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An exact solution to the differential equations for the components of the order parameter describ- 
ing the incommensurate phase is obtained. This solution corresponds to the equilibrium state of 
the incommensurate phase on a certain curve lying in the plane of the thermodynamic parameters 
between the critical point of the transition from the initial phase and the critical point of the 
transition into the commensurate phase, the latter transition in the case under consideration 
being a second-order transition. It is shown that the specific heat of the incommensurate phase 
diverges as this phase transition is approached. The solution found is valid for those values of the 
coefficients of the thermodynamic potential for which the approximate methods normally used to 
solve the equations are unsuitable. In a special case this solution allows the investigation of the 
incommensurate phase in the vicinity of the triple point, where the incommensurate, commensur- 
ate, and initial phases coexist. At this point the incommensurate phase is degenerate. 

The phenomenological theory of the incommensurate 
phase, based on the Landau theory of phase transitions (see, 
for example, Refs. 1 and 2) leads to a system of nonlinear 
differential equations for the components of the order pa- 
rameter. Because of the complexity of this system, its solu- 
tion requires the use of approximate methods. The greatest 
difficulties are encountered in the investigation of the in- 
commensurate phase in the vicinity of the critical tempera- 
ture T = T, of the phase transition into the commensurate 
(low-temperature) phase (a transition which possesses a 
number of distinctive features), and here the "constant am- 
plitude" approximation or its modification is often used, but 
the various methods of finding this amplitude give different 
answers to the question of the order of the phase transition in 
question.'*3,4 Furthermore, the indicated approximation is 
valid only in the case of weak anisotropy in the space of the 
order-parameter  component^,^ i.e., in the case when the co- 
efficient p, is small (see below). If, on the other hand, this 
anisotropy is not weak, then we do not have any analytic 
methods for solving the indicated equations. The analysis 
can be carried out6.' only in the vicinity of the triple point, 
where the incommensurate, commensurate, and initial (sym- 
metric) phases adjoin in the phase diagram," and where, ac- 
cording to Sannikov6 and Jacobs and Walker,' the incom- 
mensurate-commensurate phase transition is a first-order 
transition, although a number of authors9-l2 hold a different 
opinion about the order of the transition. Notice that in 
many papers the conclusions are drawn on the basis of nu- 
merical computations, whereas in the region of the incom- 
mensurate-commensurate phase transition the use of nu- 
merical methods to solve the equations requires the exercise 
of care.I3 It can be seen from the foregoing that it is of inter- 
est, having rejected the approximate methods, to try to ob- 
tain exact solutions to the equations in question, even if for 
particular cases, to which the present paper is devoted. 

Let us consider the case of a two-component order pa- 
rameter with components r] and { that transform according 
to that two-dimensional irreducible representation of the 
symmetry group of the initial phase which admits of the Lif- 
shitz gradient invariant. Let us denote the axis along which 
the incommensurability arises by x, and assume that the lin- 
ear thermodynamic-potential density along x has the form 

a Pi' P 
(x) = -(q"+E"+ 2 -(7,"t")"+ 4 2 ( 7 , 2 - ~ 2 )  2 

Here, besides the second-order invariant, we have taken into 
account two fourth-order invariants, a sixth-order invariant, 
as well as the Lifshitz invariant, with coefficient a, and an 
invariant quadratic in the derivatives. Such a thermodynam- 
ic-potential density, with its fairly general form, is widely 
used in theoretical papers on incommensurate  phase^.^.^.^.^ 
It is used, in particular, to describe the phase transitions in 
ferroelectric crystals: ammonium flu~rober~llate ,~ ammoni- 
um Rochelle salt and rubidium trihydroselenite,14 in which 
the incommensurate phase has been experimentally ob- 
served. 15-18 

Let us write down the thermodynamic potential per 
unit length: 

where d is the period of the density 8 (x). Going over to the 
polar coordinates p and p in the space of the order-param- 
eter components (17 = p cos p , x  = p sin p),  we obtain for the 
thermodynamic-potential density the expression 
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where fl, = fl ; + P2. For @ to be bounded from below, we 
must assume that y > 0 and S > 0; furthermore, we assume, 
for simplicity, that fl, > 0, since the sign in front of the coeffi- 
cient P2 can be changed with the aid of the substitution 
p-q + r/4. The minimization of @ with respect top and p 
yields the system of equations discussed in the introductory 
part of the present paper: 

d2p dq dq  
6~ - - p  (z) -k20p - ap-pip3-yp5-pzp3 cos 48=0. 

