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Nonlinear fluctuational effects in the long-wavelength dynamics of uniaxial displacive ferroelec- 
trics at temperatures near the phase transition are considered in the framework of an isotropic 
model with an oscillatory soft-mode spectrum. The important nonlinear terms in the macroscopic 
equations for the dynamics are singled out; these terms are due both to the self-action of the soft 
mode and to the interaction of the soft mode with acoustic modes. An effective action is construct- 
ed, permitting evaluation of the fluctuational corrections as a perturbation series in the interac- 
tion. It is shown that this effective action is renormalizable, and expressions are obtained for the 
renormalization group equations and the logarithmic laws describing the behavior of the interac- 
tion constants and speed of sound. It is shown that in the high-frequency limit the fluctuations 

,dictate a soft-mode damping a w and an acoustic damping a k ' / k  t'2. The logarithmic behavior 
of the coefficients in these laws are found, and the low-frequency acoustic and soft-mode damping 
is discussed. 

INTRODUCTION 

Ferroelectrics comprise one of the main classes of mate- 
rials which undergo structural phase  transition^.'.^ Recent 
years have seen rapid progress in experimental techniques 
for detecting and studying the soft modes which are associat- 
ed with phase transitions in ferroelectrics. Accordingly, 
there is heightened interest in the theoretical description of 
these transitions in ferroelectrics particularly in the descrip- 
tion of dynamical phenomena in this region. 

We shall consider the dynamics of uniaxial ferroelec- 
trics of the displacive type near the temperature of the transi- 
tion from the paraelectric to the ferroelectric phase. In un- 
iaxial ferroelectrics an important role is played by the 
nonlocal dipole interaction, owing to which the fluctua- 
tional corrections to the specific heat and dielectric suscepti- 
bility near the transition temperature have a logarithmic3 
rather than a power-law character as in ordinary second- 
order phase transitions. Recent experiments4v5 have con- 
firmed the ln1l3 law3 for the dielectric susceptibility in uniax- 
ial ferroelectrics of the displacive type. 

In displacive ferroelectrics an important role is played 
by the interaction of the order parameter with acoustic 
modes. This interaction causes the phase transition in these 
materials to change from second order to first order.6 How- 
ever, in the ferroelectrics studied in these  experiment^^.^ it 
was found that this mechanism is operative only near the 
very transition point, so that there is a wide fluctuation re- 
gion in which the theory of Larkin and Khmel'nitskii3 
works. This region is specified by the ST< IT - Tc 1 <Tc , 
where Tc is the transition temperature and STis the thermal 
hysteresis associated with the first-order transition. 

Acoustic vibrations in the crystal are described by the 
strain tensor u,, while the order parameter in a uniaxial 
displacive ferroelectric is the displacement 6 of the sublat- 
tices relative to one another along thez axis. We shall use an 
isotropic model in which the relevant part of the free energy 

is of the form 

Here the first two terms are the standard elastic energy,' the 
third term describes the interaction of the elastic strain with 
the order parameter 6, the next two terms are the standard 
quadratic terms in the expansion of the free energy in powers 
of6, the next-to-last term describes the nonlocal dipole inter- 
action, and the last term describes the self-action of the order 
parameter. All the coefficients in (1) are functions of the tem- 
perature T. 

Near the transition temperature the parameter 
a,  a T - Tc becomes small, making for strong fluctuations 
of the order parameter 6. It was shown in Ref. 3 that 
allowance for the fluctuations of 6 in this situation yields 
logarithmic corrections to the interaction constant g. The 
situation turns out to be one of zero charge, so that at dis- 
tances r which are large compared to the cutoff dimension 
A -' the interaction constant g goes as L -', where 

Here the constant a differs from lao/ by a quantity which is 
determined in a self-consistent manner.6 We note that in the 
temperature range ST4 I T - T, I <T, the difference between 
a and lao[ is small. In order for fluctuations to be important 
the logarithm in (2) must be large, implying that Ab 2>a, and 
we shall henceforth assume that this inequality holds. We 
shall also adduce the estimate x - bA 2. 

