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A very simple model for the surface of a quantum crystal, a generalization of the classical discrete 
Gaussian model, is proposed and analyzed. A transformation to an instanton gas shows that the 
surface is smooth for an arbitrary ratio of its parameters. Analysis shows that quantum effects 
cannot cause any substantial lowering of the temperature of the transition to a rough state. 
Another model proposed here for a crystal surface is of a type which has not been considered 
previously, in which the smooth state of the face is not absolutely stable in the absence of fluctu- 
ations. The phase diagram for the quantum version of this model is studied. 

Burton and Cabrera' introduced the concept of a phase 
transition between rough and smooth states of a crystal sur- 
face more than 30 years ago. A theoretical understanding of 
the nature of the phase transition in the solid-on-solid (SOS) 
models was reached considerably more recently (see, for ex- 
ample, the review by Weeksz). 

All the SOS models which have been studied to date 
have been definitely classical, i.e., nonquantum, models. A 
roughness transition has recently been observed experimen- 
tally for various faces of a 4He crystal at equilibrium with a 
liquid (superfluid) In this case both the solid and 
the liquid are definitely quantum entities, so that quantum 
effects must be taken into account in a study of the phase 
transition and possible states of the surface. We do not be- 
lieve that this topic has been studied adequately. In the only 
two places8.9 where it has been discussed the authors have 
reaced diametrically opposite conclusions. 

Andreev and Parshin8 suggested that a rough surface 
state could be caused by quantum effects even at absolute 
zero. The basis for that suggestion was the possibility that 
the energy of a step on a crystal surface could drop to zero 
because of a quantum delocalization ofjogs at the step. Gen- 
erally speaking, it is not clear whether this approximation, 
which is based on the representation of an isolated step, is 
valid for describing a quantum-rough face, which is a con- 
glomerate of mutually intersecting delocalized steps in var- 
ious orientations. 

Fisher and Weeks9 have expressed a contrasting opin- 
ion regarding the role of quantum effects. Working from a 
finite surface width for an arbitrary power-law spectrum of 
surface excitations, they concluded that a rough surface 
structure could not exist at T = 0. They argue that a surface 
of finite width could not sense a periodic potential associated 
with the periodic structure of the solid. This argument, ad- 
vanced without reference to any specific model, does not 
seem completely convincing. Furthermore, it does not rule 
out the possibility of a phase transition at T = 0. Fisher and 
Weeks use renormalization-group equations of the classical 
two-dimensional sine-Gordon model for an arbitrary non- 
zero temperature, without justifying the use of these equa- 
tions at temperatures at which quantum effects would ap- 
pear to be important. 

Our purpose in the present paper is to resolve the role 
played by quantum effects in the roughening transition at a 
more concrete level. We construct and analyze some simple 
models for the interface of a quantum crystal and a quantum 
liquid, allowing for the possibility of quantum transitions 
between different surface states. 

Some of the results derived here were reported in sum- 
mary form in Ref. 10. 

1. INTRODUCTION; CLASSICAL MODELS 

In the conventional models a crystal with a free surface 
at equilibrium with its vapor is modeled by means of a lattice 
gas. It is assumed that a given site of this lattice can be occu- 
pied by an atom only if the site (or group of sites) directly 
below it is also occupied. This condition has given a name to 
an entire class of models (SOS models). Under this condition 
the state of a crystal with a free surface can be specified un- 
ambiguously by means of a two-dimensional matrix of in- 
teger variables which represent the height of the surface 
above some fixed level. The surface energy corresponding to 
the various surface configurations is specified as a function 
of these integer variables. 

A representative model of this class is the discrete 
Gaussian (DG) model with the Hamiltonian 

J 
H ,  = - (ni-nif) ' ,  

2 
( i i ' )  

where the integer variables ni are specified at the sites of a 
square plane lattice, and the summation is over pairs of near- 
est neighbors. It is assumed here and below that a factor of 
B = (ke T)-' is incorporated in the definition of the statisti- 
cal Hamiltonians. Model (1) describes the (001) face of a crys- 
tal with a simple cubic lattice. 

Hamiltonian (1) is invariant under simultaneous dis- 
placements of all the variables: n, -+ni + An.  This symmetry 
is preserved in the rough state of the surface, while the tran- 
sition to the smooth state represents a disruption of this sym- 
metry. Instead of directly studying the crystal properties of 
the DG and similar models, it is customary to perform a dual 
transformati~n"~'~ in the partition function 
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converting this function into the partition function of the 
model of a planar magnetic material (an XY model). The 
nature of the phase transition in such models is well known 
and was first established by Berezinskii. l3  The critical prop- 
erties of such models can be analyzed by the method of re- 
normalization-group transformations.14 A convenient tool 
for analyzing the high-temperature properties of model (1) is 
to convert partition function (2) into the partition function of 
a lattice Coulomb gas.15 

Another common approach is to replace Hamiltonian 
(1) by the sine-Gordon (SG) Hamiltonian 

d' 
H,, = - (ni-nj12-y cos 2nn. 

