also posssible to have another process, in which a 
fast particle, emitting a photon with large momentum, be- 
comes slow "for a time." Because of the renormalization, 
this process is absent (is included in the particle mass) for free 
particles (not accelerated by external factors). But in the 
presence of the external fields leading to acceleration pro- 
cesses, this process is included (as an effect additional with 
respect to the vacuum), and one can say that in the presence 
of accelerating fields the emission of virtual photons causes 
the particles to "jitter," a fast particle becoming a slow one 
for short periods and vice versa. 

We shall be interested in stochastic acceleration, as- 
suming that the accelerating fields are random, and we shall 
consider an ensemble of accelerated particles. Let @, be the 
mean probability of finding a particle with momentum p. 
The averaging is over a mixed state, i.e., it includes the quan- 
tum-mechanical probability of finding one particle in the 
state with momentum p. The states that arise on the emission 
of a virtual photon are also of this kind. Because of the indis- 
tinguishability of the particles, it is meaningless to try and 
distinguish those that at a given time have gone over virtual- 
ly to a state with a different value p' of the momentum from 
those that at the given time have the same momentum p'. It is 
only meaningful to speak of the averaged probability over 
the mixed state. In fact, @, is a component of the averaged 
density matrix (see below). 

We assume that when radiative effects are ignored the 
:ate of stochastic acceleration is described by the operator 
Ip , i.e., 

Let us find how frequently we shall "see" the appearance of 
fast particles. Let p be the momentum of a fast particle. The 
momentum of the slow particle will be p - fik (where fik z p ,  
so that Ip - fikl <p). We write down Eq. (2) for the slow par- 
ticles: 

d@p-hk /d t ' fp - f i k@P-hk .  (3) 

The factor (1) can be regarded as the probability of different 
k. Replacing l/k in (1) by the renormalized expression, de- 
noted by G (k 2), we obtain from (3) for the fast particles 

Replacing p - fik in (4) by p', we obtain 

We now consider p>pl, using the asymptotic behavior 
for G (k 2, that we have already discussed above. We set 

pt2 
G ( (p-p') '1 + - Go. 

lip' 
(6) 

Here, the factor pI2/fi is added for dimensional reasons to 
make Go in (6) dimensionless. Indeed, for this choice the fac- 
tor q2pt2/&p5 has dimensions l/p3. So does dp'. The depen- 
dence (6) onp as l/p4 follows from the asymptotic behavior 

Thus, we obtain the rate of generation of fast particles: 

This expression gives a universal energy distribution. If, for 
example, we integrate (7) over the complete interval of time 
during which the acceleration takes place, making the as- 
sumption that @,, describes only the low-energy particles, 
whose number is much greater than the number of high- 
energy particles, we obtain from (7) 

@ f t  - l / p 5 .  (8) 

The energy distribution 0, (E zcp)  differs from 0, in (8) by 
the phase space 4n-p2, i.e., 

@ h e 1  4 ~ ~ .  (9)  

In-these arguments, we have not particularized the op- 
erator I, -it may correspond either to Fermi acceleration or 
to the quasilinea: acceleration more common in plasmas. In 
the latter cay,  I, a q21Ek, I 2  (as already discussed above). 
The operator I, may also correspond !o scattering processes 
(for example, for induced scattering, I, cc q4 1 E,, 1 4 ) .  

In the present paper, we shall construct a quantitative 
theory that confirms these qualitative arguments, using the 
equations for the Wigner density matrix of particles of arbi- 
trary momenta (nonrelativistic and relativistic) described by 
Klein-Gordon equations, i.e., having vanishing spin. This 
treatment will show that the main results of the qualitative 
treatment do not depend on the spin of the particles [for spin 
4, the spectrum (9) was obtained analytically in Ref. 3) and, in 
addition, the case of spin 0 is somewhat simpler as regards 
the final analytic result and makes it somewhat easier to find 
the integrated characteristics of the radiative effects in sto- 
chastic acceleration. For simplicity, we shall discuss only the 
radiatiye effects for quasilinear acceleration by electrostatic 
fields (I, cc q21E,, 1 2 )  in the absence of external magnetic 
fields. The resonance condition for the fields E,, then re- 
duces to the Cherenkov condition 
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We shall assume that the fieldsE,, are classical, i.e., the 
quantum effects for them are negligibly small. This means 
that i i k ,gp ,& ,g~~ ,  the resonance condition 
E~ - E~ - fik = &, reduces to (lo), and the pair production 
reso;ance &, = E~ + E~ + *,, is not realized. Then the oper- 
ator I, has the form 

