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It is shown that at sufficiently high temperature the crystal lattice is unstable with respect to 
transition into a space with constant negative curvature. The physical meaning of the transition is 
elucidated-the transition represents melting of the crystal. The curvature is proportional to the 
density of disclinations in real physical space. The melting temperature is found as a functional of 
the interatomic pair potential. To a good approximation it depends only on the second derivative 
of the potential at its minimum, that is, on the bulk elastic modulus. It is shown that the Linde- 
mann criterion for melting is satisfied. The mean square atom displacement at the melting point is 
expressed in terms of the first zero of the interatomic potential. The disclination density and the 
size ofthe regions in which the short-range crystalline order in the melt is preserved are estimated. 

I. INTRODUCTION 

A space with constant curvature was used in Refs. 1-3 
to describe structures of amorphous materials and melts. In 
short, the ideas of this approach are the following. Accord- 
ing to Refs. 1-3 an amorphous material or a melt is a crystal 
in appropriately curved 3 0  space (the spaces considered are 
the Lobachevski space H3 with constant negative curvature 
and the 3-sphere S,). Crystallographic groups in H, and S3 
allow for local order, such as rings with five, seven, and more 
bonds, which is forbidden in the flat, physical space E,. Ac- 
cording to a number of investigations (see, for example, Refs. 
4 and S ) ,  precisely such structure elements are characteristic 
of the amorphous state (in contrast with crystals in E3 where 
the translational symmetry is consistent only with the rota- 
tions by 21~/n, n = 2, 3,4,6). Embedding of an H, orS3 crys- 
tal into E3 is impossible without deformations. It was shown 
in Ref. 2 that this mapping can be realized while preserving 
the distances and the relative angles along a line. However, 
this isometric embedding cannot be extended continuously 
beyond the line. Therefore, such embedding of an H3 or S, 
crystal into E3 must be accompanied by appearance of line 
defects-disclinations. They are associated with the defect 
rings of the type shown in Fig. 1. It can be shown6 that there 
is a line which passes through such a ring and which does not 
end within the body, that is, it is either a closed line or it exits 
at the surface. This line is the disclination axis. The disclina- 
tion density must be very large in amorphous materials be- 
cause the distance between disclinations is of the order of 
several atomic distances. Disclinations break an amorphous 
material or a melt into regions within which the usual crys- 
talline order is preserved to a large degree. 

A space with constant curvature was recently used also 
to describe the blue phase of cholesteric liquid  crystal^.'.^ It 
was discovered in Ref. 8 that the gradient term in the free 
energy for this phase is proportional to the square of the 
covariant derivative of the order parameter with a connecti- 
vity compatible with the S3 metric. A similar expression but 
with a different order parameter was suggested in the same 

reference for the elastic energy of metallic glasses. 
We show here that at sufficiently high temperature a 

crystal lattice is unstable to a transition into a space with 
constant negative curvature. In accordance with the ideas of 
Refs. 1-3, we interpret this transition as melting of the crys- 
tal. The disordering is due to the occurrence of a large num- 
ber of disclinations. We find a connection between the curva- 
ture and the disclination density, thus, giving a clear 
physical meaning to the curvature. Furthermore, we calcu- 
late the free energy of the lattice as a function of temperature 
and curvature, and we express the melting temperature in 
terms of the interatomic pair potential. The curvature plays 
a role analogous to the role of the order parameter in the 
Landau theory of phase transitions. However, in our case the 
curvature is zero in the crystalline phase and nonzero in the 
disordered phase, and it could be called "disorder" param- 
eter. 

The present work has the following structure. Follow- 
ing the Introduction, we cite in Sec. 2 some necessary infor- 
mation regarding spaces with constant curvature and we 
also find a connection between the curvature on the one 
hand and the disclination tensor and the disclination density 
on the other. In Sec. 3 we obtain the Hamiltonian for a crys- 
tal-atom lattice in curved space. Starting from this Hamil- 
tonian, we calculate in Sec. 4 the free energy of a solid and we 
show that a transition from the crystalline state to the melt 
takes place as temperature is increased. In Sec. 5 we find an 
expression for the melting temperature as a functional of the 
interatomic pair potential. We show in Sec. 6 that the Linde- 

FIG. 1.  A ring formed by five bonds and the corresponding disclination. 
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mann criterion follows from this expression and we calculate 
the Lindemann parameter. In Sec. 7 we consider the nature 
of the phase transition and we estimate the equilibrium cur- 
vature and the size of a microregion with crystalline order- 
ing. In the Conclusion we summarized the results of this 
work. 

