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A method is proposed for solving a system of integrodifferential equations of the Wiener-Hopf 
type describing propagation of radiowaves in a metal in the case of diffuse reflection of carriers 
from the surface. It is based on separation of the complete system of equations into two much 
simpler systems, one of which describes the distribution of the long-wavelength component of the 
field and the other that of the short-wavelength component. The method is used to solve the 
problem of penetration of a radiofrequency field into a compensated metal subjected to a magnet- 
ic field perpendicular to the surface. The case of open orbits is dealt with. A system of equations 
with a long-wavelength component of the field is solved. Calculations are made of a complete 
distribution of the field and of the surface impedance tensor for a semi-infinite metal. This distri- 
bution is used to find the impedance of a plate in the antisymmetric excitation case. The presence 
of open orbits gives rise to the following effects: one of the diagonal elements of the impedance 
tensor is independent of the magnetic field and corresponds to the anomalous skin effect; the 
oscillatory components ofthis element are very small; the real part of the second diagonal element 
changes only slightly, whereas both the smooth and oscillatory components of its imaginary part 
rise considerably. 

The Doppler-shifted cyclotron resonance (DSCR) in 
metals with closed carrier orbits has already been studied 
thoroughly both theoretically and experimentally. How- 
ever, this is not true of the DSCR in compensated metals 
with open orbits. Studies of such metals have revealed's2 that 
the oscillations have a much smaller amplitude for one of the 
linear polarizations than for the other. This has not yet been 
explained. Moreover, there is no agreed view on the nature of 
the observed oscillations. Naberezhnykh and Eremenko3 in- 
vestigated the impedance of cadmium in the geometry with 
open orbits and they attributed the oscillations to doppler- 
ons. On the other hand, Berset et aL2 reported observations 
of the Gantmakher-Kaner (GK) oscillations because carri- 
ers with open orbits responsible for strong collisionless ab- 
sorption should prevent doppleron propagation. 

A theory of the skin effect and of the DSCR in a com- 
pensated metal with open orbits and specular carrier reflec- 
tion was put forward in Ref. 4. It was shown that two differ- 
ent types of skin layer appear near the metal surface. A skin 
layer in which the electric field is directed along open orbits 
is anomalous and its depth is independent of the applied 
magnetic field H. However, the depth of the second skin 
layer is proportional to H 2. It was found that for both linear 
polarizations of the exciting field the amplitudes of the dop- 
pletron oscillations are equal to the amplitude of the GK 
oscillations. Hence, it was concluded that the reflection of 
carriers in the experiments reported in Refs. 1 and 2 was not 
specular and that the diffuse nature of the reflection plays a 
fundamental role. This role was demonstrated in Ref. 5, 
where the specularity coefficient was assumed to be arbi- 
trary, but all the terms in the nonlocal conductivity with 
branch points were replaced with terms that had pole singu- 
larities. In the absence of branch points a system of integro- 
differential equations which describes the field in a metal 
plate can be solved exactly and the solution is a sum of sever- 
al exponential functions. In this model there is a doppleron 

and two different skin layers. It can be used to analyze how 
the nonspecularity of the reflection in the presence of two 
different skin layers results in a preferential enhancement of 
the doppleron oscillations for one of the linear polarizations. 
It was also shown there that this mechanism operates for all 
values of the specularity coefficient, with the exception of 
those close to unity. Nevertheless, the model of Ref. 5 suffers 
from several shortcomings. This model does not allow for 
collisionless absorption by carriers with open orbits or for 
the cyclotron absorption of carriers with closed orbits. Con- 
sequently, in principle, the GK oscillations do not appear in 
this model and the doppleron oscillations exist in a very wide 
range of magnetic fields. 

This discussion demonstrates the urgent need for a the- 
ory of penetration of radiowaves into a metal plate with open 
orbits, which is characterized by a realistic nonlocal conduc- 
tivity and diffusely reflecting surfaces. Such a theory is de- 
veloped below. A difficulty is encountered because a system 
of integrodifferential equations cannot be solved in general 
for a segment. When the plate thickness exceeds the skin 
layer depth, the impedance of the plate can be found from 
the distribution of the field in a semi-infinite metal.6 The 
problem of finding this distribution in the presence of open 
orbits reduces to a solution of a system of equations of the 
Wiener-Hopf type. A method for solving such a system in its 
general form is also unknown. However, in the range of mag- 
netic fields exceeding the doppleron threshold there is a 
small physical parameter. This is manifested mathematical- 
ly by the fact that all the branching points of the nonlocal 
conductivity and zeros of the dispersion equation are located 
in two widely separated regions. A method of separating the 
original system of equations into two much simpler systems 
for the long- and short-wavelength components of the field is 
developed for this situation in § 1. The long-wavelength corn- 
ponent is dealt with in $2 and the short-wavelength compo- 
nent-in $3. Next, the distribution of the field in a semi- 
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infinite metal is used in $4 to obtain approximate expressions 
for the field distribution plate and for its impedance. 