~~=I~q '=g 'n  J d k ,  

In what follows, we shall use the system of units with 
4  = c = 1. The superscript ql in the operator (1 1) indicates 
that the acceleration process is quasilinear. 

52. BASIC EQUATIONS. RADIATIVE COLLISION INTEGRAL 

In accordance with Ref. 5, a particle of spin 0 can be 
described by a scalar wave function $ and the fourth compo- 
nent $' of the 4-vector (+',i$'). Although the two functions 
$ and $' are related to each other, the relativistic quantum 
density matrix can be conveniently constructed by writing 
the basic equations 

in the form of two equations for $ and $' in the momentum 
representation: 

$P (t) eipr (t) e'Prdp 
9 (r, t) = J dp, I/ ('? t ,  = j (2i) a,8 . . 

~p (r, t) = J rpk (t) eLkrdk, 

A (r, t) =I Ak (t) ezkrdk, A,,= {A, irp}. 

The initial equations are 

,. 
epZ - 

I , - -  . d"' (t) - - $. (t) +q J rp.,(t)Yp-., (t) dk. 
at  m 

x;,, (t) )kp-k,-k2dkidkz, (I3) 

and also 

b t  the same time E: = p2 + mZ, and the potentials $,, ( t  ) and 
Ak,(T) are determined from Maxwell's equations, whose 
right-hand sides contain the charge and current densities 

jk (t) = - 2q J (pt - + ) j.'. (t) qpr (t) apl 

q2 -- 
(an) a 

The charges and currents are introduced in such a way that 
their vacuum expectation values are zero. 

The introduction of two functions, $ and $', is dictated 
by the presence of particles with two possible signs of the 
energy (particles and antiparticles), but for both free parti- 
cles the operators $ and $' contain both terms with positive 
and negative energy. 

It can be seen from the commutation relations 

1 
= $ p ' ( t ) $ , ( t ) - $ p . + ( t ) $ p p ( t ) = - ~ ( ~ - ~ ' ) r  m (16) 

Gp (t) $, (t) - GP,+ (t) Gp (t) = G i  (t) @ (t) - 4$; (t)  $' p ( t )=O 
(17) 

h 

that in f y t  the "conjugate" of the operator A (t ) is jP '+(t  ), 
~ n d  not $,+ (t ), and the "conjugate" of the operator q;(t ) is 

*,+ (t 1. 
It is convenient to introduce the sign A =  + 1 of %e 

energy of the free particles (superscript (0) of the operator $): 

'1. 

4: "' (t) = (5) 2m2' -) A ~a: exp ( - i~~ . t ) ,  

- 
up =aP+,ap ' = b - ,  +; a; and a, and b and b, are, re- 
spectively, the operators of creation and annihilation of par- 
ticles and antiparticles. 

We introd~ce density matrix operators in the Wigner 
representation f t;; '(t ) and in the representation of the signs 
of the energy of the free particles (AJ ' = 1): 

E ~ - ~ ~ ~  mhh' - 
Ep,k -k - ~ ; , k  ) 

m Ep+k12 

(18) 
where 

For free particles, (a ,  + a,, ) = @, S (p - p'). In the absence 
of antiparticles, (b ,  + 6,. ) = 0. The particle concentration 
n is related to aP by 
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we have 
*.*(O) **-*'O) -*,*'o) - l , - I ( o )  

( f p , t  )=(Dp6 (k), ( f p , k  > = < f p , k  ) = ( f p , k  )=O. 

The averaging symbol corresponds to averaging over the 
vacuum and over the statistical ensemble. 

