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An experimental study is made of the birefringence in GaAs crystals in the exciton region of the 
spectrum in the presence of a magnetic field. The birefringence caused by the magnetic field is 
proportional to the first power of the field. The experimental results are explained on the basis of a 
magnetically induced spatial dispersion of the permittivity tensor. The observed effect is due to the 
presence of a linear term in the valence-band Hamiltonian. The corresponding constant is found to 
be Wc, = 7. lo-'' eV-cm. 

Although there have been many experimental and theo- 
retical studies of the various physical aspects of excitons in 
semiconductors, the nature of exciton states which are de- 
generate as a result of a complex structure of the energy 
bands is still attracting attention. Magnetooptic measure- 
ments are a powerful method for studying various properties 
of these states: the magnetic field splits the degenerate levels 
into sublevels, each with its own oscillator strength and po- 
larization. In crystals which lack a center of inversion, 
allowance for spatial dispersion of the permittivity in the 
presence of an external magnetic field gives rise to new ef- 
fects. One of these is the well-known effect of inversion of the 
magnetic field (see, e.g., Ch. 111, Sec. 9 of Ref. I). In addition, 
the magnetic field induces a birefringence which is linear in 
the wave vector of the light.' 

The present paper reports a study of the birefringence in 
GaAs crystals near the fundamental absorption edge in the 
presence of a magnetic field. 

For crystals of the cubic symmetry class T, , the pseudoten- 
sors A ;, and A ;, each have only one independent nonzero 
component: 

~ ~ v u = A ~ ~ z z = ~ z ~ , = - ~ ~ v , = - ~ ~ z , , = - ~ ~ z z = ~ ,  (5) 

Here e ,  is the completely antisymmetric unit tensor, and 
the coordinate axes are chosen along the four-fold crystallo- 
graphic axes ( 100). 

According to relations (5) and (6), for crystals of cubic 
class T, the permittivity tensor ~ ( w ,  q, H) given by expres- 
sion (1) becomes 

ezj(o, q, H) =e (o) ~ i j + ~ i j ~ ~ ~ + ~ ~ ~ r n ~ ~ q ~ ~ i j ~ ~ r n + [ ~ ~ q ~ ~ g ~ i ~ ~  (7) 

One is readily convinced that magnetically induced birefrin- 
gence occurs, for example, for Hll [ l i ~ ]  and q1([110]: 

E , , = E -  (A+2g)  H,q,, E , = E + ~ A H , ~ , .  (8) 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

2. PHENOMENOLOGICAL TREATMENT The experiments were done at T = 2 K in a supercon- 
ducting solenoid. The geometry of the experiment is shown 

Phenomenologically, the magnetically induced bire- 
in Fig. 1. At H = 0 we observed (in crossed polaroids) the 

fringence can be described as follows. Sufficiently far from 
natural birefringence, which is due to a second-order effect resonance absorption lines the permittivity tensor ~ ( w ,  q, H) 
in the spatial dispersion and is characteristic of the exciton can be expanded in a series; for crystals lacking a center of 
region of the ~pec t rum.~ When the magnetic field was turned 

inversion we have, in the approximation linear in the mag- 
netic field Hand light wave vector q (Ch. 111, Sec. 9 of Ref. 1) 

on, the birefringence decreased, becoming practically zero at 
fields of the order of 27 kOe. As the magnetic field was in- 

~ i j  (a, q, H) ' ~ i j  (a) + y i j h H k + A i j l m H 1 q m .  creased further we observed a rise of the effect (Fig. 2). 
In expression (1) the third-rank pseudotensor y, which is The particular geometry of the experiment provides op- 
antisymmetric in the indices i, j, describes the Faraday effect timum conditions for observation of the natural birefrin- 
(see, e.g., Sec. 82 of Ref. 3). gence, since the angle between the polarization direction of 

According to the generalized symmetry principle for the light and one of the axes of the permittivity tensor is 45". 
kinetic coefficients3 In the presence of a magnetic field the direction of the dielec- 

It follows that the pseudotensor Aglm is symmetric in the 
indices i, j: 

Ai j l rn=Aj i l rn .  