Fluctuations of also cause a renormalization of the 
vertexa, which in the region ST< I T - Tc I < Tc goes as L 'I3. 

In addition, the presence of the vertex 0 causes a renormal- 
ization of the Lam6 coefficient A, which decreases with in- 
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creasing L. As we know,' forA ( - 'I3p the system becomes 
absolutely unstable, which is indicative of a first-order phase 
transition. The existence of the wide logarithmic region ob- 
served in the e ~ ~ e r i m e n t s ~ . ~  requires that 0 '/p(g. We shall 
henceforth assume that this inequality holds (in the short- 
wavelength region). 

The experimental situation in regard to the soft mode in 
uniaxial displacive ferroelectrics near Tc is not clear. Old 
studies8-lo show the presence of an oscillator mode in the 
ferroelectric phase, with a frequency w a (Tc - T)"'. HOW- 
ever, these data do not refer to to the region near T, itself. 
The experiment of Ref. 11 indicates the presence of a soft 
mode in Pb5Ge,01, near Tc , but judging from the frequency 
behavior there is apparently no wide logarithmic region. We 
shall proceed from a classical oscillator spectrum for the soft 
mode, and we shall conclude with a few words about the case 
of a purely damped mode. 

EFFECTIVE ACTION 

For considering nonlinear elastic proceses in solids it is 
more convenient to use (instead of the displacement vector u) 
a set of variables Xi(i = 1,2,3) such that the equation 
X,(r) = const defines the spatial position of some atom plane 
in the crystal (similarly for indices 2 and 3). If all three Xi are 
fixed, we obtain equations describing the trajectory of some 
point in the crystal, i.e., the displacement vector u is deter- 
mined implicitly by the equation Xi (r + u) = const. Under 
the natural condition that Xi = ri in the unstrained state, we 
obtain SX, = - ui in the linear approximation. 

The nondissipative part of the hydrodynamic equations 
for this system can be obtained most simply using a Poisson 
bracket formalism (see, e.g., the review by Dzyaloshinski? 
and Volovickl'). We obtain as a result the following nonlin- 
ear dynamical equations: 

dalat+vVo=c.t., ax,lat+vVX,=o, 

Here E is the energy density, 6 is the specific entropy, ji is the 
momentum density, v = 6'E /aj is the velocity, M is the ca- 
nonical conjugate of <, and c.t. stands for the kinetic terms. 
The reactive stress tensor is 

(4) 
By virtue of Galilean invariance we have j = pv, where p is 
the mass density. 

Among the variables in system (3), only < is strongly 
fluctuating. As was shown in Ref. 13, in this situation one 
can incorporate nonlinear fluctuational effects by keeping 
only the nonlinearity in g and linearizing the equation with 
respect to the remaining variables. Accordingly, we need 
only that part of the expansion of the energy density E in 
these variables which is quadratic in 6. We shall assume that 
the order parameter g is normalized in such a way that the 
quadratic terms of the expansion of E in powers of M is equal 
to 'I'M 2. We shall use expansion (1) for the expansion in the 

strain tensor (and also in 6 ). In the linear approximation one 
can disregard the variables j and M and go over to second- 
order equations for ui = - SX, ,l. In the resulting system of 
equations the equations for the specific entropy a and trans- 
verse (to the wave vector) part of ui separate out and can be 
dropped. We thus arrive at second-order equations for the 
longitudinal (with respect to the wave vector) part ull of the 
displacement vector and for the order parameter 6. 