2 
(ij) C 

specified for continuous variables ni and having the same 
symmetry as H D G .  The sine-Gordon model (3) allows a re- 
normalization-group analysis in both the Wilson16 and field- 
theoryI7 formulations. 

The basis for replacing (1) by (3) is the identical symme- 
try of these Hamiltonians, i.e., the coincidence of their 
ground ~ t a t e s ' ~ " ~  (at T = 0). 

There is an exactly solvable SOS model. This model was 
constructed by van Beijeren2' for the (001) face of a crystal 
with a bcc lattice and is isomorphic to one version of the six- 
vertex model (F model) solved by Lieb.21,22 All the models 
described above fall in the same universality class. A phase 
transition which occurs in them is of infinite order in the 
Ehrenfest classification. The rough phase is the line of criti- 
cal points. The specific form of the structural features for 
quantities which are directly observable experimentally will 
be described in the following section. 

For the classical thermodynamic SOS models the dif- 
ference between the smooth and rough phases of the state of 
a two-dimensional surface is as follows: In the smooth state 
the surface has a finite width, and the fluctuations have a 
finite correlation radius. The free energy per unit length of 
the step is nonzero. The concentration of surface defects 
(outgrowths and pits) falls off rapidly (exponentially) as their 
size increases. In the rough state, in contrast, the free energy 
of a step vanishes, so that there can be defects of arbitrarily 
large size, including unclosed steps of infinite length. The 
fluctuations do not have a finite correlation radius, so that 
the width of the surface diverges. 

We see that in the classical case the smooth and rough 
surfaces differ in many ways. In the quantum case (at T = 0) 
the situation becomes slightly different. The free surface of a 
liquid (which, of course, could in no way be assumed atomi- 
cally smooth) has a nonzero width. We assume that the free 
energy of a step is the basic characteristic of the smooth 
state. In this case the face can be represented by a plane 
region in the equilibrium faceting of the crystal.23 

2. ROUGHENING TRANSITION AND FACETING OF A 
CRYSTAL 

The transition of a face from a rough state to a smooth 
state corresponds to the appearance in the thermodynamic- 

ally equilibrium shape of the crystal of a plane region corre- 
sponding to the given face. The size of this plane region is 
proportional to the jump (Aa') in the derivative of the surface 
free energy; in other words, it is proportional to the free 
energy per unit length of a step, Fs, (Ref. 23). It has been 
s h o ~ n ~ ~ , ' ~  that for SOS models Fs, is inversely proportional 
to the correlation radius of a dual model of the type of a 
planar magnetic material (see also Section 5). It then follows 
from the results of Kosterlitz14 that near the transition point 
TR the jump Aa' decreases to zero in accordance with 

Ad-exp ( -b /  (T,-T) I"). (4) 
Unfortunately, experimental  observation^^-^ of the appear- 
ance of plane regions on the surface of a 4He crystal at equi- 
librium with a liquid (superfluid) phase have not yet made it 
possible to confirm or reject the behavior in (4). 

There are certain other consequences of the theory of 
classical SOS models which can also be used for a compari- 
son of experimental results with theoretical predictions. 

The diagonal elements of the curvature tensor are in- 
versely proportional to 6 = a + d 'a/dx ', where the anglex 
is taken in the corresponding cross section, and a is the sur- 
face free energy. It can be concluded from both the renor- 
malization-group analysis of the SG modelI6 and the exact 
solution of the F m~del~ ' . '~  that as the temperature tends 
toward the transition temperature TR from above the quan- 
tity & remains finite but has a square-root anomaly: 

6 ( T )  = "" "" ( 1  - 
2b h2 2 (T-TR)* ) l  

where h is the interplanar distance, and b is the same con- 
stant as in (4). The universal relation for 6(TR ) in (5) is analo- 
gous to the universal relation for the superfluid density at the 
transition point in the theory of superfluidity in thin films.z6 
Fisher and Weeks9 cited this relation as lower bound on TR 
[i.e., an upper bound on &(TR )]. 

The exact solution of the Fmode12' also suggests that at 
T <  TR the following expression applies to the (still rough) 
faces making a small anglex with the face at which the tran- 
sition has occurred: 

a=D(T)IxI .  (6) 

The same assertion is valid for the sine-Gordon model, as 
can be seen by making use of its equivalence to the massive 
Thirring m~de l '~ . ' ~  and the known energy of the massive 
Thirring model with a finite soliton den~ity. '~ 

The intersection of the equilibrium form of the crystal 
with the plane perpendicular to the plane face is bounded by 
a line consisting of both smooth and curvilinear sections. 
Under condition (6) the shape of the curvilinear section of 
this line near the point at which it touches a smooth section is 
described by a parabola of degree 3/2. 

