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The properties of Heisenberg magnetic substances with nearest- and next-nearest-neighbor inter- 
actions competing with each other in the determination of the type of magnetic order are investi- 
gated. For magnetic substances with classical spins the Curie temperature Tc is equal to zero at 
the ferromagnetic-antiferromagnetic phase boundary, and its pressure derivative diverges at the 
ferromagnetic-helicoidal phase boundary. The optical-absorption edge depends nonmonotoni- 
cally on the temperature in the vicinity of a phase boundary. In a magnetic substance with 
quantum spins there should occur a temperature phase transition of the order-order or order- 
improper disorder type in the vicinity of a phase boundary. Such a magnetic substance should also 
possess specific metamagnetic properties. 

1. INTRODUCTION 

In this paper we investigate the properties of Heisen- 
berg magnetic substances with competing nearest- and next- 
nearest-neighbor exchange interactions. Each of these inter- 
actions strives to establish its own type of magnetic order, 
and, as a result of the competition between them, the order 
with the lowest energy gets established. A change in the rela- 
tion between the competing interactions leads to a change in 
the type of magnetic order that obtains at T = 0. Such mag- 
netic substances can naturally be expected to possess non- 
typical properties in the vicinity of a phase boundary. A sim- 
ilar problem has already been solved for the Ising magnetic 
substances in the ANNNI model, and it has been shown that 
there occur a cascade of order-order phase transitions as the 
temperature There is no reason to suppose that a 
similar phenomenon occurs in the Heisenberg magnetic sub- 
stances: it is peculiar to single-component spins. 

Below we shall prove the following properties of Hei- 
senberg magnetic substances: 

1) the vanishing of the Curie temperature Tc at a phase 
boundary in a magnetic substance with classical spins if the 
change in the type of crder occurs abruptly at this boundary 
(e.g., when an antiferromagnetic state goes over discontinu- 
ously into a ferromagnetic state upon the variation of the 
exchange parameters); 

2) the infinite pressure derivative of the Tc at a phase 
boundary in a magnetic substance with classical spins if the 
change in the type of order occurs gradually (e.g., when a 
ferromagnetic order goes over into a helicoidal order); 

3) the discontinuous nature of the temperature phase 
transitions induced in magnetic substances with small spins 
in the vicinity of a phase boundary by the quantum fluctu- 
ations of these spins; 

4) the metamagnetic properties of the isotropic Heisen- 
berg magnetic substances with quantum spins; 

5) the nonmonotonic temperature dependence of the 
optical-absorption edge for magnetic semiconductors and 
insulators in the vicinity of a phase boundary. 

The results obtained in this paper disagree with the 
hitherto prevalent opinion that the Tc of magnetic sub- 
stances with classical spins not only remains finite at a phase 

boundary, but does not change its value at all in an abrupt 
change of the type of order.4 From the physical standpoint 
such a situation seems improbable, whereas the absence of 
long-range order at finite temperatures at a phase boundary 
seems entirely natural. As to the singularities of Tc as a 
function of pressure in the vicinity of the ferromagnetic-heli- 
coidal phase boundary, this question has, as far as the pres- 
ent author knows, not been investigated at all before. 

Further, the above results include new mechanisms of 
first-order phase transitions and the appearance of meta- 
magnetic properties, underlying which are the quantum 
fluctuations of the spins. Thus far, the discontinuous nature 
of magnetic phase transitions has been attributed to either 
critical  fluctuation^,^.^ or a non-Heisenberg exchange, to 
which the magnetostriction effects a m ~ u n t . ~  As to such a 
nonstandard phenomenon as the metamagnetism of isotrop- 
ic antiferromagnets, it was previously related only to either a 
non-Heisenberg e~change ,~  or the Jahn-Teller character of 
the magnetic atoms.8 Finally, the results according to which 
the temperature dependence of the optical absorption edge 
in a Heisenberg magnetic substance can be nonmonotonic 
are new. They allow us to explain the anomalous magneto- 
optical properties of a number of magnetic semiconductors. 

2. THE SPHERICAL MODEL AS THE ZEROTH 
APPROXIMATION FOR THE HEISENBERG MODEL 

We cannot, when investigating the properties of mag- 
netic substances in the vicinity of a phase boundary, use the 
standard methods of finding the Tc and the correlation 
functions. The self-consistent-field approximation leads 
here not only to quantitatively but also to the qualitatively 
erroneous results described in Ref. 4. And it is extremely 
difficult to use the high-temperature expansions when there 
are two exchange parameters of arbitrary signs. Moreover, 
with the aid of the high-temperature expansions we cannot 
obtain the correlators in the entire Brillouin zone, which are 
necessary for the computation of the position of the optical- 
absorption edge. 

