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The critical behavior of an n-component Heisenberg magnet is considered for the case of alternat- 
ing interactions (e.g., ferromagnetic and antiferromagnetic). It is shown that instead of a contin- 
uous transition to the order phase here there is a first-order transition; depending on the ampli- 
tude and radii of the exchange integrals, this transition can occur to a phase which is unfavorable 
from the standpoint of Landau theory but which is stabilized by critical fluctuations. 

1. INTRODUCTION 

There are many magnetic materials in which an order- 
disorder transition is followed by a sequence of order-order 
phase transitions as the temperature is lowered futher (see 
Refs. 1 and 2). An explanation has been given for this effect 
based on the assumption of an inversion of the exchange 
interaction due to thermal expansion of the lattice.34 How- 
ever, such a mechanism applies only to a small number of 
magnets having high critical temperatures and large com- 
pressibilities. Other explanations have been based on 
allowance for a complex topology of the Fermi surface,' an 
unusual temperature dependence of the magnetic crystallo- 
graphic a n i ~ t r o ~ y , ~  and a non-Heisenberg character of the 
exchange.' 

In the present paper we propose a new mechanism 
which can give rise to one or several order-order transitions 
after the transition from the disordered phase: the strong 
fluctuational protraction of the transition to the low-tem- 
perature phase. This mechanism works even in the isotropic 

is realized at T = 0. We shall show, however, that this situa- 
tion is mathematically equivalent to the case of coupled fluc- 
tuating fields.'-l2 Thus the character of the phase transition 
is altered, and depending on the relationship of the radii of 
the FM and AFM interactions, a transition to an AFM state 
can occur first as the temperature is lowered from the PM 
phase. 

Starting from the Heisenberg Hamiltonian 

and assuming for simplicity that the magnetic moments are 
classical (IS, I I), we can write the partition function of the 
system in the form 

case and is based on allowance for a possible spherical spatial 
where the matrix J ,;.' is the inverse of the matrix J,,.  : d,ispersion of the interaction between magnetic atoms. 

In principle, the final conclusions are independent of J;J,,. = til1*, 
the specific choice of the sequence of transitions between - 
different magnetic phases. The transitions could be either 

1 

transitions from a ferromagnetic state to an antiferromag- 1 

netic state (and vice versa) or, more generally, transitions c.= JII dq1 exp [ - - i ~  r p 1 ~ , ' r p l r ]  . 

between arbitrary magnetic structures. In what follows we 
1 

shall for the sake of definiteness consider a sequence of para- After integration over angles relation ( I )  becomes 

magnetic-antiferromagnetic-ferromagnetic (PM-AFM-FM) = \ n dpl erp [-- 1 F l l ~ ? p I -  
transitions. - I 

11' 

2. DERIVATION OF THE GINZBURG-LANDAU FUNCTIONAL 

Let us assume that the total exchange integral J,, .  (the 
vector 1 enumerates the lattice sites) for some reason (e.g., 
the superposition of different exchange mechanisms) con- 
sists of a strong ferromagnetic part J;,, and a weaker anti- 
ferromagnetic part J; , ,  with X, (J;,, - J,,.  ) > 0 (this corre- 
sponds in the q representation to the circumstance that the 
function Jq has a maximum both at the center of the Bril- 
louin zone and at singular points on its boundary, with the 
q = 0 maximum of Jq being the largest), so that the FM state 

where r (n/2) is the gamma function, I,, ( x )  is a modified Bes- 
sel function, and n is the number of components of the vector 
S,. Transforming to the Fourier components and expanding 
the argument of the exponential in these components we get 
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Relation (2) implies that, thermal fluctuations aside, the 
paramagnetic phase first loses thermodynamic stability for 
certain modes p ,  at the bare critical temperature To = Jq,/ 
n, where q, are the wave vectors corresponding to equivalent 
(with respect to the symmetry group of the crystal lattice) 
maxima of the Fourier transform of the total exchange inte- 
grals Jq . If Jq has an absolute maximum at q = 0, the result- 
ing magnetic ordering is homogeneous and the FM structure 
is realized, while if the maxima of Jq lie at singular (in the 
group-theoretical sense) points qoi of the Brillouin zone 
boundary, then the structure turns out to be antiferromag- 
netic. If the maxima occur at aribtrary positions qi within 
the Brillouin zone, a complex and, generally speaking, in- 
commensurate structure can arise. In our case Jq has maxi- 
ma both at q = 0 and at the zone boundary q = qoi, with the 
ferromagnetic part of the interaction, in accordance with the 
assumption made earlier, being stronger than the antiferro- 
magnetic part, i.e., Jq = ,  > Jq = ,i, so that mean field theory 
would give a second-order phase transition from the PM to 
the FM state at Tlo = Jq =, /n However, a systematic 
allowance for critical fluctuations qualitatively alters the 
transition picture, which cannot in principle be described by 
Landau theory. 