Andreev's attempt3' at a phenomenological description 
of the appearance of a plane region on the faceting leads to a 
functional dependence a ( T )  which has an anomaly corre- 
sponding to a phase transition on the surface described by 
Landau's mean field theory.31b The ordered phase is the 
high-temperature phase, according to the sign of the jump in 
the specific heat. In a two-dimensional system, however, 
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Landau's theory has no range of applicability because of the 
governing role played by fluctuations. 

3. SIMPLE QUANTUM MODEL FOR THE SURFACE OF A 
CRYSTAL 

In the spirit of the SOS approximation we assume that 
in the case of an interface between a quantum crystal and a 
quantum liquid the state of the surface can be described by a 
wave function expandable in a basis of states with fixed val- 
ues of n, . We supplement the Hamiltonian of the DG model 
with terms corresponding to quantum tunneling between 
different surface configurations. For simplicity we assume 
that the amplitude of this tunneling, p/2, is independent of 
the initial and final states: 

The only nonzero matrix elements of the operators a+ and 
a; introduced here are the off-diagonal elements 
(n, + lla,+ In,) = (n, - lla, In,) = 1. The kinetic energy 
of the proper motion of the liquid is not incorporated in 
Hamiltonian (7); this simplification is legitimate if the densi- 
ties of the liquid and the crystal are the same. This model can 
also describe a domain wall in a magnetic material or a 
planar defect in a quantum crystal. 

Like the classical Hamiltonian of the DG model, (I),  
Hamiltonian (7) can describe a variety of situations. First, it 
can describe the (001) face of a crystal with a simple cubic 
lattice. The variables ni in this case represent the height of 
the surface (in units of the lengths of the lattice) and are 
determined on a square plane lattice. The operators a+ and 
ai- make it possible for an atom to undergo a transition from 
the liquid to the crystal and vice versa at any site of this 
lattice. 

The second situation is the (NlNM) face of a simple 
cubic lattice (or of some similar face), whose classical ground 
state is a regular lattice of jogs (Fig. 1). The variables ni now 
represent the displacements of these jogs from certain fixed 
positions and are determined at the sites of the lattice ofjogs, 
not on the original lattice. In the first term in (7), where the 
summation is over pairs of nearest neighbors, the interaction 
between neighboring jogs has been retained. The second 
term describes the tunneling of a jog to neighboring posi- 
tions. The tunneling amplitude p/2, a characteristic of an 
isolated jog, can be assumed independent of n, . 

A similar Hamiltonian, but with an anisotropic interac- 
tion, can be used to model the (10 N )  face for N)1. The 
classical ground state of such a face is a sequence of smooth 
steps separated by a distance N. The variable ni in this case 
describes a deviation of a step from its regular position. One 
component of the two-component integer index i specifies 
the step; the other specifies the site on the step. The operators 
a' and a; create and annihilate pairs of jogs and generate 
the motion of each of the jogs. An anisotropy of the interac- 
tion constants does not affect the nature of the conclusions 
which we can draw. If the differences ni - nj are very large, 
and the steps may collide, a quadratic increase in the energy 
as a function of ni - n, may be insufficient, and we have to 

assume that J increases in this case. It is intuitively clear, 
however, that such an "effective" increase in J could only 
make the faces "smoother" than in the model. 

We use a standard procedure for transforming from the 
quantum model to a statistical model (see, for example, the 
review by K o g ~ t ~ ~ ) .  For Hamiltonian (7) we construct an 
operator representing evolution along the imaginary time 
- it: 

where 

is a diagonal operator, and 

splits up into the product of commuting factors, 

h h A A 

Formally, T *(T)=T, (r)TK (T) differs from T (r) by terms of 
order 2 and higher, and in the limit r-0 it becomes this 
operator. Straightforward~alculations show that the matrix 
elements of the operators TKfi (7) are 

(t?i+p 1 T K ,  1 n,) =Ilpl ( ~ p / h ) ,  (9) 
where I is the Bessel function of ima~inary argument. 

With the help of (9) we see that T*(T) is the transfer 
matrix for the three-dimensional statistical model with the 
Hamiltonian 

J'G H'=- 
2A 

i - j  - 1 I + ( )  . (10) 
( 0 )  ( & , " + I )  

The index i here is assumed to have three integer compo- 
nents, and (i, i + T) denotes pairs of nearest neighbors (along 
t ) which differ only in the third (temporal) component of the 
index i. The correspondence between the models with Ham- 
iltonians (7) and (10) is established as 7-0. 