In the general case, one can introduce the averaged den- 
sity matrix 

3 '  r,nV 
@ p , k  = ( f p , k  ) 

and the operator of fluctuations 
&.)I' &,A' &.A' 

6 f P , k  = f p , k  - ( 3 p , k  ). 

In the approximation of free particles, 

6 E c e '  ( t )  =6f$(" (0 )  exp {-i ( h e , + k 1 2 - A t e p - k 1 2 )  t }  , 
and the mean values of the fluctuations do not vanish only 
for the products 

The equations for f t;,"' can be obtained from (12)-(15). 
They can be most readily obtained fof; the second terms of 
(19) containing the operat2rs $ %nd $' in an order which 
ensures that the operators A and p occur only in front of or 
after the combinations containing the operators $. Further, 
using (16) and (17) we can show that the first terms of (19) 
satisfy the same equations. The equation then obtained has a 
form very similar to the classical kinetic equation: 

, A.A. 4 
i- t.k ( t )  - ( h e . + k 1 2 - h ' e p - k ~ 2 ) ~ k '  ( t )  = -z J dk, 

d t 2 
A ' '  

X( h'hff+ Ep-k" ) G k ,  ( t )  } 
, & p t k x - k / 2  

For A = A  ' = 1 and k ~ ,  the left-hand side of (22) has the 
standard classical form idf /dt + (k-vlf. 

From (22) we can obtain by averaging an equation for 
QAA , and by subtracting the averaged equation ffom (22) we 
can obtain an equation for the fluctuations 6f* . The rela- 
tions given above are sufficient to obtain the radiative colli- 
sion integral. 

We use the Coulomb gauge. We assume that there is a 

random external classical electrostatic field: 

Besides this, there is the self-field pq , Aq of the particles and 
the vacuum electromagnetic field A" (the field of the zero- 
point fluctuations). 

To obtain the quasilinear equation, it is sufficient to 
take into account in Gf only the terms linear in pR and ignore 
the terms associated with the self-fields and vacuum fields, 
while on the right-hand side it is necessary to use the asymp- 
totic behaviour (as t-+ oo ) 

which is valid for t)max{ l/w,,l/k,vj; finally, it is neces- 
sary to expand the result in k,/p, assuming k,/p( 1. Then for 

we obtain 

d@,/dt=fpn'Qp,  

whereizis described by Eq. (1 1). In the same approximation 
we obtain expressions for the nondiagonal components of 
the density matrix, 

(25) 
which contain f i  in the numerator [in (25), f i  = 11 and, there- 
fore, describe quantum effects. They must be taken into ac- 
count in the calculation of the terms of the following order in 
q2, i.e., the radiative effects. To describe the latter, it is neces- 
sary, as we have noted, to take into account the self-fields 
and the vacuum fields and to renormalize. These calcula- 
tions are very lengthy, but they actually correspond to a sim- 
ple procedure of expansion with respect to q2 and averaging 
by means of (21) and (23), and also to the standard renormal- 
ization procedure. We shall give here only the final result 
(for details of the calculations, see Ref. 5, and also Refs. 2 and 
3): 

d@,/dt=i; '@,+f  d"@,, (26) 

- G , , , p f p  Q ~ + ~ , P '  G p ' , p @ p - i p  G p , p ' @ p ' } ,  (27) 

where 

The radiative collision integral satisfies the particle 
number conservation law 

rod dp J G  Q . = = O .  

Its characteristic feature is the integral [and not differential, 
as in (1 I)] nature of the interaction of particles of different 
momenta. For the fast ("tail") particles with momenta 
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greater than those that quasilinear diffusion has "reached," 
all the terms containing @, can be ignored, it being assumed 
that the number of low-energy particles greatly exceeds the 
number of fast particles. In addition, the last term of (27) is 
also usually small compared with the first Ipsp'). We have 

Thus, the really rigorous analytic treatment confirms the 
validity of the relation (7) obtained from the semiqualitative 
arguments. Moreover, for the isotropic case 

