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The dielectric constant E (w, k) determined in the paper is intended for the description of strong 
spatial dispersion (SD) effects, particularly auxiliary light waves. The method described makes it 
possible, knowing c and without taking SD into account, to determine, first, the dependences of 
the exciton energies and of the dipole-moment matrix elements on s = k/lkI without using exci- 
ton models. This cannot be done by a direct quantum-mechanical calculation. Second, it permits E 

to be expressed with allowance for the SD if only the effective masses of the excitons are known. 
Crystals having various symmetries are considered. 

We consider here only strong spatial-dispersion effects 
that are of importance in the theory of auxiliary light waves. 
We neglect throughout weak effects that necessitate relative 
corrections of order a/il or (a/il )' (whereil is the wavelength 
of the light and a is the lattice constant). 

It is customary to express the macroscopic polarization 
P of a crystal in terms of the macrofield E by the formula 

P=xE, x ( a ,  k) =[E ( a ,  k) -I]/4n, E, Pmeickr-wt) , (1) 

where E(W, k) is the dielectric tensor and I a unit tensor. In 
the standard quantum-mechanical calculation, however, P 
is expressed not in terms of E but in terms of its part of the 
electric field which perturbs the crystal1 

E,=E-E' , (2) 

where 

A common superior bar above two vectors denotes here a 
dyad tensor: ( m), = AXBY.  Quantum-mechanical calcu- 
lation yields 

P'p (a, k) E,. (4) 

An unique relation exists between the polarizabilities x(w, k) 
andp  (w, k) and can be expressed by any one of three equiva- 
lent equations: 

- 
x =  (1-4npss)-lp, p =  ( 1 + 4 n ~ s ~ ) - ~ x ,  [Refs. 1, 21 (5) 

- - 
* ) ,  1+4n<x)\ [Refs. 1, 31 

16) 

crystals with accidentally close exciton energy levels that 
become simultaneously resonant to the light and make a 
comparable contribution to the SD. This occurs, e.g., in 
crystalline PbI, (Ref. 5), ZnSe (Ref. 6), and others. We con- 
sider in this paper such accidentally close exciton levels, the 
SD is first introduced in P, and the corresponding x are then 
determined using (5)-(7). Crystals with various symmetries 
are considered. No models are used for the exciton; all the 
result are obtained using a generalized definition of the exci- 
ton (see $3 of Ref. 1). We determine inpassim, at Ikl = 0, the 
dependences of the exiton energies and of the dipole-mo- 
ment matrix elements on s. 

We consider first two nondegenerate randomly close 
exciton levels. All other more general cases will be subse- 
quently reduced to this problem. Let P have the form 1 

Here $ ,(k) and $,(k) are close energies of two excitons that 
became $multaneously resonant to the light 
P, = (!POJPJ 'y, ), where r0 and !Pik are the ground and ex- 
citon states of the crystal, P is the specific polarization oper- 
ator, I = 1, 2; V is the volume of the main region of crystal 
cyclicity, Do is the "background" value of p ,  varies slowly 
with w, and includes a contribution from the remaining ex- 
cited states of the crystal. If this expression for0 is substitut- 
ed in the first equation of (6), we get 

x=xo+Q+I(K+ (k) -Am) +Q-/ ( K -  (k) -ha),  (9) 

- 
p -'=x-'+4nss. [Refs. 1,4] 

1 - J  

(7) 
where 

x o = ( ~ + 4 n p o ~ / ( l - 4 n ( ~ o > ) )  Po ,  
Here (T)-(s, Ts), where Tis a tensor of second rank. - 

Po= ( I - - ~ ~ X O S S / ( E ~ ) )  %or &o=I+4~lto, 
It is shown in pp 120-123 or Ref. 1 that when spatial (10) 

dispersion (SD) is introduced directly into the tensor x, one 1 
gets, generally speaking more new parameters than when it K* = - { ~ I - A I ~ Z Z - A ~  

2 
is introduced into the tensor /3. The SD should therefore be 
introduced into the tensorp, and x should next be expressed &{[(8I-Ai)-(82-11?) ]'f 4Aihz}'L}, (11) 

in terms ofp  using the exact equations (5)-(7). This is exactly 4nV - 
how the tensors x(w, k) were determined in Ref. 4 for crystals A,=4nV ( E ~ )  I (P,, s) 1 '  =----I (PL, s) 1 2 ,  