As the basic model for the solution of the problem in 
question we can use the spherical model,9 since Stanley1' has 
demonstrated its equivalence to the generalized Heisenberg 
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model, in which the spins have an infinitely large number n 
of components. Stanley'' has also remarked that the spheri- 
cal model should reproduce the properties of the ordinary 
Heisenberg model with n = 3 much better than the X Y  mod- 
el with n = 2 or the Ising model with n = 1. A procedure has 
now been developed for finding the critical exponents 
through a power series expansion of them in l/n (Ref. 11). 
But a similar procedure for finding the Tc and the correla- 
tors has not yet been developed. And what is more, as far as 
the present author knows, not even estimates have been 
made of how accurate the spherical-model results for the 
Heisenberg model in the zeroth approximation in l/n are. 
Meanwhile, as will be shown below, this accuracy turns out 
to be surprisingly high, especially for the Tc. The results 
obtained below compel us to assume that the true expansion 
parameter for the computation of the Tc and the correlators 
in the paramagnetic region is l/n raised to a power higher 
than one. 

The Hamiltonian of the system under consideration has 
the usual form: 

where S, is the spin of the atom g. For the binary correlators 
the following sum rule should be obeyed: 

where S is the magnitude of the spin. This sum rule is ob- 
tained through the thermodynamic averaging with the Ha- 
miltonian H of the equality 

Sg2=S (S+1) . (3) 

We shall assume that the spins are classical. In the spirit 
of the spherical model, the exact relation (2) is replaced in the 
zeroth approximation by 

Such a replacement is equivalent to the assumption that both 
the spin of any atom and all its three components can assume 
entirely arbitrary values consistent with (4), i.e., that the 
equality (3) is satisfied only in the mean. It is natural to ex- 
pect that, everywhere, except in the immediate neighbor- 
hood of Tc , the spin-magnitude fluctuations introduced into 
(4) have little effect on the properties of the magnetic sub- 
stance, i.e., that in actual fact (4) is equivalent to (2) outside 
this neighborhood. 

An elementary generalization of Berlin and Kac's cal- 
culations9 to the case of a three-component spin yields for 
the T, of a structure with wave vector Q the expression 

and for the correlator in the paramagnetic region the expres- 
sion 

<sqs-,>=3T/(A2+YQ-3,)- (6) 

where the parameter A should be determined from (2). It is 

worth noting that the expression (5) can also be derived by 
entirely different methods without the use of the idea of spin- 
magnitude fluctuations. Specifically, the quantum analog of 
(5) has been obtained with the aid of the Bogolyubov-Tyabli- 
kov decoupling procedure in the equal-time Green-func- 
tions method,12 as well as through the introduction into the 
self-consistent field equations of a chemical-potential analog 
determined from (2).13 From this it is clear that the spin fluc- 
tuations artificially introduced through (4) have little effect 
on the Tc value obtained. 

Let us now find out how accurate the results (5) and (6) 
are for Heisenberg magnetic substances. First of all it is easy 
to verify that, at high temperatures, the formulas (2) and (6) 
are in accord with the thermodynamic perturbation theory 
results for the Heisenberg magnetic substances, i.e., in this 
limit the fluctuations of the magnitudes of the spins are in- 
deed totally unimportant. Further, from (5) we immediately 
obtain the correct result for the one- and two-dimensional 
Heisenberg magnetic substances: the absence in them of 
long-range order at finite temperatures. 

A more detailed analysis shows that, in the low-dimen- 
sional cases, the formulas (2) and (6) duplicate well the true 
behavior of the correlation functions not only at high, but 
also at low, temperatures. As is well known, the solution of 
the problem of the one-dimensional chain of classical spins is 
elementary. A comparison of the formulas (2) and (6) with 
this exact solution shows that they lead to the correct depen- 
dence of the binary correlators (SoS, ) on the distanceg and 
to the correct temperature dependence of the correlation 
length. The latter differs from the true function by only a 
factor of 2/3 for T-+O, and coincides with it in the case when 
T+m . 