C--i 2 
[ p ,  ~ ' ] ~ / p ~ p ' ~ =  - , Go=1/12n2 

3 

(the bar denotes averaging over the angles). 
For nonrelativistic fast particlesp%pl, pgm, 

and, therefore, the distribution with respect to the kinetic 
energies E = p2/2m is 

In the general case we have forpl(m and for arbitrary rela- 
tionship betweenp and m 

GP. P , = ~ ~ P , X P ' I ~ / P ~ ~ P ( P + E P ) ,  

p t z l ~ ~  ( D P 1  dpl -= 
(e (e+2m))"+ m] ' (3 

where E = (p2 + rn2)'l2 - m. This distribution describes the 
universal variation of the spectrum at E z m ,  i.e., for nuclei at 
an energy of 1 GeV per nucleon. 

g3. MEAN CHANGE IN THE ENERGY OF PARTICLES DUE TO 
RADIATIVE INTERACTIONS 

We determine the total energy of the particles by the 
relation 

By virtue of conservation of the particle number, the change 
in the mean energy is proportional to the change in the total 
energy. The change in the energy due to the quasilinear ac- 
celeration is 

(32) 
This expression will be compared with the radiative ef- 

fects: 

We have here replaced the integration (pr*p) in all terms 
containing a,, to ensure that only a, occurs. The operators 

and ii' contain two derivatives with respect to the mo- 
menta. We use the first of them, integrating by parts in (38). 
We obtain 

"" 8 (o,-k,v) @ .  x 6 ( o , - k , ~ )  (k, 2) -(klv) aP 

The relation (34) already differs in structure qualitative- 
ly from (32), since it contains not only the derivative of the 
distribution function (which can decrease fairly rapidly in 
the case of quasilinear relaxation) but also the function a, 
itself (a further integration by parts leads already to deriva- 
tives of 6 (w, - k,-v), indicating that the derivative of a, still 
occurs in the result). Such terms could occur if ird were a 
Fokker-Planck operator and contained a friction force. 
However, i rd describes a nonlocal coupling between parti- 
cles of different momenta andjs not a Fokker-Planck opera- 
tor (the quasilinear operator I:' does not contain a friction 
force). Therefore, the last two terms of (34) describe some 
effective mean friction force. 

The relation (34) is convenient for calculating the 
change in the energy for the nonrelativistic part of the parti- 
cle distribution a,, i.e., for p(m. At the same time, it is 
possible to use the expression (3 1) averaged over the angles, 
bearing in mind that characteristically p' - m, i.e., p1>p: 

Forpxm, the second and third terms of (34) arep2/m2 times 
smaller than the first. With allowance for (35) and only the 
first term of (34), we have 

Here, in the first approximation in p(m we have set 
ep. - E~ - m,kl.p=mw. The same expression can be 
obtained from the first term of (33) if we set E ,  Em.  Thus, the 
difference between the first terms of (33) and (34) has the 
relative orderp2/m2, i.e., forpgm it is small. On the trans- 
formation of (33) into (34) some of the first term is transferred 
to the second and third terms of (34). They both have the 
orderp2/m2 relative to the first term. 

Integrating in (36) over p', we obtain 

Comparison of the radiative effects described by (37) with 
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the quasilinear effects described by (32) shows that the result 
differs by a numerical factor ( f i# l,c# 1) 

q2 8 (ln 2 - 1) 2 0,161 - r 1,2- 10-'Z2. 
3n 2 f ie  f ic 

(38) 

The last number is written down for q = Ze (where e is the 
electron charge), e2/fic z 1/137. 

It is appropriate to recall that the quasilinear change in 
the energy is an inversion of Landau damping. Therefore the 
radiative corrections y'"* to the Landau damping f are 

The second and third terms of (34), like the corrections p2/ 
m2 to the first term (which have the same order), diverge 
logarithmically at small p' if the approximate expression 
(35), which is valid for pl>p, is used. If we are interested in 
these corrections with logarithmic accuracy, we can trun- 
cate the integration over p' at p' z p .  

It should here be pointed out that Gp ,,, has a singularity 
as pl-+p, and therefore the integration atpl-p must in gen- 
eral take into account all the terms of Eq. (27), which does 
not have a singularity as pf+p. 