By virtue of the Hermitian character of the permittivity 
E ~ ( w ,  q, H), the pseudotensor AvIm is real. Pseudotensor 
A* can be written as the sum of parts which are symmetric 
and antisymmetric in the indices 1 and m: 

~ t j l , = ~ t j ; r n ~ ~ ; m .  (4) FIG. 1 .  Geometry of experiment. 
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FIG. 2. Dispersion relations An (0) and AZ (H)/Zo for H = 0 (light circles) 
and H = 13 kOe (dark circles). The inset shows a plot ofAZ(H)/Zo against 
H at fio = 1.496 eV. 

tric axes depends on the magnitude and direction of H. For 
the particular experimental geometry the relative intensity 
of the light passing through the crossed polaroids is 

Here I, is the intensity of the incident light, L is the optical 
path length, and the angle 0 specifies the direction of the 
dielectric axes with respect to the crystallographic axis 
[lio], i.e., 

further, 
An (H, 0) = A n  (0) cos 20 

-An  ( H )  ( cos 20+ 3,1+2g 4g sin20) , 

where 

As will be shown in Sec. 4, for GaAs the quantities A and g 
are positive, and A = log. 

The natural birefringence An(0) in the exciton region of 
the spectrum is given by the difference y3 - y, of the Lut- 
tinger parameters, and for GaAs we have An(0) > 0.5 

According to relation (lo), at a certain value of the mag- 
netic field the dielectric axes are rotated by 45" and thus 
coincide with the polarization direction of the light. Here the 
birefringence should vanish. In the present experiments the 

FIG. 3. Plot of An(H) against the magnetic field H at fio = 1.496 eV. 

corresponding value of the magnetic field is 27 kOe. Using 
the experimental data and relations (9)-(12), one can con- 
struct the magnetic field dependence of the quantity An(H) 
given by expression (12). The result is shown in Fig. 3. It is 
seen that the field dependence is linear, i.e., the results can- 
not be ascribed to the Cotton-Mouton effect. 

4. THEORY 

From a microscopic standpoint the appearance of ef- 
fects which are of first order in the magnetic field and spatial 
dispersion in media lacking a center of inversion is due to the 
presence of the corresponding terms in the effective Hamil- 
tonian describing the exciton ground state. This Hamilton- 
ian can be constructed by the method of invariants (see Ref. 
6, Ch. IV, Secs. 25 and 26 of Ref. 7, and also Ref. 8), and to 
first approximation in H and q for crystals of cubic symme- 
try class Td we have 

8 e x = L % e x  (0) +%a ( K  q) +%ex (q) +%ez (HI, (13) 
where 

%,, (0) =EO+L%cxch (14) 

a e X ( H ,  q) =Bi ([Hx qIx{Jv, J=}+c.P.) 

+B2[Hxqx(J,2-1:) +c.p.I, (144 

B e X ( q )  =C,(qx[Jz(J,2-Jz2) I + ~ . P . ) ,  (14b) 

8 e , ( H )  = g , p ~ o H - 2 p ~  [EJH 

i-ij(H,J2+H,J,S+HJz3) 1 .  (144 

In these formulas J(J,, J,, , J,) is the total-angular-momen- 
tum operator, [ Ji , Ji ) = J(JiJi + Ji Ji ), a andg, are the spin 
operator and g factor of a conduction electron, and ij are 
the analogs of the Luttinger parameters for an exciton, 
Xe,,, is the Hamiltonian of the exchange interaction, and 
c.p. stands for a cyclic permutation of x ,  y, z. 