2. SPACE WITH CONSTANT CURVATURE 

We shall assume that a body in a disordered phase is 
homogeneous and isotropic. Corresponding properties must 
be also observed in the non-Euclidean space which we shall 
associate with this body. It is known that a homogeneous 
space that is isotropic in a neighborhood of some point is 
maximally syrnmetri~.~ Maximally symmetric spaces are 
uniquely defined by the scalar curvature k and by the signa- 
ture of the metric. In our case the signature is the same as in 
the Euclidean case [that is, the signature is (1, 1, I)] and, 
thus, only one parameter, the curvature k, enters the prob- 
lem. The curvature tensor RrvaS and its contractions can be 
expressed in terms of the metric tensor g,, and k in the fol- 
lowing manner: 

Rub=-6k. (3) 

For the two-dimensional case k is the Gaussian curva- 
ture of the surface, k = 1/RlR2, where R l  and R, are the 
principal curvature radii. If the centers of the corresponding 
circles are on the same side of the surface then k > 0, if they 
are on different sides k < 0. For a sphere k = 1/R '. 

It is easy to find a connection between the curvature and 
the disclination density n. Let us draw within the body a 
small closed contour bounding a surface S. The turning an- 
gle of a vector during the parallel transport along the curve 
islo 

~ p =  JJ L I ~  dx1r\ dz2,  (4) 
S 

where g = det g,, is the determinant of the metric tensor. 
For small k one finds to first order in k 

If the disclination density is n and each disclination has 
strength p, (p, = 2 ~ / 6  for an elementary disclination, see 
Fig. 2) then during the parallel transport of a vector along 
the contour the vector turns through an angle 

FIG. 2. Determination of the angle q,. 

By parallel transport we mean here the transport of a vector 
along a bond without a change in the angle between the vec- 
tor and the bond. 

By comparing (5) and (6) we obtain 

i k 1 = (n/3) n. (7) 
The mean distance 6 between disclinations is 

t=n-'"= (3jn)  '"R, R= I kt-'". (8) 
The disclination tensor pP4, defined in Ref. 11, is related to 
A p  by the equation" 

(AT) .= J 9.9 dS.7 (9) 
S 

where dS, is the vector perpendicular to the surface dS and 
whose magnitude equals to the area dS. By comparing with 
(5) and (6) we find 

c~P9=k6P,. ( 10) 
We need the explicit form of the metric tensor g,, . It can be 
easily found if we represent the three-dimensional curved 
space as surface of a sphere (for k > 0) or of a pseudosphere 
(k < 0) in four-dimensional Euclidean space. By using the 
definition of the metric tensor 

d12=g,dx"xv (11) 

where dl is the element of length, one can determineg,, as1' 

gP,=6,,f kR,R,/ (1- k R 2 ) .  (12) 

The metric-tensor determinant g which enters the invariant 
volume &d 3R, equals 

g= ( I - k R 2 )  -I. (13) 

We shall also consider the conformally Euclidean metric in 
which the infinitesimal length is proportional to its Euclid- 
ean expression 

g= ( l + k R 2 / 4 ) - ' .  (15) 

We shall show that T, is independent of the choice of met- 
ric. It  is only necessary that it correspond to a space with 
constant negative curvature. The metric (12) is invariant to a 
six-parameter group: the three rotations around the origin 
and the three quasi translations9 given by the transforma- 
tions 

If , '=R,fa,  [ (1 -kR2)  '"- bkRa] , 
where 

6 x 1 -  [ I -  ( k a 2 )  ' 1  '" (ka2)  - I .  (17) 
The vector a need satisfy only a single condition: 

I kaz j< l .  (18) 

The transformation (16) translates the origin into any point 
within a finite region. The form of this transformation is 
different for the metric (14) but the relationship (18) remains 
unchanged. The largest allowed a = 1 k 1 -'I2 = R corre- 
sponds in our case to the size of clusters within which the 
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crystalline order is preserved. 