The correctness of this last remark can be seen by re- 
placing p' by p + k and using for k<p the expansion 

GjO' (k) = 
2 [ k , x p I 2  

k 3 ~ p 2 ( k - k p / ~ p )  '' 
Equation (27) then reduces to a form corresponding to the 
classical result of Ref. 1, which does not contain a divergence 
as k--4 (pl+p): 

This result together with (39) shows, among other things, 
that Eq. (27), and also the expressions (33) and (34) for the 
mean change in the energy do not contain either infrared 
(k-0) or ultraviolet (k-+ w or p'+ w ) divergences. 

Note also that (33) is effectively identical to the expres- 
sion for the change in the mean energy of the fast particles, 
which are described in the limiting cases p>m andp<m by 
(29) and (30), and in the general case by (31). Thus, for the 
considered case of nonrelativistic background particles the 
radiative corrections are entirely due to the generation of 

fast. particles. The analysis shows that a relatively small 
transfer of turbulence energy is associated with the genera- 
tion of fast particles; the main expenditure of turbulence en- 
ergy is on the quasilinear heating of the main background 
particles. 

Equations (26), (27), and (32)-(34) describe the general 
case of arbitrary distributions. We have here restricted our- 
selves to the most real case, when the number of background 
(almost thermal, and in a number of cases for low-frequency 
oscillations simply thermal) particles greatly exceeds the 
number of fast particles, i.e., the case having direct bearing 
on the problem of fast (cosmic ray) particles in cosmic plas- 
mas. 

§4. COMPARISON OF THEORETICAL SPECTRA WITH 
OBSERVED COSMIC RAY SPECTRA 

For the comparison, we shall consider the most realistic 
picture of inhomogeneous unsteady turbulence with inter- 
mittent regions of turbulence in space and in time3 (the mod- 
el of so-called spike turbulence). It is important that in each 
bounded region or during the time of each intermittent burst 
the same spectra (3 1) are generated. Therefore, the particles 
produced in different spatial regions and at different times 
are simply superimposed on one another (if, of course, the 
losses in the intervals are small). 

We discuss the question of the extent to which the re- 
sulting spectra are universal. In the general case, Eqs. (29)- 
(3 1) give only the source of fast particles, but there may also 
be losses. For o m ,  for example, we obtain 

where P (E) is the power of the loss of the fast particles, and 
the term va a,/& describes the convective transport of the 
particles out of the acceleration region. We discuss two ques- 
tions: 1) when losses are important in the forming of the 
spectrum, 2) the extent to which the sources are universal. 

The answer to the first question differs from the tradi- 
tional answer for the mechanism we are discussing. The 
source formation time is determined by the attainment of the 
asymptotic behavior (24) after the turbulence has been 
"switched on," i.e., by a term of order l/w,. The higher the 
characteristic frequency of the turbulence, the smaller the 
part played by the losses. However, in cosmic plasmas the 
losses in the acceleration process are usually not very impor- 
tant even for very small w,. This is also indicated by the 
estimates for the known loss mechani~m.~ .~  In any case, it is 
easy to satisfy the conditions of small losses for the genera- 
tion of even the particles of the highest energie~.~ When ac- 
celerated high-energy particles pass through a certain thick- 
ness of substance in the source, cascade showers must 
naturally arise, and this may limit the contribution to the 
high-energy particles from sufficiently dense turbulent re- 
gions of space. However, the question of the particles of the 
highest energies in cosmic rays is now posed in a quite differ- 
ent framework, since their generation by close sources is not 
ruled out. 

The second question concerns the universality of the 
source Q / E ~  giving a spectrum ~ / E Y  with y = 3. It was al- 
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ready noted above that the integral (36) depends on the total 
integral of the correlation function of the fields, i.e., a spec- 
trum with y = 3 is obtained for any correlation function 
with width greater than or less than the characteristic pulsa- 
tion frequency or, in other words, in both the case of weak 
and strong turbulence. It  does not depend on the type of the 
turbulent pulsations. Although (36) is written down for the 
case of electrostatic oscillations, generalization of the result 
to any oscillations of another type (not electrosta?~) is tri- 
vial, since (36) simply contains a different operator 14' by the 
operator describing the process of induced scattering. Simi- 
larly, an external magnetic field has little effect on the result 
for h, gmc2. Finally, comparison of (29) and (30) with the 
results of Ref. 3 for spin 4 particles shows that the basic 
characteristics of the spectrum do not depend on the spin of 
the particles (only the numerical coefficient of order unity is 
somewhat changed, and then only for &)mc2). 