51. SEPARATION OF THE LONG- AND SHORT-WAVELENGTH 
COMPONENTS 

The distribution of an electric field 8 of frequency w in 
a semiinfinite metal (z > 0) under conditions of diffuse carrier 
reflection is described by the following system of equations: 

where aUB is the nonlocal conductivity tensor. 
In the presence of open orbits, and also in the case of an 

inclined magnetic field H the system (1) cannot be separated 
into two independent equations and cannot be solved by the 
standard Wiener-Hopf method. Nevertheless, in the range of 
magnetic fields above the doppleron threshold it is possible 
to solve the system (1). In this range the field in a metal has 
two very different components. A short-wavelength compo- 
nent is associated with the DSCR and it varies over distances 
of the order of the extremal displacement u of carriers in one 
cyclotron period. A long-wave-length or skin component 
varies over much greater distances. In this situation it is pos- 
sible to deduce much simpler systems of equations for the 
long- and short-wavelength components and these can then 
be solved. 

If we assume that the field 8(z)  is zero where z < 0, we 
can write down the system (1) in the Fourier representation 

[ qZ-i ts  ( q )  ] Z q = - 8 ' - i q 8 - F q ,  (2) 

where 

1 " m 

8 (t) = 2;; 5 i q e i q i d q ,  o ( 6 )  =.- n'ec I s  ( q )  eiqc dq, (3) 
-co 

2nH - m 
6 = wnleu2/.lrcH, f = 2rz/u and q = ku/2.lr are the dimen- 
sionless coordinate and wave vector; n, is the density of elec- 
trons with closed orbits; 8 and 8' are the values of the field 
and its derivative with respect to 6 on the surface Z = 0. 
Although for the sake of simplicity we have dropped from 
Eqs. (2) and (3) the tensor indices, we must remember that 
both and 3 are vectors, whereas a, s, and the expression 
enclosed in the brackets in Eq. (2) are tensors. By definition, 
the function 8, is regular in the lower half-plane and de- 
creases at high values of q in proportion to l/q, whereas the 
function 3, is regular in the upper half-plane. 

The conductivity component s, (q) associated with the 
DSCR changes significantly for values of q of the order of 
unity and it can be represented in the form 

The tensorsp and As have the following properties: their off- 
diagonal parts are antisymmetric and the diagonal parts are 
proportional to a unit tensor. The tensor As has branch 
points q=. + 1 corresponding to the collisionless cyclotron 
absorption threshold (DSCR) and in the limit 9-0 it ap- 
proaches zero proportionally to q4. It is natural to call the 
quantity 

S L ( Q ) = S ( Q ) - A S ( ~ )  

the long-wavelength conductivity. This quantity has branch 
points in the range Iq((1 (these points are associated with 
the collisionless absorption by carriers with open orbits) and 
it has no singularities in the range Iql 2 1. 

Using the tensors sL and a = 1 - i@, we can express 
the quantity in square brackets in Eq. (2) as a product: 

qZ-iEs(q)=DR(q)DL(9)r ( 5 )  
D R ( q )  =(q2-iEs) (qz - i t sL) - 'a ,  D L ( q )  =a-' (q2- i t s , ) .  ( 6 )  

The tensor D, has branch points associated with the DSCR 
and the tensor ID, I = 0 has a doppleron root, the value of 
which is of the order of unity. In the range of low values of q 
the tensor D, has no singularities and for q 4  it tends to a 
unit tensor. Therefore, this tensor is associated with the 
short-wavelength component of the field. The tensor DL has 
the same branch points as s, (q) and the equation IDL I = 0 
has roots corresponding to the skin component, which also 
lie in the range 1 q 1 < 1. If 1 q 1 2 1, the tensor DL has no singu- 
larities and it reduces to q2. This tensor is associated with the 
long-wavelength component. 