Restricting the discussion to values of r which satisfy 
the condition 

aplA>>l ,  (1 1) 
we can expand the logarithm of the Bessel function in (10) in 

FIG. 1.  The (NlNM) face (N = 4, M = 4) of a crystal with a simple cubic 
lattice-a lattice of jogs. 
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its index and transform to the anisotropic, discrete, three- 
dimensional, Gaussian Hamiltonian 

Chui and Weeks15 have shown that the partition func- 
tion of a discrete Gaussian model can be transformed into 
the partition function of a lattice Coulomb gas. In three di- 
mensions, this gas has a finite chemical potential, and for 
arbitrary values of its parameters it is in a plasma state,15 
implying a smooth state of the original discrete Gaussian 
model. 

Another approach to the study of Hamiltonian (12) is to 
transform to a sine-Gordon model with a continuous vari- 
able n: 

(13) 
Here and below, a is the lattice period. This substitution is 
justified best in the case p)J, in which there is in fact an 
interval of values of T, 

which satisfy condition (12) and which are of such a nature 
that the coefficients of the sums in (12) are much less than 
unity. In this case, T actually drops out of the problem: The 
coefficients of the squares of the derivatives in action (13) do 
not depend on T. That no phase transition occurs in a model 
of this type can be shown by renormalization-group meth- 
o d ~ ~ ~  with y assumed small. 

These arguments still leave some doubt that the conclu- 
sions reached here also apply to the behavior of a model with 
Hamiltonian (10) in the case 7 4 .  TO eliminate this uncer- 
tainty we will show that the partition function (a functional 
integral) of the original model can be written as the partition 
function of a Coulomb gas even in the limit 7-0, in which 
Hamiltonian (10) is substantially non-Gaussian, and the 
transformation of Chui and Weeksls cannot be used. 

4. TRANSFORMATION TO A GAS OF INSTANTONS 

Hamiltonian (7) is written in a form which implies that 
the wave functions depend on the variables ni . To pursue the 
analysis, we transform from the integer variables ni to angu- 
lar variables p i ,  which take on values running over a circle 
and which are related to the ni by a Fourier transformation. 
The ni then become - id/dp, the aj+ become e - jqj, and the 
aj- become e +ipJ, so that Hamiltonian (8) can be rewritten 

This transformation is not the same as the dual transforma- 
tion of Refs. 11 and 12, which sends the classical SOS model 
into the model of a planar magnetic material, in which the 
angular variables pj are defined on a dual lattice. 

Hamiltonian (14) corresponds to the Feynman transi- 

tion amplitude (in the Hamiltonian representation) 

where the summation over mi (t ') makes the variables ni dis- 
crete. The summation over mi (t ') can be formally eliminated 
by transforming to the variables ei =pi  - 2n-mi, defined 
over the entire number line. 

After a transformation to an imaginary time and a 
Gaussian integration over ni, the dimensionless action in 
( 15) becomes 

Since we wish to show that the surface is smooth for 
arbitrary p, we restrict the discussion to the limit p)J and 
make use of the small value of the parameter J / p .  

Action (16) reaches its absolute maximum on trajector- 
ies with time-independent quantities +i which minimize 
- c o e i  ; for example, we could have +i = 0 for all i. If we 

consider a single minimum and replace - cospi by the pa- 
rabola p:/2-l (i.e., if we ignore the discrete nature of the 
situation), then the system can be broken up into several 
independent harmonic oscillators with a spectrum 

(a nucleating spectrum without allowance for the discrete 
nature of the problem). 

There are also trajectories on which action (16) reaches 
a local minimum. These trajectories connect different mini- 
ma of the potential energy. On the simplest of them (i.e., 
those with the least action), the values of one of the variables 
(e.g., +, ) at t = + w and t = - w differ by f 27~. The term 
- p c o e ,  in the potential energy (potential in the p repre- 

sentation) on this trajectory goes through a maximum once. 
The other terms in the potential energy do not reach a maxi- 
mum. We call such a trajectory an "isolated instanton." Be- 
cause of the high barrier in the potential energy, the action 
corresponding to a single instanton is large. 

We can introduce instantons in a more formal way by 
transforming to an imaginary time in functional integral (15) 
itself and evaluating the various terms of the sum over mi ( t  ') 
by the method of steepest descent. The term for which all the 
mi (t ') are zero gives us the trajectory on which the action 
reaches its absolute minimum. 