The emergence of the particles from the source can 
slightly change the spectrum through the excitation of Alf- 
vCn waves and the diffusion process. However, for cosmic- 
ray electrons the excitation of Alfvkn waves is difficult. 
Therefore, their spectrum must be close to y = 3, whereas 
for protons and nuclei 2 < y < 3 possibly (see Ref. 8). These 
theoretical ideas agree well with the observations. First, the 
spectrum of cosmic-ray electrons is close to For the 
relativistic cosmic-ray nuclei the spectra are almost indepen- 
dent of Z, the atomic number of the nucleus, in accordance 
with the theoretical results. 

Thus, we have found an explanation for the two most 
mysterious properties of the observed cosmic-ray spec- 
trum-the constancy of y in a very wide range of energies 
and the Z-independence of y. 

Further, one must expect changes in the spectrum of the 
nuclei at the energies at which the escape of the nuclei from 
the sources is significant. For the escape of cosmic-ray nuclei 
from the Galaxy, the energy is 10'5-10'7 eV, at which certain 
changes in the spectrum are in fact observed. 

Another characteristic property of the theoretical spec- 
trum is that for all nuclei a characteristic change in the spec- 
trum [see (31) and (36)] occurs at E-mc2, ie. ,  at the same 
energy per nucleon (1 GeV per nucleon). This is also in agree- 
ment with the observations. 

However, these are not all the possibilities of theoretical 
explanations of the observations. One of the most important 
characteristics is the chemical composition of cosmic rays, 
i.e., in (40) the distribution of Q with respect to Z. The frag- 
mentation of nuclei and the change in the chemical composi- 
tion as the cosmic rays travel from the sources is a well- 
studied problem.' This however cannot explain the 
relatively large (large by almost two orders of magnitude) 
number of nuclei in cosmic rays with Z > 10. According to 
the latest data,9 the abundance of nuclei in cosmic rays for 
Z > 10 is in general close to the abundance of the elements in 
cosmic space (with some not very significant deviations for 
some isotopes). But the ratio of the number of protons to the 
number of nuclei with Z > 10 is about lo-'. 

This can be partly understood by means of (36) if it is 
assumed that the acceleration takes place in a plasma of suf- 

ficiently high temperatures, so that nuclei with relatively 
small Z are fully ionized. Then 

and for Z -  10 this gives - 3 x 10'. We note that the theory is 
not valid for Z > &/q2 and in accordance with (39) it is also 
invalid at least for Z > lo3 or Z >  30. 

An important characteristic is the relative number of 
electrons and protons in the cosmic rays. The observations 
indicate that the number of cosmic-ray electrons with energy 
greater than 1 GeV is approximately two orders of magni- 
tude less than the number of cosmic-ray protons. It is neces- 
sary to consider what theory gives for particles of different 
masses but Z = 1. In accordance with (30), the number of 
particles with E-mc2 is l/mv, a l/m3I2, since 
~ ~ ~ ~ j ~ , q ~ ( ~ ~ ,  dpl a l/v, oom112, 6(w1 - k v ) -  l/klu- l/k,v,. 

For spin 4 particles (electrons and protons) it is, natural- 
ly, necessary to use the results of Ref. 3. However, as we have 
noted, the corresponding expressions differ from (30) only by 
numerical factors of order unity, and therefore for estimates 
we can here use the expression (30). If we compare the num- 
ber of electrons with Ezmec2 with the number of protons 
with ~ z m ,  c2, there will be more electrons by the factor 
(m, But in accordance with (29) the number of elec- 
trons with &>mP c2 is (me /mp )2 times less than the number of 
electrons with E 2 m,c2, i.e., the theory indicates that the 
number of electrons with E 2 mpc2 - 1 GeV must be (me / 
m, )'I2 z 3 X times less than the number of protons, and 
this is somewhat greater (by 1.5 times) than the observed 
number. It is however clear that our estimate cannot claim 
high accuracy. In addition, it is well known that for electrons 
radiative losses of various kind are more important. 