dZ9 dp d9  dp 
(3) 

6p - + 26 -- - 20 - + Pzp3 sin 4q=0. (4) 
dx2 dx dx dx 

Arguments adduced in the Appendix show that this 
system possesses the solution 

p2=8aokzc (P,+pZc) { ( P I - 3 P 2 ~ ) 2  (2-k2+k2c)Ii2 
X [(2-k2+k2c)"+l3 dn 2q (x-x,) ] ) - I ,  

( 5 )  

where a, = d /S ,  q, = a/S, and dn z and am z are the Jacobi 
elliptic functions with modulus k, and the quantities c and k 
are found from the equations 

The signs in front of the radicals in (5) have been chosen such 
that the functionsp(x) and p(x) are real and bounded at any 
x; for p(x) and ~ ( x )  to have these properties the following 
inequalities should also be satisfied: 

The period of the functionp(x) is equal to d = K (k )/q, where 
K (k ) is the complete elliptic integral of the first kind with 
modulus k. 

Naturally, the expressions (5) are not the general solu- 
tion to the system of equations (3) and (4), since they do not 
contain arbitrary constants besides the trivial constant x,. 
These expressions guarantee the minimality of @, (I), only 
with respect to functions with a definite period d, and func- 
tions with other d values can give smaller values of @ [of the 
various solutions to the system (3) and (4) we consider here 
only those for which p(x) and dq,/dx are periodic]. Let us 
find the condition under which @ attains its minimum value 
when we substitute into (1) solutions [to the system (3) and 
(4)] with different d. Computing the d derivative of (1) with 
the aid of the well-known formulas of variational calculu~,~'  
and equating it to zero, we obtain the sought condition 

Notice that the left-hand side here does not depend on x, 
since it is in fact the "energy" integral.19 If the expressions (5) 
satisfy the equation (9), then they give the equilibrium values 
o fp  and q, (provided, of course, that it is the absolute mini- 
mum of @ that is realized, and not a maximum or a relative 
minimum). 

If we substitute the expressions (5) into the left-hand 
side of (9), and take (6) and (7) into account, then we can 
reduce the relation (9)  to the form 

Let us now compute @in accordance with (1) and (2). It 
is convenient to first integrate the S (dp/dx)'/2 term in (2) by 
parts and, using Eq. (3), eliminate the derivatives: 

The substitution of the expressions (5) into (1 1) gives rise to 
elliptic integrals. Let us omit the intermediate, rather te- 
dious calculations and give the final result, obtained after the 
substitution of the computer @ value into (10): 

where E (k ) a n d n  (n,k ) are respectively the complete elliptic 
integrals of the second and third kinds, l7 (n, k ) being defined 
here as in Ref. 20 (one must, when using the formulas of Ref. 
21, take account of the fact that n = - a'). 

The expressions (6), (7), and (12) are three equations for 
the two unknowns c and k, and can be satisfied only when a 
certain relation exists between the coefficients of the thermo- 
dynamic potential (2). Therefore, the solution (5) corre- 
sponds to the equilibrium state of the incommensurate phase 
at points located on a certain curve in the phase diagram. 

Let us also find the derivative a@ /aa, which we shall 
subsequently need. From (1) and (2) we obtain 

it being not necessary to take the a dependence of d,p, and q, 
into account when performing the differentiation, since @ 
has been minimized with respect to these quantities. Substi- 
tuting p from (5) into (13), and evaluating the integral, we 
obtain 

Let us proceed to investigate the expressions (6), (7), and 

625 Sov. Phys. JETP 60 (3). September 1984 V. A. Golovko 625 



(12), which it is convenient to do by giving different values to 
the parameters c and k and finding the corresponding val- 
ues of the dimensionless quantities fl2/flI9 aoy/8 :, and a/ 
a,; we can then compute @ from the expression (10). Let us 
first give some general results. All the quantities remain real 
when we go over to a purely imaginary modulus k, i.e., when 
k < 0. But, we can, by using the transformation formulas for 
the elliptic functions and show that the case 
k ' < 0 reduces to the k > 0 case if we change everywhere the 
sign in front of f12. Since we assume that f12 > 0, we can as- 
sume that k 2>0. On account of (12), the last inequality in (8) 
is fulfilled automatically, and does not impose any limita- 
tions. At equilibrium we must have @GO; therefore, it makes 
sense to consider only this case. The use of the expressions 
(10) and (12) allows us to show that @<O only when c>O, and 
thenPl>O. Thus, it is sufficient to limit ourselves to the pa- 
rameter-value ranges O<c< l and O<k 2 <  l ,  assuming that 
/91>0. 