Near the point To = Jq , /n the coefficient 
(J; - l /nT) of the terms - lpq 1' changes sign, and so the 
coefficient becomes very small for the modes pq with wave 
vectors q lying inside certain small neighborhoods 2 of the 
vectors qi . These modes fluctuate strongly. Let us therefore 
single out in functional (2) the important modes for the FM 
and AFM transitions, viz., those with wave vectors lying 
near the points q = 0 and q = qoi, respectively. To do this, 
let us surround these points in the first Brillouin zone by 
neighborhoods of radius2 (for simplicity we assume all the2 
are equal, although this is not essential) and integrate rela- 
tion (2) over the modes with wave vectors lying outside these 
neighborhoods. This, of course, will lead to the same renor- 
malization of the bare constants for the resulting FM and 
AFM parts. Such renormalizations are unimportant for our 
present purposes and will be ignored from now on. Then the 
local magnetization of the system (in the case of a two-sub- 
lattice antiferromagnet) is given by the relation 

Let us now expand Jq about the points q = 0 and q = qoi and 
make the substitutions 

mf ( q )  = ( n o l T J , - ~ )  'vq 1 IPI<L 

and 

ma (q) = (no/TJqoi 1 " * ~ q  I M-q o.~<k 

(no is the number of spins per unit volume). The sums over 
the neighorhoods of of the points qoi can be reduced to a 
single sum over a spherical region of radius 2 at the center of 
the Brillouin zone (shown schematically for a planar square 
lattice in Fig. 1). 

As a result, the functional in the argument of the expo- 
nential of relation (2) assumes the standard Ginzburg-Lan- 
dau form for coupled vector fields: 

FIG. 1. Contraction of the neighborhoods Iq - qoi I < /Z of the points qoi to 
the center of the Brillouin zone. 

1 1 
f -- g,mf4 ( r )  + -g,ma4 ( r )  

4 4 
1 + - Emfz ( r )  maZ ( r )  + 8 ( m ,  ( r )  ma ( r )  ) ' 1 ,  

9 

where 

at,.= (T-Tf0 , , , ) /T ,  g j=2~ ,> /nZ(n+2)  n , ~ ' ,  

and the coefficients 

are the squares of the decay radii of the corresponding ex- 
change integrals. 

We note that the resulting Hamiltonian (3) is, in es- 
sence, the Hamiltonian of a two-sublattice antiferromagnet 
written in terms of the ferromagnetism (mf = m, + m,) and 
antiferromagnetism (ma = mlm,) vectors, where m, and m, 
are the magnetization vectors of the corresponding sublat- 
tices. However, in contrast to an ordinary antiferromagnet, 
where rf is always positive, here rf can change sign because 
of the maximum of Jq at the Brillouin zone center. 

3. RENORMALIZATION GROUP EQUATIONS 

The critical dynamics of the system under discussion is 
governed by the evolution of the bare constantsgf , ga ,6, and 
k as T-+T,. The "dressing" of these constants is described 
by the renormalization group equations. After awkward but 
standard calculations in the framework of the E expansion,13 
we obtain, with accuracy to terms ME', the following equa- 
tions for the charges in functional (3): 

Here we have introduced the notation 
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v=i7T4/cfc., w=iZF4Icfc., ~,,~=g~..?~lcf.., 

where r is the avrage distance between magnetic atoms and n 
is the number of components of the order parameter. System 
(4) has the following fixed points: 

28 
p;: U;=U/=Ut=' - w* = - (n-2)  

(nz+8) ' (n2+8) '; 

In addition, for n = 2 there is another fixed point: 

Of all these fixed points, only p: is stable (attractive). The 
bare parameters of Hamiltonian (3) form a hypersurface, 
specified by the two conditions w = (u, uf ) ' I2 ,  

v = (u, uf ) ' I2 = W, in the space p(uf ,u, ,v,w). In the frame- 
work of mean field theory the equality of the free energies of 
the FM and AFM phases occurs at gf =go ,  so that phase 
boundary between them on the set of parameters p is given 
by the condition uf c j  = u, c:. The structure of the ordered 
phase is determined not by the dressed charges (uf ,u, ,u,w) 
themselves, but by their ratios. Therefore, we rewrite system 
of equations (4) for the ratios x = uf /w, y = u, /w, z = v/w 
in the form 

Fixed pointspy, .... ,p: are absent in the space (x, yq), while 
points p: and pz go over to the points p:(1, 1,1,) and p$ 
(v,v,v), where v = 2/(n - 2). The set of bare values of the 
parameters x, y, and z form a hyperbola xy = 1 in the plane 
z = 1, and the boundary surface between the two phases is 
the plane xcj = yci . 