We now use the technique developed in Refs. 14 and 15 
to construct a distribution function of the form ei' for evalu- 
ating the unequal-time correlators of the fluctuating quanti- 
ties. The effective action I is written in the form of an integral 
of a local expression: 

Here p and pll are auxiliary Bose fields. In the case under 
consideration here we can drop the dependence of the La- 
grangian density 2 on the auxiliary Fermi fields $ and ? 
introduced in Refs. 14 and 15, since the determinant which 
arises in the integration over these variables is equal to unity 
by virtue of the analytical properties of the Green functions 
($, ?). After dropping the variables which are unimportant 
here, we obtain from system of equations (3) a Lagrangian 
density which decomposes into the following terms: 

Here c = (2p + A )'I2 p- 'I2 is the longitudinal sound veloc- 
ity. We note that the coefficients appearing in (6) and (8), 
unlike those in (I), are the adiabatic coefficients. 

Expression (6) derives from the reactive part of the lin- 
ear dynamical equations, expression (7) derives from the ki- 
netic part of the same equations (with allowance for random 
forces), and expression (8) describes the nonlinear interac- 
tion of the long-wavelength modes. For the operators ap- 
pearing in (7) we have 

Here < is the kinetic coefficient. In the Fourier representa- 
tion we thus have 

0 
Im z (w) =- II (w) . (10) 

b.4 

An analogous relation for the soft mode is explicitly incorpo- 
rated in (7). The structure of rill here is identical to that of 17 
in (9). The quadratic part of the Lagrangian density in (6) and 
(7) leads to the following expressions for the binary averages 
of the Fourier components (w is the frequency and k the wave 
vector): 
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Relation (10) implies the following relations the fluctuation- 
dissipation theorem: 

L1 
( a )  =-:[G,I ( ( d ) - ~ , ,  (-o) ]=--Re GI! (w) .  

P o  PC" 

RENORMALIZATION GROUP 

Expression (8) now enables us to evaluate the fluctua- 
tional corrections, which are represented by a perturbation 
series in the nonlinearities in the dynamical equations. This 
series is represented by Feynman diagrams with the binary 
correlators (1 1)-(14) on the lines and fl and g as the vertices. 
Analysis of the diagrams shows that there are logarithmic 
corrections to the interaction constants p and g and to the 
longitudinal sound velocity . As will become clear, in evalu- 
ating the diagrams corresponding to the accuracy of interest 
here, the specific form of the dissipative terms in (7) is not 
important. It is important only that relation (15) be satisfied 
and that the imaginary part of the spectrum be small com- 
pared to the real part. As we shall show below, both these 
conditions still remain valid when fluctuations are taken into 
account. The problem of renormalizing p,  g, and c can thus 
be considered independently. It turns out that fluctuations 
do not give rise to new logarithmic terms in (6)-(8), i.e., the 
action specified by these expressions is renormalizable. We 
shall consider the renormalization of this action in the sin- 
gle-loop approximation. 

To carry out the renormalization procedure we should 
separate the variables appearing in (6)-(8) into slowly vary- 
ing and rapidly varying parts and integrate the distribution 
function e" over the latter, thereby shifting the ultraviolet 
cutoff A.  The change of the parameters (6) and (8) during 
such an integration is represented by the logarithmic dia- 
grams shown in Figs. 1-3. In these diagrams the solid line 
corresponds to binary average (1 1) or (12) (of the rapid varia- 
bles), the wavy line corresponds to binary average (13) or 
(14), the arrow corresponds to correlator (1 I), and the dashed 
line corresponds to correlator (12). The diagrams in Fig. 1 

FIG. 2. 

give a renormalization of the first two terms in (8) (the coeffi- 
cientsp in them are renormalized in the same way), the dia- 
grams of Fig. 2 give a renormalization of the interaction ver- 
texg, and the diagrams of Fig. 3 give a renormalization of the 
longitudianl sound velocity. 