In the two-dimensional case we also obtain from (2) and 
(6) results that are in good agreement with the known results. 
These formulas correctly reproduce the asymptotic expo- 
nential law of decrease of the binary correlator with increas- 
ing Igl at all temperatures. At low temperatures the correla- 
tion length increases exponentially with 1/T as T+O, in 
accord with Ref. 14. At smaller distances, the correlations 
decrease with increasing lgl according to the Berezinskii law 
Igl -"T, with x differing from Berezinskil's valueI5 by only a 
factor of 2/3. At high temperatures, as has already been indi- 
cated, these formulas fully reproduce the thermodynamic 
perturbation theory results. 

It can clearly be seen in the particular case of two-di- 
mensional systems that the use of the spherical model as the 
zeroth approximation in l/n is justified for the Heisenberg 
model, but does not work for the X Y  model and, especially, 
the Ising model. For the X Y  model, even though such an 
approximation correctly predicts the absence of long-range 
order at T $0, it does not reproduce the Berezinskii phase 
transition from a power to an exponential law of decrease of 
the correlations with distance. And in the case of the Ising 
model, in general, it incorrectly predicts the absence of long- 
range order at finite temperatures. 

Let us now proceed to the three-dimensional case. In 
the limit of infinite sign-constant-interaction range the re- 
sult (5) goes over into the self-consistent field theory result, 
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which is exact in this limit. As the exchange-interaction 
range decreases, the degree of accuracy of (5) decreases, but 
only slightly, remaining very high. It has its lowest value in 
the nearest-neighbor approximation, in which we find that, 
for the simple cubic lattice, Tc = 0.22556 3J2 (ferromag- 
netic order). But this result differs by only 5% from the most 
accurate result 

Tc=0,021666[11S(SS1) -I]%, (7) 

obtained in Ref. 16 through the use of high-temperature ex- 
pansions accurate to within 1%. Thus, even in this limit the 
accuracy of (5) is comparable to the highest accuracy that 
has thus far been obtained. We should, for the purpose of 
comparison, point out that, in this limit, the self-consistent- 
field approximation (SFA) leads to an error higher than 
50%. Below we shall show that the formula (5) guarantees a 
high degree of accuracy in the case of sign-variable exchange 
interactions as well. Thus, in contrast to the high-tempera- 
ture expansions, which yield a high degree of accuracy only 
in the nearest-neighbor approximation, the formula (5) gives 
such an accuracy in the case of an arbitrary dependence of 
the exchange integral on distance. 

As to the correlators, it is clear that the results (2) and (6) 
can be valid for a Heisenberg magnetic substance only at 
temperatures that are further away from the true Curie point 
T'," than the Tc given by (5). The critical exponents obtained 
from (2) and (6) for T+TC can differ greatly from the expo- 
nents for the Heisenberg model. For the purpose of verifying 
that the formulas (2) and (6) are indeed valid for a Heisenberg 
magnetic substance, starting from T - Tc 2 I Tc - T',"I, we 
find it expedient to carry out in the nearest-neighbor approx- 
imation a numerical computation for the temperature-de- 
pendent exponent ~ ( r )  defined in terms of the reciprocal cor- 
relation length A (r) by the relation 

A (a) =cflcT' , a=T/Tc-l. 

It is, in accord with the indicated accuracy of the expression 
(5), to be expected that in this case the formulas (2) and (6) 
will reproduce well the properties of the Heisenberg magnet- 
ic substances if r 2 0.05-0.1. The calculation confirms this: 
as r is varied from 0 to 0.1, the exponent ~ ( r )  decreases rapid- 
ly from 1 to 0.7. As r is increased further, this exponent 
varies very slowly, remaining close to the critical exponent 
for a Heisenberg magnetic substance. (It should be recalled 
that, for a Heisenberg magnetic substance with nearest- 
neighbor interactions, the fluctuation region extends to 
r 2 5. Inside this region ~ ( r )  varies from 0.7 to 0.5.) 

3. MAGNETIC SUBSTANCES WITH CLASSICAL SPINS 

In this section the general results presented above will 
be applied to the Heisenberg magnetic substances in which 
the exchange interactions among the unequally spaced 
neighbors compete with each other in the determination of 
the type of magnetic order. For definiteness, we shall consid- 
er a simple cubic lattice of magnetic atoms with nearest- and 
next-nearest-neighbor exchange interactions (the corre- 
sponding exchange integrals are denoted by I, and I,). The 
standard procedure for finding the stable magnetic configu- 
rations consists in the replacement of the spin operators by 

the corresponding classical vectors in the system's Hamil- 
tonian. At T = 0 the stable structure should be that struc- 
ture for which the Fourier transform 

of the exchange integral has its maximum value. 
Let us first consider the case in which I, > 0 and I, < 0. 