It follows from the properties of the tensors B and As 
that D, can be diagonalized approximately in the case of a 
~ii-cular polarization and conversion to this case involves the 
use of the matrix 

The diagonal tensor can be factorized, i.e., it can be repre- 
sented in the form of a product of two tensors, one of which is 
nonsingular in the upper half-plane (index 1) and the other in 
the lower half-plane (index 2). This is easily done if each of 
the tensor elements is represented as a product of a function 
which is regular and has no zeros in the upper half-plane and 
a function which is regular and has no zeros in the lower 
half-plane. We shall identify the tensors for circular polari- 
zations by a bar (Z = bab -') and then the tensor D, can be 
represented in the form 

Dn(q)  =b-'$~~$z-'b. (7) 

Bearing in mind that the tensor Z is diagonal, we can now 
determine the tensor &?, the squares of the elements of 
which are equal to the corresponding elements of Z. Obvi- 
ously, &? commutes with 4, and 4,. Therefore, Eq. (7) can be 
converted to the form D, (q) = aq,,q,, ', where 

- - q2-1=b-l ( l : l i~~) -~b .  

We shall now assume that we have been able to factorize 
the tensor DL : 

DL ( 4 )  = ( q 2 + q z )  7172-', (8) 

where 17 is an arbitrary constant. Then, Eq. (5) becomes 

q2-igs ( q )  = (qZ+qz)  a q l q z - l e i ~ z - i .  (9) 

We shall now use the above-mentioned properties ofD, and 
D, , because of which the tensors .r are converted into unit 
tensors in the range 191 2 1, whereas the same happens to the 
tensors q, in the range /ql< 1. It therefore follows that the 
tensors q, commute with the tensors r. This is an important 
property and it is a consequence of the large difference 
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between the wavelength of the two components; this proper- 
ty makes it possible to factorize the product DR DL and-in 
the final analysis-to solve the system of the Wiener-Hopf 
equations. In fact, if in Eq. (9) we transpose p ,  and p; ' with 
ri , we can represent Eq. (2) in the form 

(q - iq )  V ~ - ' T ~ - ' ~ , = -  (q+ iq )  - t ~ i - l ~ i - ' a - i  ( 8 ' + i q 8 + F q ) .  

(10) 
The left-hand side of Eq. (10) is regular in the lower half- 
plane, whereas the right-hand side is regular in the upper 
half-plane. Therefore, both of them are equal to a constant 
vector - iAaP'%', where 

- 
A= lim cpi-'(q) =b- i l lab 

9- - 
(in the limit q-CC, the tensor $, tends to a unit tensor). We 
then obtain 

and the expression for the field becomes 

where S is a small constant. 
We shall obtain a general expression for the impedance 

tensor of a semi-infinite metal. We shall write down the im- 
pedance Z in the form 

2 0 u  2s- 
c2 

2" ( O ) ,  ( 12) 

where the tensor T (c) is given by the relationship 

8(%) = T ( t ) 8 ' .  (13) 
In the calculation of Z we have to know the behavior of r, 
and 6, in the limit ~ - + c c .  Using the definition of Eq. (7), we 
can represent 6, in the form 

--m+i* A 

It follows from Eq. (14) that in the limit 9-03, we have 

where 

- m 

We shall later need also the quantity $,(o) = (G)-'. The 
tensor r, in the limit q - + ~  will be represented in the form 
analogous to Eq. (1 5): 

It follows from Eqs. (1 I ) ,  (15), and (17) that 

Z r = i  ( K + b - l R b ) z ,  (18) 

which is used to find the impedance. The first term on the 
right-hand side of Eq. (18) is due to the long-wavelength 
component, whereas the second term is due to the short- 
wavelength component. Therefore, in the case of diffuse re- 

flection of carriers these components make additive contri- 
butions to the reciprocal impedance tensor Z -', whereas in 
the specular reflection case they contribute to the impedance 
tensor Z. 

It should be pointed out that a relationship between Z??' 
and %' formally similar to Eq. (18) is given in Ref. 7. How- 
ever, in Ref. 7 instead of K we have T - '(O) for the specular 
reflection of carriers and instead of the second term we have 
its asymptotic expression for strong magnetic fields. The re- 
lationship given in Ref. 7 is identical with Eq. (18) only in 
strong fields ({( 1) and only if there are no open orbits and no 
magnetic Landau damping. 