These qualitative and quantitative agreements between 
the theory and observations make it possible to reexamine 
the general question of the origin of the cosmic rays and, 
specifically, on the basis of theory find the parameters of the 
cosmic plasma of the sources (density, temperature, etc.) 
that can ensure the observed characteristics of the cosmic 
rays at the Earth, due allowance being made, of course, for 
the effects associated with their propagation. For high-ener- 
gy particles this gives us a requirement on the density; for the 
chemical composition, a requirement on the degree of ioni- 
zation (i.e., the temperature) and so forth. This program is 
also of interest for particles of maximal energies in cosmic 
rays. 

Also of interest is the question of new effects that can be 
predicted by the theory. The first and most important of 
them is that the main component of the cosmic rays in the 
interstellar medium may be electrons and not protons and 
nuclei. The maximum in the electron spectrum, at - 1 MeV, 
cannot be observed near the Earth due to modulations by the 
solar wind. However, these electrons may be the most signif- 
icant as regards the number of particles in the interstellar 
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cosmic medium outside the solar system. True, this conclu- 
sion is obtained without allowance for the energy loss of the 
electrons on ionization, emission, and so forth, i.e., in the 
regions of their generation (acceleration). With allowance 
for the losses, the energy in the electrons may be of the same 
order or even less than the energy of the protons. 

Another conclusion is that the nonrelativistic compo- 
nent of the cosmic rays, both electrons and ions, may be the 
main fraction of the cosmic rays (they are sometimes called 
subcosmic rays). Indeed, for a distribution - 1 / ~  for &4mc2 
the total number of subcosmic rays (i.e., particles with 
E < mc2) will be in order of magnitude ln(c2/v$) times greater 
than the total number of cosmic rays (i.e., particles with 
E > mc2) of the given species (i.e., with the same q and m). For 
the electrons, this estimate is not always true. If, for exam- 
ple, ionization losses areimportant, P (&) a E-  '/', then for the 
source Q / E  the spectrum E - '  is replaced by E"', i.e., 
ln(c2/v$), which gives an estimate of the relative numbers of 
nonrelativistic and relativistic electrons, is changed by 
l n ( ~ ' / v ~ ~ ~ ) ,  where vmin is the electron velocity below which 
ionization losses are important (it is assumed that vmi, gc). 
The large number of electrons leads, for example, to strong 
heating of the interstellar medium.'' 

The energy in the cosmic-ray electrons must be (m,/ 
me)'/' times greater than in the ions if, of course, the ioniza- 
tion losses for relativistic electrons do not have an effect for 
E > me cZ. Let E,, > mec2 be the value of the electron energy 
below which the ionization losses are important; then for 
E < E,, the spectrum becomes E-'. Extrapolating this elec- 
tron spctrum to &-me c2, we obtain a ratio of the energy of 
the cosmic-ray electrons to the energy of the ions that is 
smaller than (m, /me)'/'. If E,, - 100 keV, then the electron 
energy will be of approximately the same order as that of the 
ions. But this is a consequence of the losses (in the given 
example, on ionization and heating of the medium). The 
sources are such that they will transfer to the cosmic-ray 
electrons (mP/me)'/' times more energy. This energy then 
goes on heating of the medium through ionization losses. 
The formation of the electron spectrum can also be affected 
by reabsorption, which leads to the creation of a turbulent 
plasma reactor. ' ' 

Thus, the energy of the cosmic-ray electrons (at the time 
of their generation) is approximately (m, /me)'/' times 
greater than the energy of the ions. In turn, the energy trans- 
ferred to the cosmic-ray electrons is 1 . 2 ~  loF4 times less 
than the energy transferred to the background (thermal) 
electrons, i.e., the energy expended on heating the electrons 
in the sources (turbulent regions). 