The details of the evaluation of the diagrams are given 
in the Appendix; here we shall give only the final answer for 
the renormalization group equations: 

Here 

A=T/IGxb"x'". (19) 

It follows from system (16)-(18) that the true vertex for the 
self-action of the order parameter is 

y=A (g-3p2/pc2). (20) 

Equations (16)-(18) imply that this vertex y obeys the rela- 
tion dy/d 1nA = - 3 9 ,  from which we get 

y=yo (I+3yoL) -'. (21) 

For the above treatment to be correct it is necessary that the 
interaction vertex be small, and this requires that y,(l. In 
the limit that the logarithm (2) is large, the quantity y, in 
accordance with (2 l), becomes small, ensuring the validity of 
the single-loop approximation. We now introduce the di- 
mensionless (by definition) quantity 

For this quantity system (16)-(18) implies an equation which 
is trivially integrated to yield, with allowance for (21), 

y=yo [l+ (y-"yo-") yo]  -'. 

Now integrating (18) we find 

c2/co2= [ I +  (y-"s-yo-%) (24) 

Here c, is the bare (short-wavelength) longitudinal sound 
velocity. 

On approach to the transition point the parameter a 
decreases, while the logarithm (2) increases. Accordingly, y 

FIG. 1. 
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decreases and, according to (24), c decreases as well. When 
the value c2 = 413~:(~,  is the transverse sound velocity) is 
reached, the system becomes absolutely unstable.' Some- 
what earlier it becomes possible to have a first order phase 
tran~ition,~ at which the system "slips through" the region 
of strong fluctuations. In any case, c changes by no more 
than an order of magnitude. It follows that in order for there 
to be a temperature region around Tc in which the interac- 
tion vertex y varies substantially in comparison with its bare 
value (and where experiments should accordingly reveal 
logarithmic behavior of the specific heat and dielectric con- 
stant), it is necessary that the condition yo(l be satisfied. It 
follows from (23) that this implies the inequality y(1 
throughout the entire temperature region, since the differ- 
ence between y and yo is determined by the expression on the 
right-hand side of (24), a factor of order unity. We note that 
the inequality yo( 1 ensures that0 2/pc2g is small only for the 
bare (short-wavelength) quantities. In the low-frequency re- 
gion near the transition temperature this ratio becomes of 
order unity, so that in system (16)-(18) one cannot neglect 
terms in 0 in comparison with terms containing g. 

FLUCTUATIONAL CONTRIBUTION TO DAMPING 

The Green functions introduced in (1 1) and (13) have 
the meaning of the generalized susceptibilities of the system 
with respect to external forces which can be added to the 
right-hand sides of the equations of system (3). The functions 
G (w) and G I I  (a) are thus analytic in the upper half-plane, and 
their poles determine the eigenvalue spectrum of the oscilla- 
tions of the system, in this case the spectra of oscillations of 
the order parameter and longitudinal sound. Finding the 
poles of (1 1) under the assumption 2(w2 (see below), we ob- 
tain with allowance for (10) the spectrum of oscillations of 
the order parameter 

In an analogous way we find for sound 

Thus the polarization operators I7 and HI, directly deter- 
mine the damping of the modes under discussion. 

The fluctuational corrections to the eigenenergy func- 
tion H and to the polarization operator in the leading ap- 
proximation in k /A are represented by two-loop diagrams. 
In the temperature region ST( I T - T, I (Tc , where we can 
neglect the interaction effects associated with the vertex 0 ,  
the leading contributions to H and I7 are given, respectively, 
by the diagrams shown in Fig. 4. One can easily verify that 
with allowance for relations (1 5), these contributions satisfy 
(10). Relation (10) thus reproduces itself when fluctuations 
are taken into account, as is a consequence of the fluctu- 
ation-dissipation theorem. 

,0--\ 
\ 

,A---\ 
\ - +-----+ 

\ \,,,' '.--A' 

FIG. 4. 