Since all the singularities of DL lie in the range I q 1 ( 1, 
whereas the singularities of DR lie in the range Iql - 1, we 
can represent Eq. (1 1) as a sum of the term 

1 
E ( L ) = -  2ni dq eiqLr, ( q )  b-'q2 (0) b 8 ,  (19) 

-m- i6  

which is due to small values of q, and a term 

which describes the contribution when q R 1. 
It follows from Eq. (19) that the long-wavelength com- 

ponent and its derivative on the surface are 

~ = b - ' ( ~ y ) - ' b & ,  ~ ' = i ~ b - ' ( l y ) - ~ b 8 .  (21) 

Therefore, the tensor K occurs in the relationship between 
the long-wavelength component and its derivative on the 
surface: 

Er=iKE.  (22) 
It should be noted that the impedance in relatively weak 

fields, when the tensor a is far from unity, cannot be calcu- 
lated using Eqs. (19) or (20), because the terms proportional 
to K are omitted from Eq. (20). 

In the calculation of the long-wavelength component it 
is preferable to avoid diagonalization and subsequent factor- 
ization of the tensor DL by solving directly a system of equa- 
tions which is satisfied by the components of the tensor Eq.  
It follows from Eqs. (8), (19), (17), and (21) that this system is 

D , ( q )  E,=-Ef-iqE-F,,  (23) 

where the required function Eq is regular in the lower half- 
plane and Fq is regular in the upper half-plane. The system 
(23) differs fundamentally from the initial system (2) because 
DL (q) has no singularities associated with the DSCR. 

The situation in respect of the short-wavelength com- 
ponent is simpler because the tensor DR is diagonal. This 
means that even in the presence of open orbits the system of 
equations for the short-wavelength component can be sepa- 
rated into two independent equations for the components 
with the plus and minus polarizations, which can then be 
solved by the standard Wiener-Hopf method. 

52. LONG-WAVELENGTH COMPONENT 

In this and the next sections we shall consider the model 
of a compensated metal with open orbits proposed in Ref. 4. 
In this model the electron part of the Fermi surface is a cor- 
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rugated cylinder parallel to thep, axis, whereas the hole part 
consists of two flat cylinders parallel to thep, and p, axes; a 
magnetic field H and the normal to the metal surface are 
directed along thez axis. A part of the nonlocal conductivity 
corresponding to the corrugated cylinder has a square-root 
singularity associated with the DSCR. Singularities of two 
types are encountered in the conductivity of real metals: a 
square-root singularity when the DSCR is due to carriers 
with finite orbits and a singularity of the weak logarithmic 
type (xlnx) when the resonance is due to electrons at a limit- 
ing point. An analysis of the square-root singularity is of 
considerable interest because in this case the resonance is 
stronger and the associated impedance oscillations are ob- 
served in a wide range of magnetic fields. The part of the 
conductivity associated with open orbits (corresponding to 
the cylinder parallel to thep, axis) varies as l/lql right up to 
very small values of q, i.e., it behaves exactly as in the case of 
real metals. In this connection it must be stressed that the 
structure of a radiofreuency field in a metal is governed by 
singularities of its nonlocal conductivity and is not very sen- 
sitive to details of the Fermi surface shape. Therefore, the 
model in question exhibits the principal properties charac- 
teristic of the propagation of radiowaves in several metals. 

When the fraction of the open orbits is not too small, the 
long-wavelength component can be separated only in the 
case 

E=2 (H,/11) 3< 1, (24) 

i.e., this can be done in the range of fields H considerably 
higher than the doppleron threshold field H, . In this range 
we can ignore the value ofp, the value of a reduces to unity, 
and the elements of the tensors, become (see Ref. 4) 

where 

a is the fraction of holes with open orbits; mi, vi , and pi are 
the cyclotron mass, the maximum value of the z component 
of the velocity, and the frequency of collisions of carriers 
belonging to the ith group; the index 1 refers to electrons, 
whereas the index 2 refers to holes with open orbits, and the 
index 3 to holes with closed orbits. Consequently, the system 
(23) expressed in terms of Cartesian coordinates becomes 

where 

Eo=aE, qo= ( l + i )  (Eoy0/2)'". 
It is important to note that Eq. (26) contains only the 

local elements of the tensor s, which do not have branch 
points, so that they do not contain the function Fq, . There- 
fore, we can eliminate Eqx from Eqs. (26) and (27), and then 
Eqy is described by the equation 

where 

D ( 4 )  =q2-ito (yo+bo/(qZ+yz) 'h)  -Eo2/ (4'-PDZ). (29) 

Equation (28) can be solved by a combination of the 
methods that are used to deal with boundary-value problems 
invoIving functions of the complex variable. 