For small values of the ratio r = lZ2(/Il the ferromagnetic 
(FM) order is stable in such a system. But for r > r, = 0.25 
the antiferromagnetic (AFM) ordering of the layered type, 
with the FM layers alternating along the cube axis (the struc- 
ture vector QL = (T, 0, 0)), is energetically more advanta- 
geous. Since the exchange integrals 3, and NQL are equal to 
each other when r = r,, and they differ from the T, in the 
SFA by only a constant factor, an abrupt change in the type 
of order-from a state with FM order into a state with AFM 
order-is not accompanied by a change in the critical tem- 
perature. It remains different from zero at the phase bound- 
ary, and does not possess any singularities as a function of r. 
Such a result is, on the basis of physical arguments, not plau- 
sible. 

The formula (5) leads to a diametrically opposite result: 
the Curie temperature is equal to zero at the phase boundary 
r, = 0.25. This is due to the fact that, for each r, the quantity 
N, ,  (8), attains its maximum at only one inequivalent point 
in the Brillouin zone. When r = r, the N, maximum at 
q = 0 is transformed into a minimum if r is increasing, and 
the N, maximum at the points defined by the complex con- 
jugate of the vector Q, is transformed into a saddle point if r 
is decreasing. Accordingly, as q-0 in the denominator of 
the integrand in (5), all the terms quadratic in q vanish at the 
phase boundary, and the integrand becomes -q-4. More- 
over, this expression diverges again as a result of the vanish- 
ing of one of the coefficients of (qa-Q :) in the expansion of 
Nq around Q, . 

From the physical standpoint, Tc becomes equal to 
zero because the structure, which is stable on one side of the 
phase boundary, is absolutely unstable on the other side. 
Therefore, both structures are unstable at the phase bound- 
ary. 

The validity of the result, obtained from (5), that 
Tc = 0 at the phase boundary is corroborated by the follow- 
ing arguments. Firstly, the same result qualitatively follows 
from the spin-wave theory of ferromagnetism, extended to 
r,. Indeed, according to (8), the magnon frequency 
w, = (3, - Xq)S for 9-0 is proportional tor, - r. There- 
fore, as r-tr,, the mean number of magnons per atom di- 
verges at any finite temperature, indicating that magnetic 
ordering cannot occur at this temperature. Secondly, it is not 
difficult to verify that at the phase boundary the crystal 
breaks up into FM planes effectively not coupled to each 
other by exchange interaction. Indeed, in the adopted geom- 
etry the energy characterizing the exchange interaction 
between an atom and the atoms of a neighboring FM plane is 
equal to (I, + 412)S2cos p, where e, is the angle between the 
moments of the planes. I t  vanishes at r = r,, and therefore 
there should be no long-range order in the orientation of the 
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moments of the FM planes at any finite temperature. The 
arguments adduced above confirm the validity of the for- 
mula (5) as a whole. 

The vanishing of Tc at phase boundaries where an 
abrupt change in the magnetic order occurs has a general 
character. This is attested by another example of the change 
that can occur in the type of order: If I, is negative as before, 
but I ,  changes its sign from positive to negative, then when 
I, = 0 the layered AFM ordering is replaced by a chain 
AFM ordering with a structure vector Q, = (n-, n-, 0). Such 
a structure consists of FM chains oriented along one of the 
cube edges, the moment of each chain being opposite to the 
moments of the neighboring chains closest to it. Here the 
Xq maxima are converted into saddle points on crossing the 
phase boundary in any direction. Consequently, according 
to (5), the Tc is equal to zero at the phase boundary. 