All the expressions become significantly simpler if, as is 
often done when thermodynamic potentials of the type (I), 
(2) are used, we assume that y = 0. In this case it follows 
from (6) that c = f 1 [the quantity fl, - 3P2c cannot be 
equal to zero, a fact which can be seen, for example, from 
(5)]. Since only the case of positive c is of interest to us here, 
let us go over to the limit c--tl in (7) and (12) [the right-hand 
side of the expression (12) for c = 1 has the form 0/0, since 
n ( 0 , k )  =K(k)] :  

When y = 0, these relations determine that connection 
between the coefficients of the thermodynamic potential for 
which the solution in question is an equilibrium solution. 
Figure 1 shows the corresponding curve in the (a,B2) plane. 

Let us consider the case k 4  for arbitrary y. Using the 
formulas of Ref. 21, we expand the right-hand side of the 
expression (12) in powers of k 2; in the first approximations 

Solving this equation for c, and substituting it into (6) and (7), 
we find 

16 I32 k2$1 (3$1~-8ao~)  k2 - pzZ=Pi2 + 3 aoy - (ao-a). 6 (pi2+16aoy/3) '" ' aoPi 

(17) 
From (5) and (10) we obtain in this case the expressions 

The expressions (18), which are valid in the vicinity of 
the critical point (a = a,) of the transition from the initial 
(symmetric) phase into the incommensurate phase, are well- 
known expressions.' 

Let us now proceed to consider the case k '-1. From 
the expression (12) we find, after making allowance for the 
pertinent  expansion^,^' that 

p2/pl={(l+c) (2-c)arth((l-c)/2)" 

-c[2(l-c) 1") 

X{C[ (I+c) (2-3c)arth( (1-c)/2)'" 

+c (2 (1 -~ ) ) '" ] ) -~ .  (19) 

Denoting the value of a fork = 1 by af ,  we find from (7) that 

Thus, the curve along which the solution in question is 
at equilibrium lies in the (a, B2) plane between the point given 
by (17) fork = 0 and the point determined by the expressions 
(19) and (20), as well as (6). As y increases, the ends of this 
curve move along the dashed lines shown in Fig. 1. Let us 
note that the solution obtained exists when the space of the 
order-parameter components is markedly anisotropic (i.e., 
when p, is not small). It can also be seen that the constant- 
amplitude approximation (i.e., the approximation in which 
we set p = const) is clearly inapplicable in the present case, 
since, for example, when k = 1 the square of the ratio of the 
maximum value ofp(x) to the minimum value is, according 
to (5), equal to 1 + [2/(1 + c)]"', i.e., forO<c< 1 it lies within 
the range from 1 + v'2 to 2. 

As k-1, the period dm Iln(1 - k2)1+m, and the in- 
commensurate phase acquires the well-known domain-like 
structure. In this case, from (10) we can, by discarding the 
terms of higher order in smallness, obtain 

where @, is the thermodynamic potential of the commen- 
surate phase: 

FIG. 1 .  The curve in the (a,  8,) plane on which the solution in question 
corresponds to the equilibrium state of the incommensurate phase for 
y = 0. As y increases, the ends of the curve move along the dashed lines, 
on which the corresponding values of the quantity a,y/B: are indicated. 

Using (19), we can show that 2 f12c2 + P2c - fll > 0; there- 
fore, @<@,, with @ = @, when k = 1, i.e., when a = af. 
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Similarly, from (14) we obtain in the case k-1 the 
expression 

From this it can be seen that d@ /da = a@, /da when k = 1. 
Thus, the phase transition, occurring at a = af ,  into the 
commensurate phase is a second-order transition. Natural- 
ly, the present proof is correct only in the case of those pa- 
rameter values for which the solution (5) can be used. 

It is of interest to investigate the specific heat of the 
incommensurate phase for a d f .  From (6), (7), and (12) we 
can obtain in the k-1 case the expression 

a = a f + u  (I-k2)ln(l-kZ),  

where Z is some k-independent constant. From this we ob- 
tain the approximate expression 

1-kz= (a-af )  {E In[ (a-af)/h])-'. (24) 
Substituting (24) into (23), we obtain the dependence ofd@ / 
da  on a ,  a dependence, which, having been found for the 
points where the solution (5) is an equilibrium solution, is, on 
account of its continuity, also valid in some neighborhood of 
these points. Differentiating d@ /da with respect to a ,  and 
taking into consideration the fact that the derivative d 2@,/ 
da2 is finite, we find that for a*f 

(25) 
where in accordance with (6) c is a fixed quantity. Notice that 
we can arrive at this relation in a different way, namely, by 
eliminating 1 - k from (2 1) and (23), obtaining a differential 
equation for @ - @,, and solving it. 