We shall represent the function (29) in the form 

D ( q ) = ( q 2 + q Z ) t l  (q ) l t z (q )r  (30) 

where 

and we shall write down Eq. (28) in the form 

The second term on the right-hand side of Eq. (32), which we 
shall denote by G, can be represented by the difference 
G (9)  = G,(q)  - G,(q), where 

Equation (32) can now be written in the form 

where the left-hand side is regular in the lower half-plane 
and the right-hand side in the upper half-plane. Consequent- 
ly, both are equal to the constant - iEy . Therefore, E,, is 
described by the expression 

In view of the analytic properties oft,, the integral (33) 
governing G, is easily calculated by deforming the contour 
to the upper half-plane, which gives 

Consequently, the expression for the components of the field 
Ey (c ) can be written in the form 

Next, substituting Eqy in Eq. (26), we find Eqx and the corre- 
sponding component of the field: 

Differentiating Eqs. (36) and (37) with respect to ( and 
then allowing to approach zero, we obtain two algebraic 
equations which enable us to determine the tensorK [see Eq. 
(2211: 

E,'=iQE,+C (E,'+iq,E,), 

E,'=CZE,'+iqo ( l + C 2 )  E,-2iqoCEy. (38) 
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The integral of the third term in Eq. (37) can be calculated if 
we first assume that f = 0 ,  then close the contour in the 
lower half-plane, and use the relationship t,( - go) = 1/ 
tl(qo). In the calculation of E ;  we must allow for the fact that 
in the limit q-t co , we have 

where 

If the fraction of the open orbits is not too small, the quantity 
Q corresponds to the anomalous effect and it is given by 

Q= (3-'/2+ i )  (boga) (40) 

If Eqs. (36) and (37) are used to calculate Ey and E x ,  the first 
of these equations changes to an identity and the second be- 
comes equivalent to the second expression in Eq. (38). 

Solving the system (37), we find that 
Kxx=yo ( l + C z )  / ( I - C z ) ,  K,,=-K,,=2yoC/ (1-CZ) , 
K,,=Q-2y,CZ/(1-C2). (41) 

If IC 1 < 1, the tensor K is practically diagonal. We then have 
K,, = qo and Kyy = Q, i.e., the normal skin effect appears 
for the x polarization and the anomalous effect for the y 
polarization. This is precisely the situation in the range of 
magnetic fields such that l o < b  yo (although in the vicinity 
of the doppleron threshold we have lo- 1 and yo< 1, and in 
sufficiently strong fields the value of lo becomes less than yo, 
since lo a H - 3  and yo a H -I).  In the range of fields where 

D o z y o < ~ o < l r  (42) 
the quantity C becomes close to unity and it can be written 
conveniently in the form 

The elementa of the tensor K are then 

K,,=K,,=-K xy =J-' 7 K u u .  =Q (44) 
In principle, the formulas (36) and (37) allow us to calculate 
the field distribution in a semi-infinite metal. Each of the 
components Ex ( f  ) and Ey ( f  ) represents a sum of two terms, 
one of which is proportional to E :  and the other to E ; :  

Ea ( f )  =-iPae(f)Ee'. (45) 
We shall use only the element Pxx ( f  ) which is the largest. 
Using Eqs. (29)-(32), (33)-(35), (37), and (43)-(44), we can 
transform the expression for this element in the range de- 
fined by Eq. (42) to 

P x x  ( f )  

where 

In Eq. (46) we must separate the exponential term associated 
with the pole at the point q = i(,/b0. The rest of the integral 
cannot be represented in an analytic form for an arbitrary 
value of f .  Calculating the function Pxx for values of f satis- 
fying the inequalities bog; ' (6  ( b  ; ' y ;  and bearing in 
mind that Pxx (0) = J and P iX (0) = i, we can write down the 
following expression: 

where 

B=-iA - y o + y 2  erp (2+C+in2'"rZi1'). 
yo+eyz 

Here, Cis the Euler constant. The formula (48) desribes ap- 
proximately the distribution of the long-wavelength compo- 
nent also for f - bo/ f , .  