Some ambiguity arises in the determination of the Tc 
when at the phase boundary the crystal splits up into two 
uncoupled three-dimensional structures in which magnetic 
ordering is possible. Such is the case when I ,  is positive. 
Then when I ,  = 0 the type of order in the crystal as a whole 
changes: the FM order is replaced by a staggered AFM or- 
der. In the absence of exchange interaction between the near- 
est neighbors, the crystal splits up into two FM sublattices 
consisting of the next-nearest neighbors. Since there is no 
correlation whatsoever between the directions of the mo- 
ments of the sublattices, we can assert that, when I ,  = 0, the 
Tc of the crystal as a whole is also equal to zero. But we can 
introduce in place of the Tc of the whole crystal a Tc for 
each sublattice. Such a Curie temperature should not be 
equal to zero when I ,  = 0, since the type of magnetic order 
for each of these sublattices does not change at this value of 
I , .  Therefore, the fact that the Tc given by ( 5 )  does not van- 
ish in this case does not at all contradict the assertion made 
above. Mathematically, in this case Xq as a function of q 
formally has not one, but two maxima at inequivalent points 
of the Brillouin zone. At the transition point these maxima 
do not disappear; they simply undergo inversion. Therefore, 
the integrand in (5) does not have singularities at the phase 
boundary, and the Tc is not equal to zero there. 

Besides the abrupt changes in the type of order that 
occur as the ratio of the exchange integrals is varied, there 
can occur a continuous change of the FM-helicoidal transi- 
tion type. It is not difficult to verify that in this case the Tc is 
not equal to zero at the phase boundary, but then its deriva- 
tive with respect to the exchange integrals (i.e., essentially its 
pressure derivative) exhibits a singularity. To do this, let us 
consider a layered magnetic substance with FM exchange 
inside the layers and alternating exchange in the direction 
perpendicular to them. We shall assume that in this direc- 
tion the exchange integral I ,  between the nearest neighbors 
is positive, while the exchange integral I,  between the next- 
nearest neighbors is negative. In this case the Tc,  (5), re- 
mains different from zero at the FM-helicoidal phase bound- 
ary, but its derivatives with respect to the exchange integrals 
r = 11/(121 become infinite as the phase boundary is ap- 
proached from either side: 

dTcldr-[r-rb I-", rb=4. 

4. TEMPERATURE DEPENDENCE OF THE OPTICAL- 
ABSORPTION EDGE IN ANTIFERROMAGNETS 

The procedure developed above allows us to find the 
correlators in a broad range of temperatures in the entire 
Brillouin zone. This enables us to solve a number of prob- 
lems connected with the interaction of the magnetic subsys- 
tem of a crystal with the other subsystems (the lattice, cur- 
rent carriers, etc.). In the present section we shall solve one of 
such problems: We shall determine the temperature depen- 
dence of the optical-absorption edge of AFM semiconduc- 
tors in the paramagnetic region. This dependence in the 
magnetic semiconductors is anomalously strong, as com- 
pared to what obtains in the nonmagnetic semiconductors, 
and its character can give us some idea about the type of 
correlation that exists between the spins. In FM semicon- 
ductors there occurs a giant red shift of the absorption edge 
when the temperature is lowered, whereas in the AFM ones 
the shift is, as a rule, a blue one, and is much weaker.I7 The 
question arises: What should this shift be under conditions 
when we have AFM and FM interactions competing with 
each other, and leading to the establishment of a layered A F  
structure (Sec. 3). 

In the absence of long-range FM correlation between 
the f spins, if the s-band conduction width is large compared 
to the AS, the conduction-band shift due to the s-fexchange 
is given by the expressionI7 

where A is the s-fexchange integral, ~ ( q )  is the bare conduc- 
tion-electron energy, and q, is the quasimomentum corre- 
sponding to the bottom of the conduction band. If, as is often 
the case in magnetic semiconductors, the valence band is 
quite insensitive to the state of the magnetic subsystem, then 
(9) furnishes the temperature dependence of the crystal's op- 
tical absorption edge. From (9) it can be seen at once why in 
FM semiconductors the thermal shift of the absorption edge 
is red, while in normal AFM semiconductors it is blue. In 
fact, the more developed the long-wave components of the 
fluctuations are, the lower is the bottom of the band. But in 
ferromagnets, as the temperature is lowered, these compo- 
nents intensify, while in antiferromagnets they weaken. 

All the numerical estimates will be made below using 
the following simple cosine dispersion law for the conduc- 
tion electrons: 

E ( q )  =-2B (cos q,+cos q,+cos q,)  , B>O. (10) 

Using (9) and (lo), we immediately obtain in the case of 
classically large spins the following expression for the s-f- 
exchange-induced band shift at T = 0: 

A characteristic of the model (8)-(10) consists in the fact that 
the asymptotic value of the s-f-exchange-induced shift 6 ,  
for T-+ co is very close to the value of the shift at T = 0: 

A2S4Zl 
6 ( T )  =0.9860 - - 

12BT 
(0.49-0.56r). 