(eo> 
(12) 

with different symmetries. Also considered in that reference 
- 4n - are cases of degenerate excitons, when their degeneracy pl = p, 4n (P,, s) x,s, Pl  = p, ! p l ,  s) x,s, (13) 

stems from the crystal symmetry. There exist, however, ( E O )  
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where 

s= (F,, s )F l - (p ,  s)P2, 8,=K++-K-. (15) 

If the two relations (1 1) are solved for 8, and g,, we get 

These levels are numberd such that 69, - A, > %', - A,. 
Combining (1 1) and (14) we easily express the energies 

of the Schrodinger excitons in terms of the parameters that 
enter in x, namely, 

Here 
R,=Q+*Q-. (18) 

All the foregoing equations are valid if PI and F, de- 
pend on k. If, however, this dependence (i.e., small spatial 
dispersion effects) is neglected it can be shown that PI and FI 
can be chosen real, since the tensors p and x must be sym- 
metric (see Eq. (7.56) of Ref. 1). Equation (14) can then be 
written in simplified form: 

In the derivation of this formula, the products (F, . s) were 
expressed in terms ofA, from relations (12). To avoid uncer- 
tainties in sign, we agree to regard the products (PI . s) only 
as positive. This can always be achieved by choosing the sign 
of the P function of the ground or excitonic state of the crys- 
tal. As a result, although (14) is invariant to the substitution 
FI+ - F, , ~ q .  (19) is no longer so. 

Just as in Ref. 4, we start from a basic premise that the 
tensor x does not depend on s if spatial dispersion is neglect- 
ed, i.e., as lkl tends to zero." Since this should take place for 
different w ,  each of the tensors x,, Q,, and Q- in (9) must be 
independent of s. These tensors are "numerical," since their 
principal axes should not depend on s. As for the vectors FI , 
they were likewise independent of s in Ref. 4, where acciden- 
tally close excitonic levels were not considered. In the pres- 
ent paper, however, such a dependence does occur and will 
be explicitly determined below. 

We proceed now to a discussion of crystals with differ- 
ent symmetries. 

51. RHOMBIC-SYMMETRY CRYSTALS 

We choose the axis x, y, and z along twofold crystal 
axes. Let k lie in thexz plane. It follows then from symmetry 
considerations that F, is either perpendicular to this plane or 
else lies in it. 

1. I ~ F ,  llF,lly, we have A, = A, = 0, since s lies in thexz 
plane. We get from (19) - - 

Q+=fkTPl, Q-=vP,@,, 

and from (1 1) 

It follows froin (13) that PI = PI .  
If we now take strong spatial-dispersion effects into ac- 

count, we must take into account in the denominators of the 
fractions of the tensor (8) the dependence of g, on Ikl, but in 
the numerators and in Do we must let, as before, lk1-0. 
From the exact Eqs. (13) it follows then that we must let 
lk1-4 also in Fl .  The tensors Q, and x, thus remain the 
same as when spatial dispersion is neglected. It can be seen 
from (1 1) that if a dependence on Ik( is introduced into 8, 
and $,, this dependence must also be introduced in K + . - 
As a result, the tensor (9) takes the form 

Here and below x, y, and z are unit vectors along the axes x, 
y, and z. 

2.1f F, lly at I kI = 0 and F, lies in the xz plane, we have 
A ,  = 0 and it follows from (19) that 

- - 
Q+=*~?,, Q-=V?,%'~. 

For the axes x, y, and z to the principal ones for the tensor 
Q-, it is necessary that F, be directed along x or z. From (1 1) 
we obtain 

K+='8,, K-=g2-A2, 
and from (13) it follows that P,  = F,, while P, is in the xz 
plane. 1f F,llz, we get 

, , 

If F, is parallel to x, it is necessary to replace in (21) by 
XX . 

3. Let F, and F, be in the xz plane at I kl = 0. We deter- 
mine the four scalar quantities ij ,, , ,, , p,, , and F,, and 
their dependences on s from the conditions 
Q ,  ,, -Q,, = 0, while Q ,  ,, and Q *, are constants in- 
dependent of s. Taking relations (18) into account, we can 
rewrite these conditions in the form of the following six 
equations. The condition R , ,, = 0 leads to two equations: 

From the conditions that R , ,, and R * ,, be independent of 
s we obtain the four equations 

where a,  b , f ,  and g are constants independent of s. The six 
equations with four unknowns can be satisfied, since the 
equations are not independent. 