The first term in Eq. (48) corresponds to the skin root of 
the dispersion equation q = ig,,/bo referring to the x compo- 
nent of the field, whereas the second is an analog of the non- 
exponential Reiter-Sondheimer component. It is remarkable 
that at distances z smaller than al, (where I, is the distance 
traveled by holes with open orbits), the second term exhibits 
a logarithmic coordinate dependence. Therefore, in the 
range of fields described by Eq. (42) the presence of open 
orbits alters significantly not only they but also the x long- 
wavelength component. The physical rason is as follows: 
holes with open orbits do not contribute to the Hall conduc- 
tivity, so that compensation of the local Hall conductivities 
is disturbed (s, # O ) .  Consequently, the "effective" conduc- 
tivity in thex direction depends on the nonlocal conductivity 

S~~ : 

s",=~,+s,,~/s,,-a (yo+ bo-' (qZ+y2)  "z). (49) 
In the range defined by Eq. (42) the second term in Eq. (49) 
exceeds the first and this alters the structure of the x compo- 
nent. Conversely, in the range of strong fields where 
l o ( b  ;yo, the second term is small, the open orbits cease to 
play a significant role, and the nonlocal effects disappear: 

P,=q0-' exp ( i q o t ) .  
Thelast comment in connection with Eq. (45) is this. We 

must remember that in the experiments we set %", which is 
related to E ' by 

E'=iKE=iK8=KT ( O ) 8 ' ;  (50) 

we have allowed here for the fact that, in the range of fields 
defined by Eq. (24), we have a = 1 and it follows from the 
first expression in Eq. (21) that E = 8. 

93. SHORT-WAVELENGTH COMPONENT AND THE TOTAL 
IMPEDANCE OF A SEMI-INFINITE METAL 

It follows from Eqs. (20) and (14) that the presence of 
open orbits gives rise to an additional collisional damping of 
dopplerons. In other respects the functional dependence of 
the short-wavelength component on the coordinate 6 re- 
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mains unchanged. The distribution of the short-wavelength 
component in the case of a square-root singularity of the 
nonlocal conductivity in the absence of open orbits is found 
in Ref. 8. In this case the distribution of the Cartesian com- 
ponents e(() can be written in the form 

e ( % )  = W ( S ) 8 .  (51) 

where 

Here, q, is the wave vector of a doppleron obtained allowing 
for the collisionless damping, the asterisk denotes complex 
conjugacy, and the Gantmakher-Kaner (GK) component at 
large distances from the surface (f) 1) is 

The tensor M defined by Eq. (16) is 
W=M=E/x.  

We can now use Eqs. (18), (41), and (55) to calculate the ten- 
sor T(0) which describes the impedance: 

It follows from Eq. (56) that the tensor T(0) is practically 
diagonal. The element Zyy is independent of the magnetic 
field and it corresponds to the anomalous skin effect due to 
carriers with open orbits. The element Z,, is mainly due to 
carriers with close orbits and its magnitude depends strongly 
on H. In strong fields such that co(b yo, the quantity Cis  
small, T,, (0) = q; ', and Z,, a H. In this range of fields the 
normal skin effect in a magnetic field is observed for the x 
polarization. In the range defined by Eq. (42) the behavior of 
Z,, is more complex. We now have 

T,(O) = (M+l /J ) - ' .  
The quantity M is the contribution of the GK component 
and 1/Jis the contribution of thex long-wavelength compo- 
nent. The term 1/J replaces the quantity q,, which corre- 
sponds to the case of the absence of open orbits [in the range 
defined by Eq. (42) the value of qo is small compared with 1/ 
J ] .  The relationship between Mand 1/J depends on the frac- 
tion a of the open orbits. If a is small, the open orbits have 
practically no influence on the surface resistance, but they 
increase the reactance. If a 2 1, the surface resistance de- 
creases. These characteristics of the behavior of the imped- 
ance of a semi-infinite metal should be detectable experimen- 
tally. 