In the general case the position of the bottom of the 
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band in the paramagnetic region can be represented as a 
function of the correlation length A regarded as an implicit 
function of the temperature. Replacing the correlator in (9) 
by the expression (6), and expressing the temperature with 
the aid of (2) in terns of the susceptibility averaged over the 
Brillouin zone, we rewrite (9) with allowance for (10) in the 
form 

s (A) --C (A) so, 

The results of the numerical computations performed 
with the use of the formulas (13) can be summarized as fol- 
lows: IfI ,  and I, in (8) are comparable with each other, then 
the temperature dependence of the absorption edge is non- 
monotonic, but is very weak. It is much stronger in the vicin- 
ity of a boundary between the layered AFM phase and an- 
other phase. We can illustrate the behavior of the absorption 
edge in the vicinity of the boundary with the FM phase if we 
choose the value 2r = 0.55. As the temperature is lowered 
right down to the NCel point TN (here we use this designation 
in place of the Tc used in Sec. 3), a monotonic red shift of the 
absorption edge occurs, attaining at T, the value 0.75 6,. 
According to (1 I), this shift is of the order of 0.1 eV for 
typical values of the crystal parameters (AS/2 -B-0.3 eV). 

Physically, the red shift that occurs in an antiferromag- 
net is explained by the fact that, as the temperature is 
lowered, there occurs a buildup of secondary fluctuations 
with qzO along with the principal fluctuations with q=.QL. 
But, as has already been indicated, the growth of the long- 
wave fluctuations shifts the bottom of the band downwards. 
That this growth occurs can easily be seen from (2) and (6). In 
particular, in the high-temperature limit, where the thermo- 
dynamic perturbation theory is applicable, the temperature- 
dependent part of the correlator ( S ,  s- ,  ) is equal to .Yq S '/ 
3T, and, according to (8), .Yo > 0 for r < 0.5. Below T, the 
long-wave fluctuations, on the contrary, freeze out, and the 
bottom of the band shifts upwards, reaching its high-tem- 
perature position at T = 0. Thus, in the considered case the 
forbidden-band width of an AFM semiconductor goes 
through a minimum in the vicinity of T, . 

In the vicinity of the boundary of the layered AFM 
phase with the filamentary AFM phase (I, = 0) the absorp- 
tion-edge shift has the opposite character: as the tempera- 
ture is lowered, the forbidden-band width goes through a 
maximum, and not through a minimum. We can see why the 
absorption-edge shift is blue at high temperatures from the 
following arguments. Here, as the temperature is lowered, 
the long-wave fluctuations die out, while the short-wave 
fluctuations-and not just the principal ones, with wave vec- 
tors q close to QL, but also the secondary ones with q=.QT, 
for which the Nq are also positive-intensify. Thus, the 
peak of the integrand in (9) shifts into the short-wave region, 
which corresponds to a blue shift of the absorption edge. As 
the temperature is lowered further, the secondary fluctu- 
ations, having passed through their peak, should begin to die 
out, since they do not occur at T = 0. Consequently, the 

peak of the integrand in (9) will shift into the long-wave re- 
gion, since QL < QT, i.e., the shift will be red. Since the inte- 
grand in (9) is small in the region of the momenta QL and 
QT, the magnitude of the shift in the case under considera- 
tion should be significantly smaller than the magnitude of 
the shift that occurs in the vicinity of the boundary with the 
FM phase. The numerical calculation for [I2/ = 51, shows 
that the highest position of the bottom of the conduction 
band is attained back in the paramagnetic region at 
A ' = 0.81,. There 16 I is20% higherthan IS,(. In filamentary 
antiferromagnets the absorption-edge shift should be mono- 
tone blue. 

The nonmonotonic temperature dependence of the ab- 
sorption edge has been experimentally observed in a number 
of magnetic semiconductors. For example, in MnO and 
ZnCr,Se,, as the temperature T is lowered, the absorption 
edge shifts into the red region when T >  TN and into the blue 
region when T < TN. l7 But in order to establish whether this 
effect can be attributed to the existence of short-range ferro- 
magnetic order in these crystals, we must investigate small- 
angle neutron scattering. 