To classify the solutions it is convenient to start out 
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with Eq. (22). At least one projection of each of the vectors F, 
and F, must differ from zero, otherwise the corresponding 
exciton transition would be dipole-forbidden, a situation not 
considered in the present paper. The system (22)-(27) has 
solutions of the following three - types: 

(a)F ,, #0,F, #0,F ,, = P,, = 0. Equations (22), (23), 
(26), and (27) are then satisfied and it remains only to solve 
Eqs. (24) and (25). Since we agreed to choose the sign of PI 
such that (PI ,s) is positive, the solution is 

P,,=2-'12[a2& (a4-D*) '"1'" sign s,, (28) 

Pzx=2-"2[az i  (a4-D,) '"1 '" sign s,, (29) 

From (9), (19), (24), and (25) we get 

x=x0+V ( a ? - + f / 9 - ) g / 2 [ ~ +  ( k )  - h a ]  

+ v ( a ' - f / L ? - ) G / 2 [ ~ -  ( k )  - h a ] .  (31) 

The upper signs must be taken in (28) and (29) iff > 0 (i.e., 
Q + ,, > Q - , ), and the lower at f < 0. In particular, if sllz, 
i.e., both excitons are transverse, A ,  = A, = 0 and according 
to (25) we have f /Y? = t, - F :, and 

x = x D + V ~ , , 2 ~ / [ ~ +  ( k )  - ~ ~ ] + V P , , ~ X ~ / [ K _  ( k )  - h a ] .  (32) 

(b)F ,, #0,F2, $0, F ,, = F,, = 0. This case is perfect- 
ly analogous to the one just considered. In place of (24) and 
(25) we must now solve (26) and (27). The results are obtained 
by making the substitutions a-+b, f-+g, and x*z in Eqs. 
(28)-(32) and in the condition sllz. 

(c) All the projections, or two unlike projections, of the 
vectors F, and F, differ from zero. In this case Eq. (22) can be 
written as the product of two unequal nonzero projections 
and expressed in the form 

P 2 , ~ ~ , x = - ~ i , / P " z z = h .  (33) 
Solving first the system of four equations (23), (24), (26), and 
(33) we obtain 

Here A can take one of the two values 

h=B-/2A+ (B-z/4A2+1)'h, B-/A>O (35) 

where 

The signs ofa and b are chosen, depending on s, such that the 
scalar products (F, . s) are positive. It can be shown that the 
solution of (34)-(37) satisfies also Eqs. (25) and (27). 

Using the square root of (35), we get 

x = x D + V a z z T / [ ~ - ( k )  - l i o ] + ~ b ~ z ~ [ ~ +  ( k ) - P C , , ] ,  (38) 

and using the square root in (36), 

x = x O + ~ a z x J [ K +  ( k )  - h a ]  + v b 2 z 7 [ K -  ( k )  - h a ] .  (39) 

Thus, depending on the polarization of the considered pair 
of excitons, the tensor x can be either of the type (20) and (3 1) 
when both fractions contribute to the same principal value of 
x, or of the type (21), (38), or (39) when the two fractions 
contribute to different principal values of x. 

We have considered above the particular case when s 
lies in the xz plane. Since, however, the numerators of the 
fractions Q , do not depend on the direction of s, they re- 
main the same also at arbitrary direction of s. To allow for 
large spatial-dispersion effects in the expressions obtained 
for x it suffices to take into account in the denominators of 
the fractions the dependence of K + on k at arbitrary k. 

As for the directions and values obtained above for the 
vectors6 (1 = 1,2), particularly Eqs. (28), (29) and (34), they 
are valid, on the contrary, only if s lies in the xz plane, since 
the Fl (in contrast to Q + ) depend on s. The vectors PI  also 
depend on s; they are expressed in terms of PI by the second 
equation of (1 3), which is valid for arbitrary s. It follows from 
it, in particular, that 

( f , ~ )  = (PLs) ( E D ) .  (40) 
If s and FI are in the xz plane, the PI are also in this plane. 

We emphasize that by specifying the one definite initial 
tensor (8) we specify a definite pair of excitons with energies 
g, and 8, and with vectors P,  and P,, i.e., F, and 8,. It can 
be seen from (17) and (34) that each of the roots A, (35) and 
(36), defines its own pair of excitons with levels g, and 8, 
and a pair of vectors F, and F,. It is thus necessary to choose 
only the that of the two roots A which determines just the 
initial exciton pair corresponding to the polarizability (8). If 
this pair of excitons has been theoretically calculated, the 
required root can be chosen to be the one that gives the cor- 
rect sign of relations (33). If no such calculation was made 
but the experimental form of x is known, the needed root A 
can be determined using the inequality K+ > K-, viz., if x is 
given by (38), i.e., the larger of the K is under the dyad G, 
then A is given by (36). If is known, F,, P I ,  and A,  can be 
determined from (34), (13) and (12). 