If, as is usually done in the Landau theory, we consider 
the coefficient a to be a linear function of the temperature, 
then a 2@ /da2 w d 2@ /dT Therefore, as a d f ,  the specific 
heat C diverges according to the law 

d2@ 
C=-T-m 1 

dTz (a-a,) [In (a-af)  l 2  ' 

Notice that a similar result can be obtained in the constant- 
amplitude approximation.22 

The above-obtained solution (5) also allows us to inves- 
tigate the incommensurate phase in the neighborhood of the 
triple point, where the initial, incommensurate, and com- 
mensurate phases adjoin in the phase diagram. For a>a, 
there exists an initial-commensurate phase boundary, deter- 
mined by the equation @, = 0. Using (22), we find the equa- 
tion of this boundary: 

p being real at this boundary when p2 >PI.  Setting a = a, 
here, we find that at the Q-iple point 

f1~-$~+4(a,y/3) ", a=ao .  (27) 

Let us consider the above-obtained expressions in the 
case c+O. The relation (12) for c-0 has the form 

k2 
II0=="(-5-. k ) .  

whereg(0) = O,g(k ) > Ofork #O, andg(k ) # w . It canbeseen 
from (28) that, for finite B2, the case c-0 is possible only 
whenp,-+O. Solving (28) for c, and substituting it into (6) and 
(7), we obtain to within terms of the order of p :: 

These relations constitute the parametric equation of 
the curve on which the solution (5) is an equilibrium solution 
for small 8,. When p, = 0 the curve in question becomes a 
point, which, as can be seen from a comparison with (27), 
coincides with the triple point. The expression (10) leads, in 
the first approximation in PI ,  to 

iD=--3a0$,k2g(k)/8y (2-k2). (30) 

Hence we have @ = 0 at the triple point (in the present case, 
when 8, = O), but there are no single-valued expressions for 
p(x) and p(x) corresponding to this value of @, since from (5) 
we obtain for PI-0 and c 4  the expressions 

where Ogkg 1. To remove any doubt that may arise about 
the admissibility of the passage to the limit, we can verify 
through direct substitution that the expressions (3 1) satisfy 
Eqs. (3) and (4), when P, = 0 and (27) is satisfied, regardless 
of the value of k, and that (1 1) yields Q, = 0 for any k. 

Thus, the incommensurate phase is degenerate at the 
triple point, a fact also noted in Refs. 7, 10, and 11. At the 
same time this result contradicts the assertion made in Ref. 
23 that in the case of a thermodynamic potential with a p n  
cosnp term [in the expression (2) n = 41 there is no degener- 
acy point for the incommensurate phase when n > 3. Let us 
add that we have degeneracy at the triple point despite the 
presence in (2) of a term ccp6, even though, according to 
Refs. 11 and 23, such a term removes the degeneracy in the 
n = 3 case. It should be emphasized again that all the results 
for the triple point were obtained by us under the condition 
that 8, = 0. 

Notice that the expressions (18) become meaningless 
whenp, = 0. Let us find out what they are replaced by in the 
general case. When a z a , ,  the system (3) and (4) can be 
solved by the method of successive approximations, since 
p 4  as a - ~ ,  (Ref. 2). Settingp, = 0 in (3) and (4), we obtain 
in place of (1 8) the expressions 

It can be seen from this that, in the present case, the triple 
point is a singular point on the initial-incommensurate 
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phase transition line a = a, as well, since the denominator 
in the expression forp4 vanishes at this point [the expression 
(27) yields the equation 3P :-16aoy = 0 whenb, = 01. When 
3/3: > 16aoy, the quantity p is real only when a)ao, and 
then, according to (32), @)0, which cannot correspond to a 
stable state. Let us note that a similar anomaly exists at the 
triple point in the case (n = 3) considered in Ref. 7. 