An isolated instanton corresponds to a term in which 
only one of the quantities mi (t ')becomes equal to 1 at one 
instant. Let us assume, for example mi, ,, (0) = + 1. By 
varying the corresponding action, we find equations describ- 
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ing the extremal trajectory: 
J - ALnj=2ni 6 ( t )  6jo, 
A 

(18) 

where AL is the lattice Laplacian. In (19) we replace sinp, by 
pi; this replacement is equivalent to an effective raising of 
the barrier height on the instanton trajectory. After this re- 
placement, we can transform to a Fourier representation in 
the lattice and the time in (1 8) and (19), and we can easily find 
a solution of the resulting equations: 

n(k ,  o )  =2niGo (k ,  a ) ,  cp ( k ,  o) =2ni (AoIp) Go ( k ,  a ) ,  

where 
(20) 

Go(k, o )  =A [U ( k )  +Mo2]-'-A[J(ak)2+MoZ] -', M=hZIp, 

(21) 
is the same as the nonrenormalized Green's function for the 
variables n, i.e., Go(k, a) = ( Ink, 12)0. 

We should determine just what change is caused in the 
solution by the distinction between and sinp, , which we 
have ignored. To resolve this point we put Eqs. (18) and (19) 
in the form 

div F= (BV) 6 (X) ,  (22) 
in vector form in the three-dimensional space x, where 
x = (r, t). Here 

Integrating (22) over the entire space, we find that the 
right side gives us zero. The integral of the left side reduces to 
an integral over an infinitely remote surface. Analogously, 
multiplying (22) by t, integrating, and making use of the ex- 
plicit expression for F, we find that the left side is again a 
surface integral over a remote surface. Everywhere on this 
remote surface we can replace sinp by p. The singularity on 
the right side of (22) thus unambiguously determines the so- 
lution at large distances, which turns out to be a dipole solu- 
tion, in agreement with (20). 

The distribution of the fields n and p in the instanton, 
(20), which we have found explicitly can also be expressed in 
the coordinate representation. For example, as t-t + co we 
have 

aZ dk do A 
niZo = j 2niGo ( k ,  o )  eciUt- - 

It . 
We can also use (20) to calculate the action correspond- 

ing to a single instanton, s,. It turns out to be finite: 

Since S, is finite, isolated instantons may exist. Under the 
condition p$J, their density (Y) in the three-dimensional 
space (2 + 1) will be small. In leading order we have 
Y a exp( - S,) (see Ref. 34, for example). 

The power-law decay of the field n in (23) indicates that 
the interaction of instantons must be taken into account. In 
the case of two instantons with charges m,,, = + 1, at the 
points (R /2, 6 /2) and ( - R /2, - 8 /2), the solution is 

n(k ,  o) =3ni[m, elp jt12i (kR-(00)) 

f nz, esp{'l,i (-kR+coO) ) ]Go  ( k ,  a), 

and the resultant action S2 differs from 2S1 by the size of the 
instanton interaction: 

c,mlmzh 
W (R,  0) =4n2 mIm2Go (R,  0)  - c2-1. 

[ J ( M R 2 + J B 2 )  1"' ' 

We see that the interaction of instantons in the three- 
dimensionalspacex with themetric (X I = (r2 + c2t ')'I2 falls 
off as IX I - '  at large distances; i.e., at p ) J the instantons 
form a three-dimensional Coulomb gas, with a low density 
but a finite chemical potential. It follows from Debye- 
Hiickel calculations (see Ref. 3 la, for example) that a system 
of this type has a finite screening radius. This calculation can 
be reproduced quite easily in terms of Green's functions; the 
result is 

4n2v Ja2 
G-' ( k ,  a )  =Go-, ( k ,  (0) + ---- Z -- 0- "Zf k?+~g-" ), 

h R 

where the instanton density Y should be expressed in terms of 
the complete Green's function, 

,\7cr 2 exp [-2n2G(r, t = O ) ]  , (27) 
and the correlation radius f satisfies the estimate 

i.e., is exponentially large, by a factor proportional to the 
parameter p/J. 

A similar estimate off can be found with the help of the 
sine-Gordon Hamiltonian in (13), through the use of a self- 
consistent equation for the Green's function18 which differs 
from (26) only in the coefficient of Y. 

We can thus conclude that for an arbitrarily large quan- 
tum tunneling amplitude p/2 the surface described by Ha- 
miltonian (7) is smooth. That value of f which characterizes 
the scale dimensions at which the smoothness of the surface 
becomes significant increases rapidly with increasingp/J. It 
also determines the size of the small gap in the surface excita- 
tion spectrum, a2 = c2(k + 6 -'). 