In (28) and (29), similarly, one must choose either only 
the upper or only the lower signs-those corresponding to 
the initial pair of excitons contained in (8). The upper signs 
must be chosen if calculation or experiment leads to 
IF, 1 > lp,~, and the lower in the opposite case. Since a 
change of s does not alte the choice of signs, this choice can 
be made at sllz, cornparing (32) with experiment; this indi- 
cates which of the IP, I is the larger. 

If it is known from ex~eriment that x is of the form (20) 
or (21), the directions of P, and PI for s located in the xz 
plane are stipulated as in subsections 1 and 2 above. 

52. UNIAXIAL CRYSTALS 

Let in this case the direction of k be arbitrary. We 
choose thez axis along the crystal C axis, the x axis in the (C, 
s) plane, and they axis perpendicular to this plane. As 1 k 1 4  
these axes are the principal axes of the tensor x. It follows 
from (7) that they axis is also the principal axis ofB, i.e., ofPo 
and of the numerators of each fraction of an equation such as 
(8). When spatial dispersion is introduced ins, however, the 

600 Sov. Phys. JETP 60 (3). September 1984 S. I. Pekar and B. E. Tsekvava 600 



dependence on k is introduced only in the denominators of 
the fractions, while the numerators remain unchanged. The 
y axis remains therefore a principal axis o f p  also when spa- 
tial dispersion is taken into account. According to (7), how- 
ever, it will be the principal axis of x also when spatial disper- 
sion is taken into account. 

Since they axis is a principal axis of the numerators of 
the fractions inp, the vectors PI  are either directed alongy or 
lie in the xz plane. We separate in the right-hand side of an 
equation such as (8) those fractions that contain PI  I(y in the 
numerator, and designate their sum by the tensor Be). The 
aggregate of the remaining terms of the right-hand side of (8) 
(including Po) will be designated P ', i.e., 

f,=f,'+P'". (41) 

Since sBCY) = P e ) s  = 0, substitution of (41) in the first equa- 
tion of (6) gives 

i= (1+4n~'G/(1-4n(!3'>) ~ ' f P " ' = ? c ' +  P'"'. (42) 
The term be' is thus "transferred" to x without changes, 
while the term@ ' enerates in x a term of a type such as if there 
were no termPCY) in (41) at all. 

It follows from symmetry considerations that in a un- 
iaxial crystal the exciton bands can be either nondegenerate 
or doubly degenerate. The degenerate bands are defined as 
those in which the $(k) coincide as lkl-+O for the selected 
directions of s. 

At k)lz any direction in the plane xy should be principal 
for the tensor B also when spatial dispersion is taken into 
account. It follows therefore that a fraction containing PI Ily 
is either not contained at all in the right hand side of an 
equation such as (8), or is accompanied by a fraction having a 
denominator with exactly the same denominator and con- 
taining ]PI  '))x, where )PI' = IP, ) (the exciton bands I and I '  
are mutually degenerate and are polarized in the xz plane at 
kllz). For the nondegenerate exciton I " we have P, " (lz at k))z. 

Two nondegenerate accidentally close exciton bands 

If both bands are simultaneously at resonance with the 
light,P (w,k) is given by Eq. (8). The vectors P ,  and P, are in 
thezx plane, for if either of these vectors were directed along 
they axis the corresponding exciton would be doubly degen- 
erate. The problem of determining x when 0 is of this form 
was already solved above. Equations (8)-(19) and (22)-(27) 
remain in foce. Equations (22)-(27) were solved above, even 
though in the section devoted to rhombic crystals, without 
using the rhombic are any other symmetry of the crystal. It 
was shown that in the general case there are solutions of 
three types [(a), (b), and (c)]. If we now use the symmetry of 
the uniaxial crystal, i.e., stipulate xxx = xyy as )kl+O, the 
solutions (a) and (c) must be discarded. We are left with solu- 
tion (b), which is obtained by making the substitutions a-tb, 
f+g, x-tz in Eqs. (28)-(3 1). 