5. MAGNETIC SUBSTANCES WITH QUANTUM SPINS IN THE 
VICINITY OF A PHASE BOUNDARY 

The analysis above cannot be automatically carried 
over to the case of quantum spins. Furthermore, the quan- 
tum nature of the spins leads to qualitatively new effects, i.e., 
effects which cannot occur in magnetic substances with 
classical spins. If the spins in a Heisenberg magnetic sub- 
stance are classical, then the type of long-range order that 
appears at the Curie point on lowering the temperature does 
not change down to T = 0. Indeed, according to (6), which is 
the leading term in Tc , the correlator with the greatest Four- 
ier transform .Yq diverges, and it is precisely such a wave 
vector that should be associated with the long-range order 
that is established below T, . But on the other hand, the fact 
that Nq is a maximum quarantees at the same time that the 
energy (1) is a minimum at T = 0, i.e., the stability of such a 
state as the ground state. In the quantum case, however, the 
criteria for the types of long-range order for T =  0 and 
T = Tc do not, generally speaking, coincide with each oth- 
er: the fluctuations that grow at the fastest rate as the Tc is 
approached may have a wave vector entirely different from 
that of the long-range order that secures a minimum energy 
at T=O. 

This is precisely the situation that obtains in the vicinity 
of the ferromagnetic-layered antiferromagnetic phase 
boundary investigated in the classical limit in Sec. 3. If we 
take account of the zero-point vibrations of the spins in the 
AF state, vibrations which lower the energy of this state in 
comparison with the classical energy, we find that the equa- 
lity NO = NQL no longer guarantees the equality of the ener- 
gies EFM and E,, of the FM and AFM states. The second 
turns out to be lower than the first by the amount (0.14/ 
S )E ,, (this estimate is obtained by the standard methods of 
spin-wave theory for antiferromagnets). Thus, the FM phase 
should be stable at T = 0 not up to r, = 0.25, but up to a 
lower value r,, although in the interval [r,, r,] the integral 
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.Fq remains greatest for q = 0. For small spins the interval 
[r,, r,], within which the quantum fluctuations destroy the 
FM order, is comparable to the interval [0, r,], within which 
this order is stable. 

If, on the other hand, we proceed from the high-tem- 
perature region, then the criterion for the type of long-range 
order should be much closer to the classical criterion, i.e., to 
the Nq maximality criterion. Indeed, the effect of the quan- 
tum spin oscillations on the thermodynamics of the magnet- 
ic material should be much weaker in the paramagnetic re- 
gion than at T = 0, since the degree of short-range order in 
that region is not high and the spins are, on the average, 
randomly oriented with respect to each other. As for the 
quantum fluctuations, they are important when the spins 
are, in the main, antiparallel to each other. Corroborating 
the assertion that the thermodynamics of a magnetic materi- 
al at T- Tc weakly depends on the zero-point vibrations of 
the spins is the fact that both in the self-consistent field ap- 
proximation and according to Refs. 12 and 13 (the quantum 
analog of (5)) the Tc's for all the types of order depend on the 
spins in an identical fashion: they are proportional to 
S (S + 1). Essentially the same spin dependence is exhibited 
by the expression (7), which is the most accurate expression 
for Tc in the nearest-neighbor approximation. Therefore, 
the phase boundary rc determined from the critical proper- 
ties should be closer to the classical boundary r, than r, . 

In order to elucidate the physical picture in the interval 
[r,, r,], we should first demonstrate the stability of the 
AFM state in this interval, which is classically forbidden to 
it. To do this, we must compute the magnon frequencies ok 
not in the usual leading approximation in 1/S, but in the next 
approximation, since in the leading approximation the fre- 
quencies in this interval are imaginary. The real character, 
proved below, of the wk in the higher-order approximations 
in 1/S indicates that the quantum effects can stabilize the 
AF structure in the region classically forbidden to it. 

The magnon Hamiltonian in the approximation under 
consideration is obtained from the Hamiltonian (1) by carry- 
ing out the Holstein-Primakoff transformation in each of the 
sublattices with allowance made for the ternary terms in the 
magnon operators. These terms can be uncoupled according 
to the scheme 

where A i  is an arbitrary magnon operator, the symbol 
( . . . ), denotes averaging over the ground state, and the 
summation in (14) is over all possible pairings. The thus ob- 
tained pair Hamiltonian can be diagonalized with the aid of 
the Bogolyubov u-v transformation. As a result, we obtain 
the following formally closed expression for the frequency: 

ak= (Bk2-Ck?) ' '2, (15) 
k,-cos k,+Zr(l+cos k ,  cos k , )  

1 C k  
pPqi = -x -- cosp k. cosq k, cosr k,.  

2N or 

In essence, the expression (15) is a functional equation for the 
frequency, since the quantities v,,,, and p,,, are functionals 
of it. For r < r, the frequencies are nonanalytic in 1/S, which 
is manifested in the fact that we cannot compute them 
through direct expansion in powers of this parameter. But 
for small r, -r the frequencies can be computed by the meth- 
od of successive approximations in this difference. As the 
initial values of v,,, and p,,, we take the values for 
r, = 0.25, at which value these quantities can be computed 
through power series expansions in 1/S. 