Let us consider the problem of an artificially isolated 
step on the surface of a crystal. In other words, we seek the 
ground state of Hamiltonian (7) in the set of surface configu- 
rations which correspond to one of various versions of an 
infinitely long bent step with a given (average) orientation; 
we rule out the possible appearance of other defects. In the 
SOS approximation the problem then reduces to the one- 
dimensional version of Hamiltonian (7), where the variables 
n, now represent the departure of the given section of the 
step from a fixed straight line. In this case the action corre- 
sponding to an isolated instanton diverges logarithmically. 
The interaction of instantons is logarithmic. The situation is 
completely analogous to a two-dimensional Coulomb gas, 
and as the parameter p/J is changed there is a phase transi- 
tion between smooth and rough states of the step. An in- 
crease in,u/Jcan make the energy of the rough (delocalized) 
step less than zero, as was pointed out by Andreev and Par- 
shin. a Nevertheless, the analysis of the complete (two-di- 
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mensional) version of Hamiltonian (7) in this section shows 
that the reason for this conclusion is the neglect of fluctu- 
ations of the surface other than the bending of the given step. 
When these other fluctuations are taken into account cor- 
rectly, an isolated step will still have a positive energy, de- 
spite its possible delocalization (at a large value of the ratio 
NJ 1. 

5. ENERGY OF A STEP 

We showed in the preceding section that in the quantum 
SOS model (the QSOS model) the spectrum has a gap for any 
ratiop/J, and the correlations fall off exponentially (there is 
a finite correlation radius). There can thus be no doubt that 
the state of the surface is smooth. This conclusion can also be 
reached by calculating the energy of a step, and this calcula- 
tion is of interest in its own right. 

A step of infinite length can be introduced only by 
means of boundary conditions at infinity, which are slightly 
inconvenient for an analysis. On a surface we can construct a 
step of finite length, however, for which we should introduce 
two screw dislocations of opposite sign. The change which 
arises in the partition function of the classical thermody- 
namic SOS model upon the introduction of a pair of screw 
dislocations of opposite sign can be seen particularly clearly 
after a transformation to dual displacements.24~2s This 
change reduces to a multiplication of the partition function 
of the dual model by the correlation function for spins at the 
same points in the dual lattice as the screw dislocations: 
(cos(?-pf )). It follows immediately that the free energy 
per unit length of the step is T/rc,  where T is the tempera- 
ture, and rc is the correlation radius of the dual 

For this model we can directly express the energy of the 
step in terms of correlation functions. 

In order to obtain a step of finite length we must intro- 
duce a mismatch on certain links; i.e., for these links we must 
replace the term (1/2)J(n, - nj. )2 in the Hamiltonian by (I /  
2)J(n, - nj. + If we consider a step formed between 
screw dislocations at the points (I + 1/2, 1/2) and ( - I - 1/ 
2,1/2), then we can choose the links with 

( p  1 j '=(p, 0), p=-1, - l+l,  . . . , 2-1, 1, (29) 

as the set of links on which the mismatch is given. These 
links intersect the line segment connecting the points of the 
screw dislocations. Redefining the variables ni, we can ig- 
nore the mismatch on any other set of links, which will now 
intersect that broken line through the dual lattice which con- 
nects the screw dislocations. 

To introduce a mismatch on a set of links, as in (29), is 
equivalent to adding to Hamiltonian (7) a perturbation 

where 

1 for j = ( p , l ) ;  p = - l ,  -L+l, . . . ,  1 - 1 , l  
for j = (p, 0) ' 

0 otherwise 

The component V2 increases the energy of the ground 

state by J ( I  + 1/2). To calculate the contribution of Vl to the 
functional integral determining the ground-state energy, we 
expand the factor 

dt' 
e x P ( - J A ~ i )  

in the functional integral in a Taylor series. The difference 
between the functional integral for the unperturbed Hamil- 
tonian then reduces to multiplication by the series of correla- 
tion functions 

taken for the unperturbed Hamiltonian. 
For the rest of the calculations in this section of the 

paper we adopt the self-consistent approximation.I8 We as- 
sume that a correlation function of arbitrary order can be 
written as the sum of all possible products of binary correla- 
tion functions. Writing (30) in this form, we can sum the 
resulting series; we find 

The Green's function G,, (t ';t ") in (3 1) depends on only the 
differences i - j and t ' - t " . In the argument of the exponen- 
tial function in (3 1) we can single out a term which is propor- 
tional to the total time and to the length of the step (in the 
limit of a large length). Substituting expression (26) for G into 
(3 1) and integrating, we find 

Taking into account the contribution of V, per unit length of 
the step, we find the energy of the step to be 

Est=J/4E. (33) 

For our QSOS model, E,, is proportional to exp ( - (cl/ 
2 ) b / ~ ) ' / ~ )  in the l i m i t p ~ J ,  i.e., is finite for arbitrary p. 

In deriving (32) and (33) we have made use of only the 
explicit expression for the potential energy (in the n repre- 
sentation). The results thus apply not only to the QSOS mod- 
el but also to other models of this type. It follows from the 
form of (32) that the energy of the step is finite not only 
because of the gap in the spectrum but also because of the 
finite correlation radius for the correlation function at a zero 
frequency. There can be no doubt that a calculation more 
rigorous than this self-consistent approximation will leave 
this circumstance fundamentally unchanged. 