Nondegenerate band accidentally close to a pair of 
degenerate bands 

In this case p takes the form 

f,=fio~-~P,Yl'l [g ,  (k) - F , ~ ] + V P ~ * I [ ~ , ( ~ )  - -Am] 

-,-vlX~~lp(~)*/ [ & ( u )  (k)-hw]. (43) 

The last term corresponds here to an exciton polarized along 
they axis. Assume that the exciton bands gCY) (k) and 8 ,(k) 
are mutually degenerate, and $,(k) is nondegenerate. The 
last term is the above-mentioned tensorBe) , which is trans- 
ferred to x unchanged. The first three terms of the right- 
hand side of (43) constitute the tensor p ', which has exactly 
the form (8). Therefore the calculation of x' [of the first term 
of the right-hand side of (42)] coincides with the calculation 
above of x from the first equation of (6). The vectors P, and 
P, lie again in the xz plane, and Eqs. (8)-(19) and (22)-(27) 
remain in force i f p  is replaced in them by p ' and x by x'. In 
view of the symmetry of the uniaxial crystal, the solutions (a) 
and (b) above must be discarded. The choice between the 
variants (38) and (39) in solution (c) can be made to satisfy the 
condition that at k))z any direction in the xy plane should be 
principal for the tensor x. To this end it is necessary that the 
dyads and yy in the expression for x enter with identical 
coefficients. Recognizing that according to (11) we have 
K+(k) = $,(k) = $'-'"(k) at kJ)z, we must choose expression 
(39) for x'. As a result, the tensor x takes for arbitrary k the 
form 

x=xo+VaZ&l[~+ (k) -ho] 

+va"?/ [8("  (k) -ho] +VbZG/ [K- (k) -Ao] , 

a2=l P(yl I?, K+ (0) = 8 ( y )  (0). 
(44) 

This variant of the solution (c) corresponds to expres- 
sion (36) for A. 

Exactly the same reasoning holds for the case when the 
bands @IY) (k) and $,(k) are mutually degenerate and Zf ,(k) is 
nondegenerate. We then obtain the expression for x by inter- 
changing K+(k) and K-(k) in (44). The corresponding value 
of A is given by (35). 

Accidentally close two pairs of degenerate exciton bands 

One of the excitons of each pair should be polarized 
along they axis, and the other in the xz plane. Let P I  and P, 
lie in the xz plane, and P,IIP,))y. Then 

f , ' = f l O + ~ ~ ~ , * /  [Zi (k) -ha] f vKP:/ [Z, (k) --ha], (45) 
- - 

B'"=VP3P3*/ [g3  (k) -J~o] +VPIP1*l [8$ (k) -ha]. (46) 

Let the pair of bans $,(k), $,(k), and well as $,(k), $,(k) be 
mutually degenerate. Again P ' is given by (8), and Eqs. (8)- 
(19) and (22)-(27) are valid i f p  andp  ' are replaced in them by 
x and x', respectively. Using the symmetry of a uniaxial 
crystal, a choice can be made between solutions (a), (b), and 
(c). To this end we consider the case kllz, when any direction 
in thexy plane should be a principal one for the tensor x at all 
values of ) kl and w.  Starting from this condition, it is easy to 
show that solutions (b) and (c) should be discarded, and x' is 
given by Eq. (32) in which we have at all values of Ik/ 

K+ (k) = 8 i  (k) =8, (k) , K- (k) =Z, (k) =Z, (k) , 

- - - - (47) 

P1l!P,/lx, PlZ=IP3 I,, PZ2=1P&(2. 

If we change over now to an arbitrary direction of k, a gener- 
alization of (32) is then Eq. (31). We therefore obtain for x 
ultimately 
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If we let [ k t 4  at an arbitrary direction of k, i.e., if we ne- 
glect spatial dispersion, the obtained x should be indepen- 
dent of s. Therefore P,, P,, $,(0) and $,(O) do not depend on 
s. But it must be borne in mind here that when s is changed 
arbitrarily the directions of the x and y axes stipulated above 
also change in such a way that s remains all the time in thexz 
plane. The vectors P, and P, remain unchanged relative to 
this rotating coordinate system. From the condition 
xxx = xyy we obtain K+(O) = $,(O), K-(0) = $,(0). 