3. THE EFFECTIVE HAMlLTONlAN 
and g'" is the tensor reciprocal tog,, . For the metric (12) 

Let us consider a crystal without specifying at present 
the type of its crystal lattice. We shall write the Hamiltonian 
of a given atom as 

gY =B"-kRwp. (29) 
As for the charge density p we shall assume that it is the 
covariant generalization of the ideal-crystal charge density 

Po 

p=po/liT (30) 
We then obtain from (27)-(30) the following equation for 
@(R ): 

where p and m are the momentum and the mass of the atom, 
p,(R )is the interatomic pair potential, and Ri is the distance 
from the nearest neighbors. It includes the fluctuation dis- 
placements, 

where ai = ani, a is the nearest-neighbor distance, ni is the 
unit vector in the direction of the ith nearest neighbor, and 
ri = F(0) - r(ai ) are the relative atomic displacements result- 
ing from thermal motions. The index 0 indicates that k = 0. 

In the harmonic approximation 

where the prime indicates the derivative with respect to R. 
By introducing the zero-curvature potential @,(R ) and ex- 
pressingpo(R ) in its terms [by setting k = 0 in (3 I)], we can 
write the equation for @ in the following form: 

We shall be interested in fluctuations averaged over the 
angles. Therefore, we set This equation can be solved by the substitution 

cD=@o+f, 
where f satisfies the condition where r(0) is the fluctuation displacement of one atom. By 

making this assumption we are neglecting correlations 
between fluctuations of different atoms. As a result, the Ha- 
miltonian takes the form 

ff=y@o', (34) 

and y is a new unknown function. It can be easily determined 
from (32) with the boundary condition @ (CO) = 0 

y= (1-kRZ)-'"-1. 

Consequently, where we introduced the notation 

b. (a) = so (a) =NTO ( a ) ,  

a, is the force constant, 

In (36) Ro is the first zero of the potential (see Fig. 3) 

0, (Ro) =O. (37) 

For the metric (14) the solution has the form 
R 

and N is the number of nearest neighbors. In deriving (25) it 
was taken into account that q, &(a) = 0. Our basic assump- 
tion, consistent with the ideas of Refs. 1-3, is that the crystal 
starts to melt at the onset of the instability to the transition 
into a space with constant curvature. In order to investigate 
such an instability it is necessary to write the Hamiltonian 
(23) in the space with metric (12) or (14). 

We obtain the kinetic energy by the covariant general- 
ization 

@=@.+kJ bar ( R )  R 2 W .  (38) 

The new potential @ (R ) has the minimum at the same point 
as @,(R ). That is, if @ &(a) = 0 then 

In order to find the new potential energy @ (R ) it is necessary 
to solve the Poisson equation in the space with the metric 
g,'v 7 

FIG. 3. Typical form of the interatomic pair potential q(R ): a is the inter 
atomic distance and R, is the radius at which q(R ) equals zero. where D, = E,/& = E,, E, is the electric field strength 
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0' (a)  = ( 1- y (a)  ) 0; (a,) =O. (39) 

The new force constant a = (2/3)@ "(a) is different from the 
old force constant a, by the factor [l + y(a)]. Namely, since 

@"(R)=(l+y(R) )@/(R)+y ' (R)@;(R)  (40) 

and since Qi 6 (a) = 0 at the minimum, we find 

@"(a)-(l+y(a))@oN(a), (41) 

a= ( I + y  (a)  ),ao. (42) 

It can be seen from (35) that the sign of y(a) coincides with 
that of k. Therefore, a negative curvature corresponds to a 
frequency relaxation, while a positive curvature corresponds 
to a frequency increase. In the following we shall only con- 
sider the case of negative curvature because positive curva- 
ture corresponds to systems with finite volume, 

~ k [ - ' / a  

V = 5 l/zd3R = 2nP I k I-31'. (43) 
0 

It is possible that the latter case has relevance to clusters. 
Therefore, in the harmonic approximation the Hamil- 

tonian describing small oscillations in curved space has the 
form 

We note that the stiffness a, can be expressed through the 
bulk elastic modulus B which is by definition13 

where P is pressure and V is volume. At T = 0 we have 
d U =  -PdVsothat 

B= Vd2@ (a)  /dV2. (46) 

For a face-centered cubic lattice with a lattice constant b, = 

a a, a being the nearest-neighbor distance, one finds 

7/2 d2@ (a) a01> B= - ------ = - 
9a dR2 9a 

For a simple cubic lattice 

4. THE FREE ENERGY 

Using the Hamiltonian (44) we shall now find the free 
energy of the crystal as a function of k. The free energy F is 
related to the partition function Z by 

where for a single atom in the lattice 

Z= 1 d3rd3pg exp (-H/T) (50) 