With regard to the well-known general energy esti- 
mates' leading to the conclusions that the cosmic rays are 
generated in the envelopes of supernovae or active stars, they 
remain as before. In these regions there is merely generated a 
more intense turbulence, leading to a greater contribution of 
the corresponding region to the generation of the cosmic 
rays. Essentially new is the result that low-activity regions 
can also make a contribution, since the spectrum is univer- 
sal, and the superposition of all the existing sources deter- 
mines only the total concentration of the cosmic rays. Many 

weak sources can give the same effect as a small number of 
strong ones. A more careful analysis of the number of weak 
sources is therefore needed. Shock waves can also be sources 
of cosmic rays, since turbulence develops at their shock 
fronts, but Fermi acceleration of the first kind at a shock 
front cannot ensure the common power-law spectrum in the 
observed wide range of energies and therefore cannot be the 
main mechanism of generation of cosmic rays. For suffi- 
ciently low (above all nonrelativistic) energies, quasilinear 
acceleration is predominant, and this gives distributions of 
exponential type: f, CCE-"  exp( - 8). This explains why ex- 
ponential rather than power-law spectra are observed in 
weak flares on the Sun. 

The effects of the generation of the fast electrons are 
naturally important only only for cosmic but also laboratory 
plasmas. They must be a necessary concomitant of reso- 
nance microwave heating of plasmas in facilities with mag- 
netic confinement. If they are not confined in the system, 
then their flux to the walls must be accompanied by the ap- 
pearance of impurities. The energy loss in the fast-electron 
channel may be comparable with the energy lost by brems- 
strahlung. 

Thus, we formulate the main conclusions. 
The first is that the very simple expression (3 1) provides 

an explanation for five independent observations: 1) the uni- 
versality of the spectrum and the fact that it does not depend 
on the particle species or the nature of the turbulence; 2) the 
power-law nature of the spectrum with exponent close to the 
observed value; 3) the change in the spectrum of all nuclei at 
energies of 1 GeV per nucleon; 4) the chemical composition 
of the cosmic rays and the predominant abundance of heavy 
nuclei with Z )  10; 5) the deviation of the number of cosmic- 
ray electrons from the number of ions at energies greater 
than 1 GeV. 

The second is the prediction that the main fraction of 
the energy in the sources is transferred to cosmic-ray elec- 
trons (about 40 times more energy is transferred to the elec- 
trons than to the ions), which then in general is expended 
partly on heating and ionizing the medium. The energy 
transferred to the cosmic-ray electrons is approximately lo3 
times less than the energy transferred to heat and ionization. 
These estimates can give more reliable ideas about the ener- 
gy balance of the cosmic sources. 

The third is the prediction that the cosmic rays of the 
highest energies can be generated in fairly near and, possibly, 
galactic sources. The generation of cosmic rays is a general 
physical phenomenon, and sources with different power 
must change only the number of particles but not their spec- 
trum. In this sense, all solar flares must be accompanied by 
the generation of fast ions and give radiation in y lines. 

The fourth conclusion is the possibility of a laboratory 
test of the considered mechanism of generation of a universal 
spectrum of fast particles. This is most readily done for elec- 
trons. The efficiency of such a quantum accelerator, as it 
may be called, decreases rapidly with increasing energy. 
Thus, for the plasma-beam intereaction the number of rela- 
tivistic electrons with energy greater than ~ , , m c ~  estimated 
by means of (29) is 
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where rq, is the quasilinear time, v, is the velocity, and n, is 
the density of the beam. For vi/c2=0. 1, ( ~ C ~ / E ~ ) ~ - O .  1,  and 
r-rql -upenb/no we have nfas,/nb - and already for 
E,-0.01 GeV when ( rnc ' /~~)~-  lop4 we have nfas,/ 
n, - lO-'r/.r,, . The maximal T - l /c  is determined by the 
flight time (if there is no confinement). Therefore, observa- 
tion of the spectrum of relativistic electrons in a restricted 
energy interval in a sufficiently large volume of turbulent 
plasma is an experimental task that is not without hope. 
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