53. CUBIC CRYSTALS 

As I k 1 - 4  any direction is space is a principal one for the 
tensor x. Therefore, according to (7), a direction of s arbi- 
trarily chosen in space is principal also for the tensorp at all 
w.  Consequently s is a principal direction for Po also for the 
numerators of all the fractions contained in 8. If now lkl is 
made different from zero, i.e., if spatial dispersion is intro- 
duced, it suffices to make the change only in the denomina- 
tors of the fractions and leave Po in the numerators of the 
fractions unchanged (neglecting small spatial-dispersion ef- 
fects). As a result s remains the principal direction o f 0  even 
when spatial dispersion is taken into account. We choose the 
z axis in the s direction. The two remaining principal axes of 
p will be then in the xy plane. 

For s to be the principal direction of the tensor 0 ,  it is 
necessary that in an equation of type (8) the vectors PI  be 
directed either along s or in the xy plane. As shown in 9 15 of 
Pekar's book.' To satisfy the symmetry requirements in cu- 
bic crystals in the case of dipole-allowed excitons, the frac- 
tions in the expression for fl can appear only in groups of 
three, and in each triad two exciton levels must be degener- 
ate and the third must differ from them. The case of three 
fractions was considered in Ref. 4. We shall calculate here 
the value of x when two exciton triads have accidentally 
close energies. Let the numbers of the first exiton triad be 
I = 1,2, and 3 and let the energy bands $,(k) and $,(k) be 
mutually degenerate. Next, let the second exciton triad be 
numbered I = 4, 5, and 6 with the bands $,(k) and $ , (k )  
mutually degenerate. We can then write for P: 
p=pf+p'""' ,  

p f = p o +  v-/ [ 8 s  ( k )  - h a ] +  VP,PG'/ [ 8 6  ( k ) - f Z ~ ] ,  P ~ I ~ P ~ I ~ s ,  

(49) 
P ' " " = v ~  [ 8 i ( k )  - h a ]  +VPZPz*/ [ z z ( k ) - h a l  

+ v W /  [ 8 , ( k )  - h a ]  

- I - V ~ /  [ 8 5 ( k ) - h o ] ,  Pi ,  P2, Pi, P 5 l s .  

For the same reasons as in uniaxial crystals, the nondegener- 
ate excitons must be polarized along the z axis, and the 
paired degenerated excitons polarized in the xy plane. 

Since s$("~) = P(xy) s = 0, we easily obtain an equation 
similar to (42), in which BCY) is replaced by p(xy).  AS l k 1 4  
any direction in the xy plane should be principal for x andP. 

This means that 
P , L Y 2 ,  (P,I=IP,I ,  P 4 l P 5 ,  IP4I=IP51. (50) 

Since the t e n s ~ r p ( ~ ~ )  is transferred to x without change 
it remains to calculate only x '  i.e., the first term in a formula 
of the type (42). A somewhat more general problem was 
solved in subsection 3 of § 1 [case (b)]. There s could have an 
arbitrary direction in the xz plane and the exciton waves had 
a polarization PI  making an arbitrary angle with s. In the 
case considered now, PI and s are definitely directed along 
the z axis. 

To rewrite Eqs. (8)-(19) and (22)-(27) in our notation, we 
must introduce the following changes: - - 

( 3 + p f ,  ~c+x',  Pi ,  Pi+P3, F 3 ,  P2, Fz+p6, PA, 
Z 1 ( k )  + 8 3 ( k ) ,  8 z ( k ) + Z 6 ( k ) ,  A i+AJ ,  A z 4 A e .  

As a result we get 

x f = x , + ~ ( b Z + g / 9 - ) E / 2 [ ~ + ( k )  -h] 

+ ~ ( b ' - ~ / 9 - ) a 2 [ ~ -  ( k )  - f ia] ,  (51) 

b2=H, '+H6" g g= (PsZ-P6 ' )  ( ~ - 2 - 4 A 3 A 6 ) ' - 4 A 3 ' A 6 ' " P ~ ~ 6 .  
(52) 

It was assumed above in accord with (16) that 
$, - A ,  > 8, - A,. Now this means that 
g 3 - A 3 > g 6 - A 6 .  

The polarizability x is equal to the sum of the tensors 
(5 1) and p(xy).  It must be stipulated that xxx = xyy = x, as 
1 k 1 4  for all w .  Hence 

We ultimately obtain then for lkl # O  
- 

x=xo+VPiP i* /  [ 8 ,  ( k )  -ha] 

+v=/ [8, ( k )  - h a  j + v W /  [bl ( k )  - h a ]  

(54) - 
+VP5P,'/ [8, (k) -ho)l 

+ v IP, 1% [ K +  ( k )  - h a ]  t v ( P ~  l Z a  [ K - ( k )  - t i @ ] .  