(we set the Boltzmann constant equal to one). We introduced 
the factor g so that the integration is over an invariant vol- 
ume. If g is carried into the exponential one sees that the 
effective single-atom Hamiltonian, He,, differs from H, 

He,=H-T In g. (51) 

Integration over the momenta gives precisely the same result 
as in the flat space, independently from the form of the met- 
ric tensor, 

pPV Zhn= d 3 p c  exp ( - -gw) = (2nmT)". 
2m 

(52) 

The configurational part of the partition function is 

If we denote x = Ik I, we have for the metric (12) 
a 

f (a) =J ((l+xR2)-L"-1) 'DO1(R)dR, (54) 
R, 

a ( x )  =ao (1+xR2)-'", 

and for the metric (14) 

% 

a ( x )  = (I-?ta2/4) a,. 

The integration over r in the configurational integral (53) can 
be extended to because the amplitude of the atomic vibra- 
tions ~ )112- (~ /a )112  is ofthe order 0. l a  even at the melting 
temperature. For the same reason we can neglect with good 
precision the x dependence ing. With these approximations, 
the integral over r in (53) gives 

Consequently, the correction to the free energy, AF 
= F (x) - F(O), connected with the curvature x is 

AF=f (a) -t3/,T In (ala,) . (59) 
By substituting f (a) and a as given in (56) and (57) we obtain 
for the metric (14) 

a 
x 

AF=- - J 'Do' ( R )  R2dR+ 
4 
Ib 

2 

Similarly, for the metric (12) we obtain 

5. THE MELTING TEMPERATURE 

As can be seen from Fig. 3, @ ;(R ) < 0 in the interval 
from R, to a. Consequently, the first terms in the right-hand 
sides of (60) and (61) are always positive. The second terms 
are always negative but smaller than the first terms at suffi- 
ciently low temperature. In order to draw a clearer picture 
we expand AF  in a series in powers of xu2, which we assume 
small. From (6) we obtain 

Ib 

For small xu2 the first term is the leading one. It becomes 
negative for T >  T,,, , where 
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Therefore, for 0 Tm the crystal is unstable to a transition 
into a space with constant negative curvature. In the Intro- 
duction we explained a possible physical meaning of this in- 
stability-in the flat physical space its appearance leads to 
crystal melting with Tm its melting temperature, while xu2 
plays the role of the disorder parameter. Similarly, we obtain 
from (61) 

The first term in this expansion becomes negative at exactly 
the same temperature (63). 

The integral in (63) can be expressed with good accura- 
cy in terms of experimental data. For this reason we note 
that 

a-Ro=O.la<a. (65) 

Therefore, there exists the small parameter y = (a - R,)/ 
a - 0.1. For example, for the Lennard-Jones potential 

@ , ( R )  =AIRi2-BIR6, (66) 

the minimum is at R = (24 / B  )'I6 while the first zero of the 
potential [@ (R,) = 0] is at R = (A /B )'I6. Consequently 

y=1-2-'I6 00.11. 

Similarly, for the Morse potential 

mo ( R )  =D (e-2B(R-%) -2e-B(R-%) ) 9 (68) 
whose parameters D, f l  and R, have been determined for 
inert gases,14 

If the potential @,(R ) is expanded into a series about R = a, 

then as a result of integration in (53) a rapidly converging 
series in y is obtained. Let us make in (60), (61), and (63) the 
following substitution for the derivative of @,: 

(Do' ( R )  =cDol' ( a )  (R-a) . 
Then, the expression (60) equals 

while (61) takes the form 

From (63) and (71) we obtain for the melting temperature 

Therefore, with good accuracy, the melting temperature is 
determined by three parameters: 0 ;(a) [that is, according to 

(47) and (48), by the bulk elastic modulus at T = 01, the near- 
est-neighbor distance, and the radius at which the potential 
vanishes. 

6. THE LINDEMANN CRITERION 

The ratio of the root-mean-square atomic displacement 
and the interatomic distance is in many cases equal to a sin- 
gle number S: 

The Lindemann criterion for the melting temperature15 pos- 
tulates that a crystal starts to melt when -3 reaches a value 
S 'a2 with S a universal constant. The most precise numeri- 
cal molecular dynamics  calculation^^^ lead to the result 
8-0.15-0.17. 