The constants B, and B, appearing in relation (14a) 
should be expressed in terms of the constants characterizing 
the electron and hole energy spectra. For this purpose let us 
write the exciton Hamiltonian for the effective-mass method 
in the presence of a magnetic field9,l0 

Hamiltonian (15) is written in the coordinates of the relative 
and translational motions. For crystals of class Td we have 

26P (k) =k2/2m,+g,pBoH, (16) 

Here me is the electron mass (y,, y,, y3, k, q) are the Lut- 
tinger parameters, 
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mh=mo/yl. (I9) 

Because we are considering only the case of a uniform mag- 
netic field, the vector potential can be chosen in the form 
A(r) = ;(HXr). Without loss of generality we shall assumed 
that the magnetic field is directed along the z axis. Let us 
keep only the terms which are linear in the wave vector q and 
write Hamiltonian (1 5) in the form 

(20) 
where Zs is the spherically symmetric part of Hamiltonian 
(15): 

%s=p9/2~o-e2/~r ,  (21) 

l/po=l/me+ y l/nzo, (22) 

%'=%,+%k+% (q) +% (H) +% (H, q) . (23) 

In expression (23) the Hamiltonians Zd and Zk , Zs , de- 
scribe an exciton in the absence of magnetic field: 

'Yz 5 218 & = - pz- (PJ) '1 - -[pXpr {Ix, I.) +C. p. I, (24) 
mo mo 

%,=-ko(p,[ Jx(Ju2-Jz2) I +c.P.), (25) 

Z ( q )  and R ( H )  are, respectively, the terms linear in q and 
H: 

The bilinear part of Hamiltonian Z ( H ,  q) is given by the 
expression 

Following Refs. 10 and 1 1, we shall treat Hamiltonian X' as 
a perturbation. This approach is valid" in the weak-magnet- 
ic-field region to y = 0.4, where y = R ,*/,u,H. It is known, 
however, that the predictions of the theory give good quali- 

tative agreement with experiment even at considerably larg- 
er magnetic fields.13 

In crystals of class Td the exciton ground state Z,,, 
coupled to the valence band r, and the conduction band r,, 
is eightfold degenerate. The eigenfunctions of Hamiltonian 
Zs are the spinors 

where the first factor on the right stands for ordinary hydro- 
gen-like functions (the index n refers to the discrete spec- 
trum, the variable k to the continuum), and Sii is the Kron- 
ecker delta. The corresponding eigenvalues of the discrete 
spectrum are 

Appropos the linear (in q and H)  corrections to the exci- 
ton ground state I ls), we note that the bilinear part of Ha- 
miltonian Z ( H , q )  does not contribute in the first approxi- 
mation. A nonvanishing contribution appears in the second 
order of peturbation theory in Zk and Z ( H , q )  and also in 
R ( H )  and Z ( q ) .  After straightforward calculations we ob- 
tain 

where 

1 (Is  1 r/aoW lnp>(np 1 l s>  
G = - S  

4 ,=, l - l / n z  
(33) 

and a,+ = ~ + ? / , u , e ~  is the effective Bohr radius, 
M = me + m, , the symbol S denotes summation over the 
discrete spectrum and integration over the continuous spec- 
trum, and the constant G equals 0.375 (Ref. 10). The pres- 
ence of the bilinear terms Ze, (H,q) in the effective exciton 
Hamiltonian for cubic crystals lacking a center of inversion 
is due to terms which are linear in the momentum in the 
valence-band Hamiltonian (17). By experimentally deter- 
mining the constants B, and B, one can obtain information 
about the value of the corresponding constant k,. Up till now 
there have been no data reported on the value of k, for GaAs. 

Having established the connection between the coeffi- 
cients B, and B, and the band constants, let us use effective 
Hamiltonian (13) to consider the behavior of the exciton 
ground state Z,, in a magnetic field, which induces spatial 
dispersion. 
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The representation r 8 X r 6  according to which the 
ground state Z,, transforms is reducible: 

The dipole allowed state r5 is threefold degenerate, and the 
states r, and r4 are dipole forbidden. The singlet state r5 
and triple states (T,, r4) are split by the exchange interac- 
tion. The basis functions of the singlet state transform like x, 
y, z under the transformations of the cubic group.' 

The presence in Hamiltonian (13) of terms Rex (H ,q )  
which are bilinear in the wave vector q and magnetic field H 
leads to an additional splitting of the degenerate exciton 
state Z,, and a mixing of the states r 5 ,  r 3 ,  and r 4 .  