The tensor T (f ) describing the complete distribution of 
the field in a semi-infinite metal and defined by Eq. (13) can 
be rewritten in the following form if we use Eqs. (45), (50), 
and (5 1): 

The presence of the factor T (0) in Eq. (57) is of fundamental 
importance. In spite of the fact that the different elements of 
the tensor Ware of the same order of magnitude [see Eq. 
(52)], the difference between T,, (0) and Tyy (0) alters the ratio 
of the amplitudes of the short-wavelength components in 
different parts of the field in a metal. For example, if a dop- 
pleron is excited by a field g:, it has a much larger ampli- 
tude than when it is excited by the field 29; (to avoid misun- 
derstanding, we recall that a doppleron traveling in a metal 
has a circular polarization). This applies also to the GK com- 
ponent. The effect is a consequence of the fact that in the case 
of diffuse reflection of carriers the amplitude of the short- 
wavelength component depends strongly on the depth of 
penetration of the long-wavelength component. In the pres- 
ence of open orbits this penetration depth is very much 
greater for the x polarization than for they polarization. 

Our treatment applies to the specific case of the square- 
root singularity of the resonance part of the conductivity. A 
similar procedure can be applied also to the weakly logarith- 
mic singularity, because in the range of strong fields defined 
by Eq. (24) the tensors M and W can be calculated quite 
easily. 

54. OSCILLATIONS OF THE IMPEDANCE OF A PLATE 

A method representing a generalization of Ref. 6 can be 
used to obtain a rigorous expression for the impedance ten- 
sor in the range of fields H where the depth of the skin layer is 
less than the plate thickness d ("thick plate"). The depth of 
the skin layer ub,/2?~<~ rises on increase in H and when it 
becomes generally invalid. In this range of fields the problem 
has a rigorous analytic solution only if the long-wavelength 
component is a natural mode of a metal (in the absence of the 
nonexponential term). This is not true in our case. Neverthe- 
less, as in the case of a natural mode, we shall approximate 
the distribution of the long-wavelength part of the field in a 
plate by an antisymmetric combination of the relevant com- 
ponents in a semi-infinite metal: 

E = ( % ) = [ P ( b ) - P ( L - % )  l K 8 ,  (58) 
where L = 2n-d /U (it should be noted that the vector $ is not 
a value of the electric field on the surface of the plate). For a 
thick plate the validity of Eq. (58) is self-evident. If the depth 
of penetration of the long-wavelength component is much 
greater than the plate thickness, the field E, (6) becomes a 
linear function which is odd relative to the point f = L /2, so 
that the explicit form of the distribution P (f ) becomes unim- 
portant. Therefore, the relationship (58) is rigorous also in 
this case. However, in the intermediate range of fields where 
bog; ' -L, Eq. (58) becomes of the interpolation type. It is 
clear that the error due to the use of Eq. (58) in this range 
does not exceed a value of the order of 10%. It should be 
stressed that only the expression for the x component of the 
distribution Ea (6) is obtained by interpolation. The depth of 
the anomalous skin layer for they component is independent 
of H and it is usually small compared with the thickness of 
the samples used in experiments. Therefore, Eq. (58) for they 
component is rigorous irrespective of the value of H. 

It follows from Eq. (5 1) that a given field on the surface 
generates a definite short-wavelength component. In the 
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range of strong fields 6<1 where the amplitude of the short- 
wavelength component is small, this remains true also of a 
plate: 

e,(%) =[ W ( U - W ( L - C )  (59) 

(this is to be expected, because the short-wavelength compo- 
nent is formed over distances of the order of the displace- 
ment u of the resonance carriers, which is much less than the 
depth of the skin layer or the plate thickness). Adding Eqs. 
(58) and (59), we obtain the total field 

~,(L)={~P(C)-P(L-~)I+[W(%)-W(L-L) I 
x [ P ( O )  -P (L ) l  ) K 8 .  

The impedance tensor 2'") of a metal plate is given by 

4i0uc-~&, (0 )  =Z'"'&,' ( 0 ) .  (60) 
Having calculated 8, (0) and 8; (0) and ignored the small 
terms W (0) and W (L ), we find that 

4iou  2'"' = - 
cZ 

{[ W' ( 0 )  + W' ( L )  I +  [P' ( 0 )  +P' ( L )  I 

x [ P ( O )  -P ( L )  ]-l)-I. (61) 

In the approximation which is linear in respect of a small 
oscillatory quantity W1(L ), we have 

Z'"'=Z,+AZ, (62) 

An allowance is made in Eq. (64) for the fact that P '(0) = i. 
The first term in Eq. (62) represents a smooth part of the 
impedance which for a thick plate is equal to the impedance 
of a semi-infinite metal [this is easily shown if we bear in 
mind that Wf(0) = iMand P -'(O) = K]. However, the sec- 
ond term describes oscillations of the impedance as a func- 
tion of the magnetic field and these oscillations are due to the 
penetration of the short-wavelength components. 