At arbitrary direction of s the directions of the vectors PI ,  
P,, P,, and P, are restricted only by the last equation of (49) 
and by Eq. (50), and cannot be determined more accurately 
from symmetry considerations. To determine the directions 
of P ,  and P, we must consider the problem of degenerate 
excitons with I = 1 and 2 quantum-mechanically and solve 
the two-dimensional secular equation that determines the 
correct linear combinations of the zeroth-approximation 
wave functions. The small parameter must be taken here to 
be I k 1, which is set equal to zero in the zeroth approximation. 
The directions of the vectors P, and P, are similarly deter- 
mined by a quantum-mechanical analysis of the degenerate 
excitons with 1 = 4 and 5. 

In the important particular cases when s lies in one of 
the mirror-symmetry planes of the crystal, the vectors PI ,  
P,, P,, and P, must be so directed that two are perpendicular 
to the symmetry plane and two lie in this plane. Let P, and 
P, lie in this plane and let P, and P, be perpendicular to it. 
We choose the x axis in the direction of the vectors P ,  and 
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P,. They axis is then along the vectors P, and P,. Taking (5) 
into account we have then 
- --  
PIP,'= (PI 1 2xx, p2p,*= 1 P, IZyy, 

-- - 
~1P,'=l~,laxx, P5P5 = (P,I2yy. (55) 

These expressions must be substituted in the numerators of 
the first four fractions in (54). The principal axes of x are thus 
determined without solving the secular equations. 

If the s unit vector is directed along one of the fourfold 
or threefold axes. Then the equality of the energies Z? ,(k) and 
Z?,(k), as well a of 8,(k) and Z?,(k) is preserved for any I k ( .  In 
this case the pairs of mutually orthogonal vectors P I  and P, 
or P, and P, can be oriented arbitrarily in a plane perpendic- 
ular to s. In this case, too, we obtain Eqs. (55), but the coordi- 
nate axes x and y can be arbitrarily chosen in plane perpen- 
dicular to s. 

We show now that if the number of fractions in expres- 
sion (29) for P were not six but less, the symmetry require- 
ment would be satisfied only by eliminating an antire triad of 
fractions corresponding either to the excitons with 1 = 1,2,4 
or with 1 = 4,5,6. Let us attempt, for example, not to intro- 
duce the exciton with 1 = 6. The formulas for this case can be 
5asily obtained by putting everywhere above P, = 0. Then 
P, = eOP6 = 0 according to the first equation of (13), and 
A ,  = 0 according to (12). We then obtain from (52) 

b2- -g /P-=0 .  (56) 

Equations (5) and the last equation of (53) yield then 
P, = P, = 0. Thus the excitons 1 = 4 and 5 vanish in the 
expression (49) forb  together with the exciton 1 = 6. 

We attempt now to use the expression for P without 
introducing the exciton with 1 = 4, i.e., we put P, = 0 in the 
equations. Then P, = 0 according to (50) and from the last 
equation of (53) we obtain (56). It follows from the latter 
that2' F, = 0, and hence P, = 0. Thus, with vanishing of the 
exciton 1 = 4 in (49), the excitons 1 = 5 and 6 also vanish. A 
similar result is obtained if we try to put P, = 0. The forego- 
ing confirms a statement made in Ref. 4, that in the case of 
dipole-allowed excitons the fractions in the expression for 
can appear only in groups of three, and two band excitons are 
degenerate within each triad. 

Spatial dispersion has thus been introduced in the ten- 
sor x, and hence in the dielectric constant at accidentally 
close excitonic resonances in crystals of varying symmetry. 
The use ofx is in many cases more convenient than the use of 
0 to calculate the refractive indices of light waves in exci- 
tonic resonance regions. 

54. DETERMINATION OF THE DEPENDENCES OF g, AND P, 
ON s BY MACROELECTRODYNAMICS METHODS 

The exciton energies and polarizations and their depen- 
dences on the quasimomentum directions are usually deter- 
mined by solving the Schrodinger equation for the crystal; 
this can be done only approximately and by using actual 
models of the exciton. The theory developed makes it possi- 
ble to determine these dependences without solving the 
Schrodinger equation and without introducing an exciton 
model, but using only a general quantum-mechanical meth- 

od of calculating 8 ,  which leads to equations similar to (8) 
(Ref. I), provided that 8, can be regarded as independent of 
w ,  i.e., if the aggregate of the considered close exciton bands 
is far enough from the remaining excited levels of the crystal. 