Analysis of the second diagram in Fig. 4 (see the Appen- 
dix) shows that in the high-frequency limit w2>a it gives a 
fluctuational contribution 

It follows from the dispersion law (25) that the dimensionless 
parameters appearing in the argument of are of order uni- 
ty. An expression for x in the form of an integral is given in 
the Appendix. Although this integral is not taken explicitly 
(it is only for the isotropic model, anyway), we are not terri- 
bly interested in the specific form of the function X; what is 
important is thatx is of order unity. Expression (27) and the 
estimate X- 1 remain valid even at IT - Tc I -ST, where 
one cannot neglect the interaction effects associated with the 
vertex 0 .  We thus arrive at the conclusion, which follows 
from the structure of (27) and the dispersion law (25), that 
fluctutions change the power-law behavior of the soft-mode 
damping from w2 tow. This means that there is a substantial 
increase in the soft-mode damping in comparison with the 
bare damping: the fluctuational damping is smaller than the 
frequency by a factor -?, but not -k /A like the bare 
damping. Returning to the first diagram in Fig. 4, we note 
that the corresponding expression for Re2 contains a loga- 
rithmic integration, so that 

This diagram thus gives a small (proportional to y) renor- 
malization of the real part of the soft-mode spectrum. 

The fluctuational contribution to the eigenenergy func- 
tion H , I  for the acoustic mode in the leading approximation 
is represented by the first diagram in Fig. 3. The real part of 
HI ,  gives a renormalization of the speed of sound, as dis- 
cussed in the previous Section. The imaginary part of H , as 
follows from representation (IS), is related by Eq. (10) to the 
fluctuational contribution to the polarization operator H I I ,  
which is represented (in the leading approximation) by the 
second diagram in Fig. 3. The structure of (13) and (14) is 
thus reproduced even when fluctuations are taken into ac- 
count. This diagram is considered in the high-frequency lim- 
it in the Appendix. The leading cutoff factor in this diagram 
is k, -k, because for the soft mode k, - (b /x)'I2k *(k. The 
evaluation described in the Appendix yields the following 
answer, which is valid for k, >a(b )x)-"2y-2: 

By virtue of (26) this expression gives (to within a numerical 
factorx of order unity) the following damping-to-frequen- 
cy ratio for the acoustic mode: 

This ratio is small by virtue of the small hydrodynamic pa- 
rameter, but it is much larger than the ratio k /A which fol- 
lows from a bare damping of the type in (9). Fluctuations 
thus change the character of the power-law dependence of 
the acoustic damping from k 2  to k2/lk, Ill2. Note the 
marked anisotropy of the fluctuational damping described 
by (28). 

Expression (27) and (28) are obtained in the high-fre- 
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quency limit. In the low-frequency limit the expressions for 
ZZ and ZZ ,I assume the standard form (9). Joining this expres- 
sion with (27) and (28) for w-a"' and k, - ~ ( b x ) - ' / ~ y - ' / ~ ,  
respectively, we obtain the fluctuational contributions to the 
kinetic coefficients as 

Ag-T2a-"2, (29) 

Ab,,-  yy21~a-'L. (30) 

Thus, in the low-frequency region fluctuations lead to an 
anomalous temperature dependence of the damping both for 
the soft mode and for longitudinal sound. 

CONCLUSION 

The above analysis has shown that fluctuations of the 
order parameter near the phase transition point in uniaxial 
displacive ferroelectrics cause a substantial modification of 
the long-wavelength dynamics of the system. The nonlinear 
fluctuational corrections lead to a logarithmic renormaliza- 
tion of the constants for the self-action of the order param- 
eter and its interaction with the acoustic mode, and there is 
also a logarithmic renormalization of the speed of sound. 
These logarithmic renormalizations find a complete analogy 
in the static case. In addition, the fluctuations of the order 
parameter substantially modify the damping of both the 
acoustic and soft modes, leading to a change in the power- 
law frequency dependence of the damping in the high-fre- 
quency region and to a singular temperature dependence in 
the low-frequency region. 