4. EVOLUTION OF THE INVARIANT CHARGES IN THE 
CRITICAL REGION 

The study of system (5) is particularly simple and clear 
for n = 1 when there is no term of the form 6(mf ma)2 in 
Hamiltonian (3). Hamiltonian (3) then reduces to the analo- 
gous Hamiltonian for the n = 1 case by the formal replace- 

ment 5 + 26-5 (or 6 4 ) .  Now the pointsp:, pQ, andp; are 
absent and the pointp: is stable. We note that in the approxi- 
mation to first order in E the pointp: has an exponent of zero 
in addition to the negative exponents, but a more rigorous 
examination shows that this point is a saddle. Thus, for 
n = 1 the number of charges is reduced, and system (5) be- 
comes 

wherex = uf/v, y = u, /v ,  and the fixed pointsp-?and p$ go 
over topf(1/3,1/3) andp;f(l,l), respectively. The pattern of 
flow lines for system (6) is shown in Fig. 2a. A numerical 
analysis shows that the separatrix of the family of critical 
surfaces of the stable fixed point p,* touches the initial-condi- 
tion hyperbola (xy = 1/9) at a single point p f ,  so that, with 
the exception of this point, the flow lines, originating from 
the hyperbola xy = 1/9, leave the stability region of Hamil- 
tonian (3) with respect to one of the parameters u, or uf. 
Thus, at all values of the bare parameters (with the exception 
of the point uf = u, ) the effective Hamiltonian loses stability 
in the critical region, and the phase transition to the ordered 
state turns out to be of first order. 

We also note that below the point p,* the straight line 
uf = u, "repels" the flow lines and so cannot intersect them. 
Since Jq = ,  > J, = qoi (in accordance with the initial assump- 
tion) and, consequently, gf >ga , the bare values ofx and y on 
the curve xy = 1/9 should always be chosen to the right of 
the phase-equilibrium line uf c j  = u, c: . Because the straight 
line xcj = yci (uf c; = u, c: ), depending on the value of the 
ratio ca/cf, can occur either above or below the bisectrix 
x = y, two fundamentally different cases are possible for the 
trajectories (x(t ), y(t )). The first case occurs under the inequa- 
lity gfc:/ga c j  > 1 for arbitrary values of the ratio c, /cf. 
Here the flow lines, beginning in the stability region of the 
FM phase, go outside the stability boundary of the AFM 
Hamiltonian (Fig. 2a, b), so that a first-order phase transi- 
tion occurs to an AFM state which is stabilized by strong 
ferromagnetic fluctuations. The second case is specified by 

AFM I 
AFM 

FIG. 2. a) Pattern of flow lines for n = 1 .  The solid line is that set of bare 
paraameters, the dashed line is the sparatrix, and the dot-and-dash line is 
the phase boundary. Straight lines x = 0 and y = 0 are the stability boun- 
daries of the FM and AFM Hamiltonians, respectively. The circlet shows 
the origin of the flow line of gf > g, (cf < c, ). b) Possible variations of the 
origin of the flow lines: 1)  for gf c: /g,  c; < 1,2) for gf c:/g, c;> 1 .  
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the inequality gf cj/g, c j  < 1 and can occur only under the 
condition ca /cf < 1. In this situation the flow lines begin in 
the region corresponding to the mean field FM Hamiltonian 
and end at its stability boundary (Fig. 2b). The presence of 
fluctuations of the AFM phase in the system causes the sec- 
ond-order transition to the FM state to be replaced by a first- 
order transition and is not accompanied by inversion of the 
transitions. 

For n # 1 the picture described above remains qualita- 
tively the same. The flow lines start from the hyperbola 
xy = 1 in the plane z = 1, break downward (21, = , ,  = , < O), 
and continue beyond the planes x = y and z = 0. The bare 
values of x and y should be chosen to the right of the plane 
xcj = yci which delimits the stability regions of the AFM 
and FM phases. Figure 2 in this case can be regarded as a 
projection of the flow-line pattern described above onto the 
z = const plane, so that the above analysis of the possible 
situations for n = 1 goes over in its entirety to the case n # 1. 