The expression (74) for the melting temperature satis- 
fies the Lindemann criterion with good accuracy. Indeed, in 
the harmonic approximation the mean-square radius of 
thermal atomic vibrations is 

It follows from here that 

62=3Tm/aoa2. (77) 

On the other hand, by neglecting in (74) the terms of order f 
relative to y2 (note that by definition a, = (2/3).@ ;(a)) we 
obtain 

Consequently, 

6=VXy .  (79) 

For the Lennard-Jones potential, y = 0.11 and S = 0.135. 
For the Morse potential, y = 0.12 and correspondingly 
S = 0.15. 

Effective pair potentials for a number of metallic glasses 
(Ch,,, Mk.,, , CaZn,, CaZn,, etc.) are given in graphic form 
in Ref. 17. For them, y ~0.11-0.14 and S, determined by the 
formula (77), equals 0.14-0.17. 

7. THE NATURE OF THE PHASE TRANSITION 

A crystal with free energy (72) or (73) becomes unstable 
at T >  Tm and goes into a state with the maximum value of 
xu2. Since it is clear that R = x-'I2 Z a, this value is %a2 = 1. 
The free energy jump is A F  = F (0) - F (l/a2) = 0.2Tm . 
Therefore, for a system with free energy (72) or (73) a first- 
order phase transition occurs at T = T,,, . 

As a rule, the natural frequencies of a crystal relax dur- 
ing melting. As we already remarked, correlations between 
fluctuations of the atomic displacements are not included in 
the present work. Consequently, the force constant a, is con- 
nected with a single frequency o, , 

a=mwE2, P I  
where o, is the Einstein frequency. Correspondingly, the 
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frequency shift is determined by the change in a, 

A OE/OE='/~AU/U. PI1 

For the metric (12) we obtain from (55) 

Aulu=--'lZxaz (82) 

and, correspondingly, 

AOE/OE'-'/~XU~. P3) 
One can try to connect the curvature x and A Vwith the help 
of the Griineisen formula 

Au/o=-GA V/'V, (84) 

where G is the Gruneisen constant and A V/Vis the relative 
volume change. From (83) and (84) we find 

xu2=-4GAVJv.  

The curvature radius R = x-'I2 equals 

z ~ = u ( ~ G I A V / V I ) - ' " .  (86) 

For G - 1 and A V/ V- 1 %, R =: 5a. The physical meaning of 
this radius is in that it equals the dimension of a cluster 
which iiproduced in an amorphous body or in a melt and in 
which short-range crystalline order is preserved. Theoreti- 
cal  consideration^^^'^ as well as experimental factsIg attest to 
the existence of such clusters. 

Clearly, the value of xu2 given by the formula (85) does 
not correspond to the values xu2 = 1 to which a system with 
the free energy (72) or (73) tends at n T m .  An agreement 
between the result (85) and the expression for the free energy 
can obviously be obtained by adding to AF  the elastic energy 
connected with the volume discontinuity, 

Eel = i / z B ( A V / V ) 2 ,  (87) 

where B is the bulk elastic modulus [see Eqs. (47) and (48)] 
and (A V/V) -x2 according to (85). Note that Eel is quadratic 
in x so that its inclusion in AF  is not reflected in the expres- 
sions for the melting temperature and for the Lindemann 
parameter which are linear in x as shown in Secs. 5 and 6. A 
precise calculation of E,, will be made in another work. 

We note that the values of Tm in (74) are two to four 
times larger than the experimental values for metals (this 
does not affect the accuracy of the calculated S ). The reason 
is that correlations between thermal atomic displacements 
are not taken into account here. As can be shown,*' a rough 
account of these correlations decreases a, (meaning also Tm ) 
by approximately a factor of 2. 

8. CONCLUSION 

It was shown in the present work that at sufficiently 
high temperature a crystal lattice is unstable to a transition 
to a space with constant negative curvature k. The physical 
meanings of the curvature parameter and of the metric ten- 
sor were clarified. A connection was found between the cur- 
vature and the density of disclinations in an amorphous body 
or in a melt. The lattice free energy was calculated as a func- 
tion of temperature and curvature. The latter plays a role 
analogous to the role of the order parameter in the Landau 
theory of phase transitions. However, in the present case 
k = 0 for the crystal and is nonzero in a disordered phase. 