Let us, in the light of the results obtained, discuss the 
nature of the transition along the entire boundary between 
the incommensurate and commensurate phases. The above- 
adduced arguments showing that the incommensurate-com- 
mensurate phase transition is of second order are valid for 
any values of the parameters entering into (5), including 
those pertaining to the vicinity of the triple point. Sannikov6 
and Jacobs and Walker7 obtain a different result, according 
to which this transition is of first order in the vicinity of the 
triple point. The discrepancy between our results and the 
results obtained by Jacobs and Walker7 is probably due to 
the fact that the thermodynamic potential used by these 
authors is different from (1), (2): it contains the termp3 cos3p 
in place ofp4 cos4p. As for Sannik~v,~  he does not analyze 
the special case fl,-+O, i.e., the case when the results of the 
present paper are valid in the vicinity of the triple point. 
Therefore, if the transition in question is of first order in the 
vicinity of the triple point, then it can be asserted that there 
exists in the interval between the p2 value given by (19) and 
the& value (27) at the triple point a critical point where the 
order of the transition changes, this critical point merging 
with the triple point and, thus, disappearing when B,-+O. If 
there are no other critical points at the incommensurate- 
commensurate phase boundary (in the literature known to us 
there are no indications of the existence of several critical 
points at this boundary), then the incommensurate-com- 
mensurate phase transition is of second order in the range of 
b2 values from zero to at least the value given by (19). 

In conclusion, I thank D. G. Sannikov for a discussion 
of the results of the paper. 

APPENDIX 

Let us transform the system of equations (3) and (4) by 
introducing the function f = dp /dx and takingp, and not x, 
as the independent variable. Then Eq. (4) assumes the form 

df dp dp 6pf - + 26f2 - - 2of- + p2ps sin 4q=0. 
dv dv dv 

(A. 1) 

Instead of Eq. (3), let us take the energy integral, which con- 
stitutes the left-hand side of the relation (9). Denoting the 
energy by E, and making the same substitutions carried out 
above, we obtain 

('4.2) 
Thus, the two second-order equations have been trans- 

formed into two first-order equations. Let us introduce the 
variable u = cos4p in place of p and the function 
v =p2( f - qO) in place ofJ; and let us set w = - 4fdp/du. 
Then from Eq. (A. 1) and the definition of w we have 

and Eq. (A.2) gives the relation 

Let us try to find the solution to this system, assuming 
that the function v has the simplest form: 

u=a+bp2, a=const, b=const. ('4.5) 

From the first equation in (A.3) we find w; from the second, 
u, the integration giving rise to another constant c. Let us 
substitute all this into (A.4), and, by equating the coefficients 
of the various powers ofp to zero, obtain four algebraic equa- 
tions for the quantities a, b, c, and E, the fact that the coeffi- 
cient ofpP2 vanishes identically being of help. The constants 
a, b, and E can be expressed in terms of c, and for c we obtain 
Eq. (6). The expression for E coincides with (10) if we set 
E =  -@. 

Knowing the dependence of u and v on p, we can find 
the relation between d p  /dx = f and cos4p = u. The result- 
ing differential equation can be solved with the aid of the 
elliptic functions with modulus k, (7), which, as a result, 
yields the expressions (5). 

Let us note that we could not find any other exact solu- 
tions to the system (A.3) and (A.4) besides (A.5). 

The above-considered method can be used in the case of 
a thermodynamic potential in which, instead ofp4 cos*, as 
in (2), we have a term of the more general form pn cos np. 
But when n #4 the substitution of (A.5) yields five equations 
for the four parameters a ,  b, c, and E. These equations can be 
satisfied only when the coefficients of the thermodynamic 
potential are connected by some relation; the additional rela- 
tion is given by a condition of the type (9) for equilibrium. 
Therefore, the solution found will be an equilibrium solution 
only at one or several points of the phase diagram, or else it 
will not be an equilibrium solution at all. Such cases are of 
little interest. The indicated system of five equations admits 
of a special solution, when certain coefficients of the thermo- 
dynamic potential are equal to zero. For example, when 
n )5, the coefficients ofp4 andp6 should be equal to zero, but 
the coefficient ofp2" - should be nonzero, which is not very 
realistic. If n = 3, the requisite coefficients should be equal 
to zero on the basis of symmetry arguments, and in this case 
2n - 2 = 4. But analysis shows that in this case the solution 
obtained does not guarantee an absolute minimum of the 
thermodynamic potential, except the solution for the triple 
point, which solution coincides with the one found in Ref. 7. 

"This point is sometimes called the Lifshitz but in a number of 
papers this designation is reserved for a triple point occurring in a special 
case.8 

"The derivative of the functional 
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with respect to the upper limit of the integration is equal to 

if the functions y, (x) satisfy the Euler equations. In our case we impose the 
conditionsp(d ) -p(O) = 0 and q(d ) - e, (0) = 7r/2 on the functions. 
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