6. TRANSITION TEMPERATURE IN THE QSOS MODEL 

We have thus shown that in this simple model quantum 
effects cannot lead to a roughness of the face at absolute zero. 
Nevertheless, at a large value of the parameter p quantum 
fluctuations lead to a substantial increase (exponential inp /  
J)  in the correlation radius in comparison with atomic di- 

533 Sov. Phys. JETP 60 (3). September 1984 S. V. lordanskil and S. E. Korshunov 533 



mensions, and they lead to a decrease of the same magnitude follows that in the limitp--t co we have TR -t(r/2)J. Accord- 
in the gap in the surface excitation spectrum. DO these ingly, although quantum effects do lower TR , the decrease 
changes lead to an equivalent sharp decrease in the tempera- could only be very slight. The critical behavior remains the 
ture of the transition to the rough state, T, ? An elementary same as in the classical case, but the range of applicability of 
analysis based on a comparison of the contributions of the limiting expressions such as (4) and (5) contracts with in- 
energy and the entropy to the free energy of a step shows that creasing p .  
the transition temperature is on the order of the energy of a 
segment of the step not of atomic length but of the minimum 
length which relatively straight segments of the step can 
have, i.e., {. In the product E,,{ the factors which are expo- 
nential in S,  cancel out, so that the relative decrease in TR (if 
there is any such decrease at all) cannot be exponentially 
large. 

The question of the transition temperature could also be 
approached within the framework of functional integration. 
The free energy at T # O  can be expressed in terms of the 
Feynman transition amplitude over an imaginary time 
- ifi/T: 

In this case the three-dimensional space in which we are 
considering the instantons coils up into a cylinder along the 
time coordinate. The gas of instantons becomes quasi-two- 
dimensional with a logarithmic long-range interaction. 

The self-consistent equation for the Green's functions 
(26) (in which the frequencies should now be regarded as 
discrete: w, = 2mT/fi) can be used to find the temperature 
dependence of 6 and the transition temperature TR = (r/ 
2)J, which is independent of p in this approximation. We 
know14 that the renormalization of the interaction for the 
polarization of bound pairs of charges in a two-dimensional 
Coulomb gas leads to a value of TR higher than (r/2)J. This 
increase, however, decreases with decreasing chemical ac- 
tivity of the Coulomb gas. 

The chemical activity for a gas of instantons is propor- 
tional to exp { - (~, /2)(p/J)"~ j in the ultraquantum limit. It 

7. AN ALTERNATIVE CLASS OF MODELS 

I t  is not difficult to see that all the conventional SOS 
models2 as well as the QSOS model discussed above have a 
property in common: The expression for the potential ener- 
gy used in these models is such that in the absence of thermal 
fluctuations (and, in the present case, in the absence of quan- 
tum fluctuations) the planar state of the face under study is 
absolutely stable. In other words, the given face is present in 
the equilibrium faceting of the crystal. This is not the only 
possibility. If the long-range interaction of the links is ig- 
n ~ r e d , ~ ~  it would be completely permissible to have a situa- 
tion in which some face of the crystal would be less favorable 
than a set of two or more faces of a different orientation, with 
the same projected area onto the plane of interest. The given 
face would then not be present in the equilibrium faceting of 
the crystal, and there would be a link or vertex. 

An extremely simple classical model in which the 
planar state of a given face is not absolutely stable at T = 0 
can be constructed easily in the BCSOS modelz0 for the (001) 
face of a bcc crystal. The surface state for this face is de- 
scribed in the SOS approximation by a set of integer varia- 
bles defined on a square lattice which take on even values on 
one sublattice and odd values on another. A restriction im- 
posed in the BCSOS model allows only the minimum differ- 
ence in heights ( +. 1) between nearest neighbors. The energy 
of the surface configuration is determined by the difference 
in heights of the next-nearest neighbors. 

Here are the six allowed configurations of a quartet of 
neighboring variables n, : 

With configurations I we associate a zero energy, with con- 
figurations I1 an energy E ,  and with configurations I11 an 
energy E. van Beijeren, who constructed the BCSOS mod- 
el," showed that it is isomorphic with the six-vertex (6V) 
model. He discussed the case E = 0 > E, in which an isomor- 
phism with the symmetric antiferroelectric version of the 6V 
model (the I: model) is achieved. 

We would like to examine the case E > E > 0, which cor- 
responds to the asymmetric ferroelectric version of the 6V 
model (which we will call the BCSOS/II model). The corre- 
spondence constructed by van Beijeren20 means that we can 

use the known properties of the 6V Reformulated 
in terms of the BCSOS model, these properties can be de- 
scribed as follows. 