A direct calculation gives the following expression for 
the diagonal elements of the tensor 2,: 

Z0,,=4ozic-~[~/x+ (1-iP,,'(L) )/(P,(O) -P,(L) ) I - ' ,  (65) 

Z,,,=4o~c-~Q. (66) 
We have allowed here for the fact that in the case of a plate of 
reasonable thickness we have the inequality I Q (L, 1, i.e., the 
depth of the anomalous skin layer is small compared with d. 
Therefore, naturally Zoyy is independent of d. 

We shall now consider the behavior of the element 
Zoxx. The first term in the square brackets in Eq. (65) repre- 
sents the contribution of the GK component, whereas the 
second represents the contribution of the long-wavelength 
component when an allowance is made for its multiple re- 
flections from the plate surface. In the range of fields 
lO(b :yo, when in thex polarization we have the normal skin 
effect, this term is 

yo (l+eiqoL) (I-e'qaL) -'. (67) 

A change in the nature of the skin effect and the nonexpon- 
ential long-wavelength component appear in fields H-H,, 
corresponding to the condition go- b ;yo, i.e., 

where go, and yoL are the values of lo and yo at the dop- 
pleron threshold when H = HL (in the case of the square- 
root singularity of the resonance part of the conductivity we 
have lo, = 2a). When the fraction of the open orbits a is of 
the order of unity, the value of H, for real metals may be an 
order of magnitude (or more) greater than HL . When a is 
reduced, the value of H, approaches HL,  i.e., the region 
where the open orbits have an influence on the structure 
Ex (c ) becomes narrower. 

We shall also introduce a field H2 which corresponds to 
the condition bog; ' = L and is related to H, by 

H,/Hi= (b,y,L)'12= ( (nlmlvi+n,m,v,) dln,m,~~,)  '"- (dlal,) '", 

(69) 
where ni is the density of carriers belonging to the ith group. 

If d > al,, the field H2 is greater than H,, i.e., the depth 
of the skin layer becomes comparable with the plate thick- 
ness in the region of the normal skin effect. This means that 
the formulas for the field distribution in the plate and, conse- 
quently, for the impedance are rigorous and not interpolated 
throughout the range 6 4 .  

If d<a12, the element Zoxx in the vicinity of the field H2 
is described only approximately by Eqs. (65) and (48). When 
the fraction of the open orbits is a - 1, the surface resistance 
maximum (Fisher and Kao effectg) also appears in teh vicini- 
ty of H,. When the fraction of the open orbits is small, the 
maximum is located in higher fields, where the formula for 
the impedance again becomes rigorous. Moreover, in the lat- 
ter case the formula for the surface resistance becomes rigor- 
ous also for H-H,, because in this range of fields the first 
term in Eq. (65) is large compared with the second. 

It remains to consider the changes which the presence 
of the open orbits induces in the oscillatory part of the im- 
pedance AZ. The doppleron oscillation sin relatively weak 
fields are suppressed because of the collisionless damping. 
Moreover, the change in the amplitude of the doppleron os- 
cilaltions in the element 

icZ 
AZ,, = - Z0,2Waf ( L )  

4 0 u  

is due to the change in the factor IZoxx 12. The change in the 
amplitude of the GK oscillations of the surface resistance 
and reactance of the element AZ,, are governed by the 
changes in the factors 9: - Po and 9 , R 0 ,  respectively; 
here, 9, = ReZoxx and Z0 = - ImZoxx. Finally, the am- 
plitude of the oscillations of the nondiagonal elements AZ 
has now a small factor Zoyy /Z,,, and the element AZyy has a 
square of this factor. 

We shall conclude by comparing the above theory with 
the experimental results reported in Ref. 5. All the charac- 
teristic features of the impedance tensor elements-the be- 
havior of the smooth part 22, the smallness of the oscilla- 
tion amplitude of this element, the behavior of 9, (position 
and amplitude of the maximum) and X o ,  and doppleron and 
GK oscillations-are described correctly by our theory, i.e., 
the agreement between the theory and experiment is in fact 
semiquantitative. A quantitative comparison (particularly 
of the behavior o f P o )  would require detailed measurements 
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of the smooth and oscillatory parts of the elements of the 
impedance tensor and simultaneous measurements of the 
distances traveled by resonance and nonresonance carriers. 
Such measurements have not yet been carried out. 
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