Let us limit discussion to the dipole-allowed state T, 
and set ij = 0. For H11[100] and q11[001] the corresponding 
submatrix of Hamiltonian (13) is of the form 

where E, = R ,* - S, the constant S is relatedI4 to the terms 
Zd and Rk Hamiltonian (23), g = gc/2 + 2k, and A,, is 
the longitudinal-transverse splitting. 

It follows from the form of matrix (35) that the bilinear 
term Re, (H,q) causes a mixing of the optically active state 
Ix) with the longitudinal state lz). For ~ l l [ l i 0 ] ,  q11[110] the 
submatrix of Hamiltonian (13) in the basis 

is of the form 

I - -  

According to (36), the spectrum of Coulomb excitons is experimental conditions, is small. For example, the corre- 
given by the expressions sponding relative contribution is proportional to the ratio 

E~T=EO+ (Bi-B2) Hxqx, (37) hkop,/B1,2 (ha-Eo+A,,) -lo-'. 

L (Bi-BA Hxqx-Ae, For GaAs we have y, = 6.89 and y, = 2.9 (Ref. 15), and E ~ T = E ~ +  - - 
2 2 

(38) 
so B ,  > 0. Consequently, g and A are positive, with 

A n  (Bi-Bz) Hxqx+Ae,  g/A=-B,12B2= (3-yily3)/6=0.1. &L=E0f - - 
2 2 A processing of the experimental data with the values of 

(Bi+3Bz) 'IZ [(  - A,,, E,, E, and E, from Ref. 15 yields the following values for 
2 HXqx)' +23g2Hz2  ] . (39) the constants: B ,  = 1.5-lo-" eV.cm/T, B, = 7.5.10-I' 

It follows from expressions (37)-(39) that for the configura- 
tion ~ l l [ l i 0 ] ,  q11[110] there is an effect of inversion of the 
magnetic field: The frequencies of Coulomb excitons change 
when the direction of the magnetic field is reversed. 

To evaluate the phenomenological quantities g and A 
appearing in relation (7), we use the approximate expression 
for the permittivity tensor in the vicinity of an isolated reso- 
nance (see, e.g., Ch. IV, Sec. 13 of Ref. 1): 

Here the matrix elements of the current operator j are evalu- 
ated using the eigenfunctions of a mechanical exciton of mo- 
mentum q and energy E, (q); the subscript 1 enumerates the 
r, exciton states, the function 10) describes the ground state 
of the crystal; the background part of the permittivity E,(u) 

includes the nonresonant terms and the contribution of all 
the other exciton states. Then, limiting discussion to the bi- 
linear term (14) in Hamiltonian (13), we obtain 

g=i /2ALT~OB1[  (ha-EO) '- (pBgH) 'I -', (41) 
A = - A L T E ~ B ~ [  (hm-Eo) '- (pBgH) '1 -'. (42) 

We note that the role of the linear terms Ze, (q) and 
Rex (H) given by (14b) and (14c), at least under the present 

eV.cm/T. Using relations (31) and (32), we obtain 
fik, = 7.10-lo eV-cm for the constant k,. 

According to relation (1 I), the frequency dependence of 
the magnetically induced birefringence An(H,B) is deter- 
mined by the dispersion ofg, A, and An(0). Under the condi- 
tions of the present experiment the energy deficit is rather 
large: fiw - E,>p,gH, since fiw - Eo- lo-' eV and 
p,gH- 10-4H eV/T. As a result, the frequency dependence 
ofg and A, like that of the natural birefringence An(0),5 has a 
resonance character of the form (fiw - E,)-~, shown by the 
solid curves in Fig. 2. As we see, near the resonance there is 
good agreement with the experimental results. 

In closing, we wish to thank L. V. Keldysh and V. L. 
Bonch-Bruevich for helpful discussions, N. N. Sibel'din for 
the opportunity to do the experiment, and N. V. Zamkovets 
for assistance in the experiment. 
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