Consequently, k is a disorder parameter. The phase-transi- 
tion temperature Tm is a functional of the interatomic poten- 
tial @ (63). To a good approximation Tm depends only on the 
force constant @ "(a) (i.e., on the bulk elastic modulus), on 
the nearest-neighbor distance, and on the radius at which the 
interatomic potential becomes zero [see (74)l. The Linde- 
mann criterion for melting is satisfied in the same approxi- 
mation. The value (79) was obtained for the Lindemann pa- 
rameter S = (?/a2)'I2 is in very good agreement with the 
experimental values as well as with the numerical calcula- 
tions. The Einstein frequency is decreased as a consequence 
of the melting. The frequency shift was found as a function of 
k and, using the Gruneisen formula, the parameter k was 
connected with the volume change A Von melting. Equilibri- 
um values of the curvature k and of the density of disclina- 
tions near the melting point were estimated by using experi- 
mental values for the volume discontinuity A V. Radius of 
the curvature Ik I -'I2 gives the dimension of the microdo- 
mains (clusters) within which the crystalline order is pre- 
served. In accordance with the estimate (86) the size of such a 
cluster equals 3 to 6 interatomic distances, depending on the 
Gruneisen constant and on the volume discontinuity at the 
transition. 

The author is thankful to V. I. Belinicher, V. K. Malin- 
ovskii, A. Z. Patashinskii, B. I. Sturman, and B. I. Shumilo 
for useful remarks and interest in the work. 

'M. Klkman and J. F. Sadoc, J. Phys. Lett. (Paris) 40, L569 (1979); J. F. 
Sadoc and R. Mosseri, Phil. Mag. B 45,467 (1982). 

'M. Klhman, J. Phys. (Paris) 43, 1389 (1982). 
3D. R. Nelson, Phys Rev. Lett. 50, 982 (1983). 
4J. D. Bernal, Proc. Roy. Soc. A 280,299 (1964). 
'J. F. Sodoc, J. Dixmier, and A. Guinier, J. Noncryst. Sol. 12,46 (1973). 
6N. Rivier and D. M. Duffy, J. Phys. (Paris) 43, 293 (1982). 
'J. Sethna, D. C. Wright, and N. D. Mermin, Phys. Rev. Lett. 51, 467 
(1983). 

"J. Sethna, Phys. Rev. Lett. 51, 2198 (1983). 
9S. Weinberg, Gravitation and Cosmology: Principles and Applications 
of the General Theory of Relativity (John Wiley and Sons, New York, 
1972). 

'OB. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Sovremenaya Geo- 
metriya (Contemporary Geometry) (Nauka, Moscow, 1979) p. 287. 

"R. de Witt, Continuous Theory of Disclinations (Russ. Trans].), Mir. 
1979. -. . 

"L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Ad- 
dison-Wesley, Reading, 195 1). 

I3C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, 
New York, 1966). 

14H. R. Glyde, J. Phys. C3, 810 (1971). 
''F.A. Lindemann,Phys.Z. 11,609(1911). 
16W. L. Slatterly, G. D. Doolen, and H. E. De Witt, Phys. Rev. A21,2087 

(1980); E. L. Pollock and J. P. Hansen, Phys. Rev. AS, 31 10 (1973); F. N. 
Stillinger and T. A. Weber, Phys. Rev. B22,3790 (1980). 

"U. Hafner in Glassy Metals, edited by H. J. Giintherdot and H. Beck 
(Springer, New York, 1983). 

18 A. S. Mitus', A. Z. Patashinskii, Zh. Eksp. Teor. Fiz. 80, 1554 (1981) 
[Sov. Phys. JETP 53, 798 (1981)l; J. Donth, J. Noncryst. Sol. 53, 325 
(1982); J. C. Phillips, Physics Today (Feb. 1982); A. A. Lebedev, Tr. 
G.O.I. 2, 1 (1921); M. KIBman, J. Phys. Lett. (Paris) 44, 295 (1983). 

19B. Steffen and R. Hosemann, Phys. Rev. B13,3232 (1976); V. K. Malin- 
ovsky and V. G. Zdanov, J. Noncryst. Sol. 51,31(1982); B. W. Corb, R. 
C. O'Handley, J. Megusal, and N. J. Grant, Phys. Rev. Lett. 51, 1386 
(1983). 

'OV. K. Malinovskii and V. N. Novikov, unpublished (prepnnt No. 214 of 
the Institute for Automation and Electrometry of the Siberian Section of 
the Academy of Sciences of the USSR, 1983). 

Translated by M. V. Jarit 

623 Sov. Phys. JETP 60 (3), September 1984 V. N. Novikov 623 