Of particular interest is the study of the flow lines which 
depart from the immediate vicinity of the saddle-type fixed 
point p:, in which the set of bare parameters touches the 
separatrix of the stable point p;. We note that the strict 
equalitiesz = 1 andxy = 1 for the set of initial values is part- 
ly a consequence of the approximation made in deriving Ha- 
miltonian (3). In particular, in the integration over all the 
modes lying outside the neighborhoods of the points q = 0 
and q = qoi at which J,, has maxima, the bare values of the 
parameters are renormalized in the same way only in the 
lowest order of perturbation theory. In the higher orders this 
renormalization contains corrections which depend explicit- 
ly on q, and the relations z = 1 and xy = 1 are violated. This 
causes a certain deformation of the set of initial conditions, 
and as a result the region in which this set is intersected by 
the separatrix can either widen or vanish entirely. In the case 
of a widening intersection region there arises a set of bare 
parameters (x, y) from which the flow lines arrive at fixed 
point pg, corresponding to a second-order transition to a 
magnetic structure described by a Heisenberg Hamiltonian 
with a two-component order parameter. Thus, at the phase 
transition point in this case an asymptotic ~ymmetry~-", '~* '~ 
arises, so that FM and AFM ordering can arise in the system 
with equal probability. To answer the question of which 
structure is realized in an actual experiment it is necessary to 
know the character of the infinitesimal fields which break 
the asymptotic symmetry. Here the situation is exactly as in 
the case of an ordinary isotropic ferromagnet, when the 
turning on of an infinitesimal external magnetic field deter- 
mines the direction of the magnetization below the phase 
transition point. Since the function J (q )  can in general be 
altered by an external applied pressure or by impurities, it is 
in principle possible to obtain either an improvement in the 
conditions for the second-order transition to the ordered 
phase or a degradation of the conditions to the point where 
such a transition is completely impossible. 

5. INVERSION OF THE TRANSITIONS 

We have thus seen that in the situation discussed above, 
as in Refs. 16-20, allowance for critical fluctuations lead to a 

stituation in which the system can undergo a transition from 
the disordered phase to a state (AFM) which is unfavorble in 
the framework of Landau theory. The analysis given in Ref. 
21 justifies the assumption that this conclusion does not rely 
on the fourth-order form (3) for the free energy and that a 
more exact calculation of the free energies of the FM and 
AFM phases will not change the results in a qualitative way. 
In addition, if the relationship between the bare values Jq = , 
and J,, or (cf and c, ) changes under external influences (e.g., 
pressure), then the P-T diagram exhibits characteristic 
"breaks" analogous to those found in Refs. 16-20. 

And so, under the condition Jq =, ca /cf J%, > 1, as the 
temperature is lowered from the PM phase a first-order tran- 
sition is obersved to an AFM state. This statre is stabilized 
solely by critical fluctuations, and therefore, outside the 
fluctuation region a FM ordering is established in the system 
in accordance with Landau theory. The AFM-FM transi- 
tion will also be of first order. To estimate the temperature of 
the transition it is convenient to explicitly decompose the 
exchange integral J,,, into ferromagnetic J t ,  and antiferro- 
magnetic (J;,,) parts and to write the partition function in 
the form 

After the AFM ordering the integration over $q can be ap- 
proximately replaced by just the contribution of the con- 
densed modes, which are given by the equation 

which corresponds to taking them into account in the frame- 
work of mean field theory. We note that for n = 3 equation 
(7) assumes the familiar form $, = 8,. J ;,,L ($,/T), where L 
is the Langevin function. The critical temperature of the 
AFM-FM transition can be estimated roughly from the con- 
dition that the free energies of the AFM and FM phases be 
equal: FFM = FA,, , where 

Since FA,, contains an even function in the logarithm and 
since cos qoi 1 in the summation over 1 takes on the values 
+ 1, the last term in FAFM is easily evaluated. As a result, we 

obtain the following expression for the critical temperature: 
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In conclusion we note that, genrally speaking, J, can have 
several different local maxima. Their mutual inversion as a 
result of fluctuational renormalization can lead to a se- 
quence of first-order phase transitions from one ordered 
phase to another. 

The mechanism we have described can explain the or- 
der-order transitions in materials in which exchange inver- 
sion due to changes in the lattice parameters does not occur, 
and the sequence of magnetic transitions is not altered by an 
applied hydrostatic pressure. 
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able comments. 
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