At T = 0 a set of ( 10 1) and ( 101) faces would be prefera- 
ble to the (001) face. Figure 2a shows the state of a crystal 
surface corresponding to the (101) face. According to this 
model, fluctuations would not be possible in this state, and 
its free energy would be zero at any temperature. 

At T = 0 there can also be a metastable surface state 
corresponding to the (001) face. This state is shown in the 
presence of a step in Fig. 2b. In this state any defect of finite 
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FIG. 2. Surface state of a bcc crystal. a-State corresponding to the (10i) 
face; b-state corresponding to the (001) face (in the presence of a step with 
a jog). 

size has a positive energy, but it is not absolutely stable since 
its energy, ~ / 2  (per vertex), is greater than zero. It can be seen 
from Fig. 2b that diagonally oriented steps do not increase 
the energy of the surface, and the energy of defects is asso- 
ciated with jogs on such steps. Accordingly, at any tempera- 
ture T >  0 there is some finite concentration of defects of 
arbitrarily large size. This means that a given state is rough 
at any T >  0. As the temperature is raised, thermal fluctu- 
ations lower the free energy of the metastable state, and at a 
certain Tc [Tc - E /ln(E /E) at E)E] the free energy vanishes. 
A phase transition occurs at this point. 

At T >  Tc the thermodynamically most favorable state 
of the surface is that corresponding to a rough (001) face. A 
rounded region with a size which increases with increasing 
(T - Tc ) appears in place of a link on the equilibrium facet- 
ing. 

We have thus constructed a BCSOS/II model in which 
a face of interest is rough at T >  T c ,  while at T< T, it is 
completely absent from the equilibrium faceting of the crys- 
tal. In the following section of this paper, we incorporate 
quantum fluctuations in this model. 

It is not difficult to see that the energy of a step in a 
metastable state vanishes because the model ignores the in- 
teraction of more-remote neighbors. If we instead assume 
that the energy of a step is positive but much lower than Tc 
then there will be no changes in the results of this or the 
following section of the paper. 

8. QUANTUM MODIFICATION OF THE BCSOS/II MODEL; 
PHASE DIAGRAM 

We now incorporate in the model of the preceding sec- 
tion the possibility of a quantum tunneling with an ampli- 
tudep. The restrictions imposed on the form of the potential 
energy are such that only transitions of the following type 
are possible: 

We assume E, p(E, and we take the quantum tunneling into 
account by perturbation theory. 

In this model there can be no transitions from the state 
corresponding to the (10i) face to any other states which 
have a finite number of altered heights n, . The free energy of 
this state is zero at an arbitrary temperature. In contrast, the 

FIG. 3. Phase diagram for the quantum version of the BCSOS/II model. 
S-Region of a smooth state of the (001) face; R-rough state of the (001) 
face; D-region in which there is a link between the (101) and (101) faces. 

energy of a metastable state, E, (Fig. 2b), is lowered by quan- 
tum fluctuations. The first nonvanishing correction arises in 
second-order perturbation theory. The energy can be writ- 
ten 

At p >p, = ~ ( E E ) " ~  the energy E, obviously falls below 
zero, and the metastable state becomes absolutely stable. We 
might note that the presence of diagonally oriented steps 
(Fig. 2b) limits the possibilities of quantum transitions, so 
that such steps should be assigned a nonzero energy 

We must then conclude from general considerations that the 
surface state corresponding to the (001) face is rough only at 
a temperature T >  TR -p2/4E, which may exceed Tc .  

Working from estimates (34) and (35) we can construct a 
schematic phase diagram for the BCSOS/II model in terms 
of the coordinates T  and p (Fig. 3; for constants values of E 

and E ). Here S is the region in which the smooth state of the 
(001) face is stable, R is the rough state, and D corresponds to 
a decay into (101) and (10i) faces. The line SR is a line of 
second-order transitions, while SD and RD are lines of first- 
order transitions. 

According to this model, therefore, quantum tunneling 
leads to a slightly unexpected result: A smooth state of the 
(001) face becomes possible, and the temperature of the tran- 
sition to the rough state increases (!) with increasing quan- 
tum tunneling amplitudep. As in the QSOS model discussed 
earlier, there is no possibility of a rough face at absolute zero. 

After this paper had been completed, we learned of 
work by F r a d k i r ~ ~ ~ ,  who also constructed Hamiltonian (14) 
and studied its properties through the properties of the cor- 
responding sine-Gordon Hamiltonian. We discussed the ba- 
sis for a substitution of this sort in Section 3. Fradkin also 
reaches the conclusion that the surface is smooth at T = 0. 

We thank A. F. Andreev and V. L. Pokrovskiifor useful 
discussions. 
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