Although these conclusions were made on the basis of 
the isotropic model, tlie~stimates given will also be valid for 
an anisotropic model in which the order parameter interacts 
with all the acoustic branches. In particular, the conclusion 
regarding the character of the high-frequency [(27) and (28)] 
and low-frequency [(29) and (30)] dependences of the fluctua- 
tional damping remains in force, as does the conclusion that 
the acoustic damping in markedly anisotropic. At small val- 
ues of k, the high-frequency acoustic damping increases 
sharply, and at k, = 0 it is determined by other cutoff fac- 
tors (see Appendix). For w)al/' we have the estimate 

In interpreting real experimental data one should keep in 
mind that the smallness of the above fluctuational contribu- 
tions to the damping of the long-wavelength modes derives 
from the smallness of the coupling constants y and y. At 
small values of the hydrodynamic parameter w/cA the fluc- 
tuational contributions clearly exceed the bare contribu- 
tions, but at values ofw/cA that are not too small one should 
take both terms into account. 

Let us say a few words in conclusion about the case of a 
purely damped soft mode. The logarithmic corrections in 
this case look the same as in the oscillatory case considered 
above. The fluctuational corrections to the soft-mode damp- 
ing turn out to be small here, while the fluctuational damp- 
ing of the acoustic mode is large, given by estimates (30) and 
(31) for all wave vectors. 

APPENDIX 

Let us consider the first diagram given in Fig. 2. This 
diagram corresponds to the following fluctuational contri- 
bution to the interaction vertex: 

Here w, and k, are the external frequency and wave vector. 
In the renormalization group procedure they belong to the 
slow variables and can be neglected in relation to w and k of 
the rapid variables. The integration over the frequency w is 
most conveniently done using representation (15) together 
with the fact that G (a) has singularities only in the lower 
half-plane. As a result, the integral over frequency can be 
reduced to the half-residue at the point w = 0. Taking into 
account that Z is small, we find as a result1' 

In this formula we have introduced the momentum 
k, = (x/b )lt2(k, /k ) goes from - (x/b ) 'I2 to (x/b )'/'-A. 
Now performing the integration over the angle in the (k, k,) 
plane and differentiating with respect to the upper limit in 
the resulting logarithmic integral, we obtain the first term on 
the right-hand side of (17). The first diagrams in Fig. 1 and 3 
are examined in a completely analogous way; they give the 
first term on the right-hand side of (17). The first diagrams in 
Fig. 1 and 3 are examined in a completely analogous way; 
they give the first term on the right-hand side of (16) and the 
term on the right-hand side of (18). 

The remaining diagrams in Figs. 1 and 2 give more awk- 
ward expressions. Dropping the frequency and wave-vector 
dependence of the slow variables, we obtain the following 
fluctuational contribution: 

do d3k 
AF=-  J T7 F3k2G (o) 

(Ln) 

The frequency integral in these expressions is evaluated in a 
manner analogous to (A.l). Using representation (15), the 
analytic properties of G (w) and GI, (w), and the symmetry of 
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the integrand with respect tow, one can show that the inte- 
grals over w in (A.3) and (A.4) reduce to the half-residue at 
the point w = 0. As a result we arrive at expressions of type 
(A.2) which transform like (A.2) and give the last terms in 
(16) and (17). 

Let us now consider the fluctuational contributions to 
17 from the second diagram in Fig. 4: 

1 d o ,  d3k1 do2 d3k2 =-J --, y2D ( a , ,  k t )  D (a,, k z ) D ( ~ , ,  k3 ) .  
6A2 ( a n )  

Here w, = w - a, - w,, k, = k - k, - k,. The integral in 
(A.5) diverges linearly at the upper limit, and it must there- 
fore be regularized by subtracting the constant to which 
(A.5) goes at w = 0, k = 0. As a result we obtain an integral 
which is accumulated at w, -a,-w, -w, k, - k2 - k, - k. 
Because H is small compared to w2 in the integral (A.5), one 
can use the following approximate expression, obtained with 
allowance for (1 1) and (1 5): 

In this regard it is convenient to introduce the following 
parametrization (n = 1,2,3): 

a C n  
on=- 

101 , kn = -F xn COS on, 
cos 0 ,  

o2 
k,, = -- xn2 cos 0 ,  sin 8,. 