It is useful to recall further that Eqs. (1)-(18) are valid 
for k that is arbitrary but is small enough for macroelectro- 
dynamics to be valid. An approximation was used in the 
remaining equations, viz., J k l 4  in the expression for P in 
the numerators of the fractions. In $1 the direction of s was 
restricted to the mirror-symmetry plane xz of a rhombic 
crystal. In $$2 and 3 the direction of s is arbitrary. 

We illustrate the macroelectrodynamic method using 
as an example uniaxial crystals. The reader is assumed to 
know the general form of the tensor x with neglect of spatial 
dispersion. 

If x contains two resonant fractions whose numerators 
include the dyad %, this is the case of two close nondegener- 
ate excitonic bands. In this case, as shown above, the solu- 
tion (b) of $1 is realized, i.e., F, 11F211z. Then, according to the 
second equation of (13), the dependence of each of the two 
excitons on s is given by 

PI,/Plx=- ( ~ ~ ~ s % ~ S - s r z ) l  (ha-l)  sxsr, 1=1, 2. (57) 

The dependence of the energy of these excitons on s as I kI-0 
is determined by Eq. (1 6) or (1 7) if we let in them I k(-0. The 
parameters that enter in x ,  i.e., K, (0), Q, (O), and x,, are 
independent of s and can therefore be calculated or mea- 
sured by choosing a convenient direction (that simplifies the 
problem) of s. The equations obtained from (28)-(3 1) by mak- 
ing the substitutions q-b, f+g,xctz are also valid. 

If x contains three fraction terms, it can be only of the 
form (44) or expressed by an equation obtained from (44) by 
the interchange K+(k)ttK-(k). Let us consider the first of 
these cases, which is described above in the section in which 
a nondegenerate band is accidentally close to a pair of degen- 
erate exciton bands. The energy band gCY) (k) corresponds to 
an exciton that is transverse at any direction of s. The energy 
Z?b) (0) does not depend on s. As we have shown, the solution 
(c) of $ 1 is realized and the value of A is determined by Eq. 
(36). The vectors P, are determined by Eqs. (34) and depend 
on s. Here a and b are parameters that are independent of s 
and enter in (44). The s-dependence of the exciton polariza- 
tions P, with 1 = 1 and 2 is determined by the second equa- 
tion of (13), in which we must substitute the now known F,. 
The dependence of the exciton energy 8 , ( O )  or g2(0) on s is 
determined by Eq. (16) or (17), in which K, (0), Q, , and x, 
do not depend on s and are known from the expression for x 
in the absence of spatial dispersion. 

If x contains four fraction terms, it can have only the 
form (48); this corresponds to accidentally close two pairs of 
degenerate exciton bands. As we have shown, excitons with 
1 = 3 and 4 are transverse at any direction of s and at 
P,J(P,IIy. The energies Z?,(O) and g4(0) do not depend on s. 
The remaining two excitons with 1 = 1 and 2 are described 
by solution (a) of $1. They have F,llF211x, and for their polar- 
ization we easily obtain from the second equation of (13) 
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These excitons satisfy Eqs. (28)-(32). The dependences of the 
energies %' ,(0) and 65',(0) on s are determined by Eq. (16) or 
(17). 

We can similarly determine the s-dependences of the 
energy limits of the excitons and their polarizations for crys- 
tals with other symetries. In cubic crystals, the choice of the 
direction ofs was also arbitrary. In rhombic crystals (in $I), 
however, it was assumed that s lies in the mirror symmetry 
xz. The dependences of the polarizations of P I  and F, with 
1 = 1 and 2 and of the energies A,  and %', (0) on s can there- 
fore be determined from Eq. (16) only for the indicated parti- 
cular directions of s. In the limit as Ikl-4,  however, for 
particular directions of s the tensor x determined in § 1 does 
not depend on s. In particular, K ,  (0), Q * , and x,  do not 
depend on s. Equation (17) permits therefore the s-depen- 
dence of the energy to be determined for arbitrary direction 
of s. 
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"At Ikl = 0 the field E ceases to depend on s. If the tensor x were then 
dependent on s, this would mean that an infinite manifold of differ- 
ent polarizations P corresponds to the same spatially homogeneous field 
E. 
''P, = 0 is the only root of Eq. (56). This can be seen from the fact that 
according to Eqs. (53) b increases and g / Y -  decreases when P, be- 
comes different from zero. 
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