From (15) it follows that the condition for the magnon 
frequencies to be real is equivalent to the condition for the 
quantity B, to be positive. From this we immediately obtain 
the following estimate for the value r, up to which the mag- 
non frequencies remain real: 

Consequently, (16) yields an estimate for r, as well. 
On the basis of the above results, we can assert that a 

short-range order inversion should occur in the interval 
[r,, r,] as the temperature is lowered. At the highest tem- 
peratures we find, in complete agreement with thermody- 
namic perturbation theory, that those fluctuations to which 
correspond the greatest Nq i.e., the ferromagnetic fluctu- 
ations, should grow at the fastest rate. But as we approach 
the Tc, and the quantum effects begin to manifest them- 
selves, a short-range AFM order, which is transformed into 
a long-range order below Tc , should begin to predominate. 

Another situation obtains in the interval [r,, r,]. The 
fact that in this interval the short-range order that occurs in 
the region T-+Tc is of a type different from the long-range 
order occurring at T = 0 (the first is a ferromagnetic order, 
while the second is an antiferromagnetic order) necessitates 
the occurrence of a first-order phase transition. There are 
two possibilities. 1) As the temperature is lowered, a second- 
order paramagnetic-ferromagnetic phase transition first oc- 
curs, which is then followed by a first-order order-order 
phase transition from the FM into the AFM state. 2) There 
occurs a first-order phase transition directly from the para- 
magnetic state with short-range ferromagnetic order into 
the AFM state, i.e., in the terminology of Ref. 7, there occurs 
an order-improper disorder phase transition. At the present 
stage it is not possible to determine which of these two var- 
iants is actually realized. In any case the first-order phase 
transition mechanism considered above, in which the transi- 
tion is due to the quantum fluctuations, is new for the order- 
order and order-improper disorder phase transitions. 

In principle, the establishment of a long-range AFM 
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order could occur not through a single phase transition, but 
through a whole series of them, as occurs in the ANNNI 
model.lV3 But here we cannot see any reason for the occur- 
rence of a series of phase transitions, since in the vicinities of 
the AFM and FM phase boundaries the free energies for the 
other types of long-range order are much higher. 

The quantum fluctuations induce first-order phase 
transitions not only when the temperature is varied, but also 
when the magnetic field is varied, i.e., an isotropic Heisen- 
berg magnetic substance should possess metamagnetic prop- 
erties in the interval [r,, r b ]  This is due to the fact that, in 
zero magnetic field, to the AFM state corresponds the abso- 
lute minimum of the energy, while to the FM state corre- 
sponds a relative minimum. A magnetic field causes the in- 
version of these minima, making the FM state the ground 
state. The fact that to the FM state corresponds an energy 
minimum follows directly from the positiveness of the mag- 
non frequencies in the FM state inside this interval: 

W k  FM= (Yo-Yk) S, 

.Yo being the greatest in the interval. Such a state differs 
from the usual metamagnetic state by the presence of mag- 
netic memory: if the field is removed, the crystal can, in the 
case when T 4 ,  remain indefinitely in the metastable FM 
state. Evidently, the closer r is to r,, the weaker is the field 
necessary for the transformation of the crystal from the 
AFM into the FM state. 

It should be noted that the possibility of an isotropic 
magnetic substance's being in the metamagnetic state is in 
itself nontrivial: the overwhelming majority of metamagne- 
tic substances are crystals with very large anisotropy. It has 
been pointed out before that metamagnetism is possible in 
isotropic magnetic substances with non-Heisenberg ex- 

change' and Jahn-Teller ions.' But metamagnetic memory 
does not occur in those cases. 

It is natural to expect all the effects described in this 
section to occur in antiferromagnets with small atomic spin 
and a paramagnetic Curie temperature that is either positive 
or negative, but that is small in magnitude (this indicates 
strong FM exchange). There are quite a large number of such 
antiferromagnets (DyAs, FeSi, etc.). 
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