(x b )  '" 

Here l, E ( -  W ,  + C O ) , ~ ,  E(-%-/2,%-/2),~, ~ ( 0 ,  w).  
Going over to an integration over these dimensionless varia- 
bles (and over the angles p, E (0, 2 4  in the plane perpendic- 
ular to the z axis), we obtain expression (27) with the follow- 
ing function X: 

1 l; i G 2  

x ==J d3C d30 d3cp 1 6,1;263 IS ( - + - G 3  + - - I )  
C O S  01 cos 0 ,  cos 0 ,  

xb (S,2+t22+6.2+25,C2 cos ( 9 1 - 0 2 )  +26.53 cos ( 9 i - c p 3 )  

+25223 C O S  (92-93) -E) - * . . 
o2 (-4.7) 

The ellipsis here denotes the same integral with k, and k set 
equal to zero. 

Let us now consider the second diagram in Fig. 3. It 
gives the following fluctuational contribution to the polar- 
ization operator: 

Here o, = w + w,, k, = k + k,. The expression on the 
right-hand side of (A.7) does not contain a logarithmic inte- 
gration, and s o p  can immediately be taken out from under 
the integral sign. We note that in the present case we cannot 
use representation (A.6) since it leads to divergences at the 
upper limit. The integration over frequency in (A.8) can be 

done by making substitution (15) and shifting the contour of 
integration into the upper half-plane. The integration then 
reduces to taking the residues at the poles of the G functions 
(with allowance for the smallness of 2 ). The result, to the 
required accuracy, is 

Here q, = (bk: + xk :,/k :)'I2 and analogously for 9,. The 
ellipsis in (A.9) stands for the sum of expressions which differ 
from those which are written out by the replacement 
w--t - w. 

The second term in the braces in (A.9) serves to cancel 
out the pole terms of the first term in the braces. As a result 
of this cancellation the integral is accumulated at q,) Iw I; in 
this region the second term in (A.9) is unimportant, and the 
first term can be simplified. Let us first consider the general 
case k, - k. Here the w dependence of the integral can be 
omitted, and only the first term in the expansion of the dif- 
ference q: - q: in powers of k, need be kept. The result is 
the integral 

n / 2  

AH,, = TBzk2 He J d0 cos2 0 j  
d4 1 

8n2pZb%X',s 
 XI^ y2xqi2+2i (bx) l i2kZ t g  0 ' 

(A. 10) 

Here, sin8 = &k ,, /k,q,, x = x(cos8, sin8 ). Performing 
the trivial integration over q,, we obtain expression (28) with 
the following factor: 

(A. 11) 

Let us now consider the case k, = 0, or, more precisely, 
Ik, I(w2/(bx)'I2. In simplifying (A.9) in this limit one must 
keep in the difference (a + q,)* - q: only the terms linear in 
w and k, and in the remaining places one can omit the depen- 
dence on w and k. Going over to an integration over q,, 8, 
and the angle p in the plane perpendicular to the z axis, we 
obtain 

[Xy2qi+2i(o+l 'bk (1- tgZ 0 )  cos 0 cos cp) I-'. (A. 12) 

The integration over q, is now trivial, and the integration 
over p gives a logarithmic divergence, which is cut off by the 
condition 

Vb 
1 + --,(1-tg2 0 )  cos 0 cos cp >y2.  I C I 

As a result, we obtain the expression 

4 T l o l y y "  n / z  

A n  
11 - ln y-i J d0 cos2 0 ctg cq,. (A. 13) 

nf' 
0 
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Here p, is determined implicitly by the equation 
c cos 0 

COScpe=r--. 
l'b lcos281 

The integration in (A. 13) is over the angles 19 for which this 
equation has a solution. 

"The Appendix is only concerned with the high-frequency region. There- 
fore, the parameter a is dropped in all the formulas. 
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