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We investigate the influence of the anisotropy of scattering by thermal vibrations on the coeffi- 
cients of the kinetic equation which describes axial channeling in thick crystals. We show that this 
anisotropy is nonvanishing in calculation of the diffusion coefficients only in the case of axial 
channeling of negative particles, since in this case the distribution in transverse momenta which is 
statistically in equilibrium is not isotropic. Calculation of the resulting diffusion coefficients 
shows that taking into account the anisotropy leads to changes of these coefficients by up to 20%. 

1. INTRODUCTION contains a mixed second derivative in the diffusion f l o ~ ~ , ' ~  

The channeling of negative particles is the subject of 
considerable interest at the present time as the result of the 
phenomenon of radiation by channeled parti~lesl-~ and fun- 
damentally new possibilities of controlling beams.4 The 
study of channeling of negative particles in thick crystals is 
interesting also as the result of the very considerable differ- 
ence of the dynamics of these particles from those of positive 
particles. The kinetic equation which describes the dechan- 
neling of negative particles at high energies was obtained in 
Ref. 5. The quantum aspects of channeling of negative parti- 
cles in thick targets at lower energies have been considered 
by Ryabov6 with use of the density-matrix method devel- 
oped for positive ions.' Formulas for the lifetimes and 
widths of the quantum levels of the transverse motion were 
obtained recently in Ref. 8. 

In the present work we investigate the influence of the 
anisotropy of scattering by thermal vibrations, which was 
not considered in the last study,5 on the coefficients of the 
kinetic equation. Taking into account this anisotropy does 
not lead to any changes in the coefficients of the correspond- 
ing diffusion equation for positive particles after averaging 
over the distribution which is statistically in equilibrium, 

Here t is the depth of penetration into the crystal, which is 
small in comparison with the particle range. (This enabled us 
to neglect the change in the longitudinal component of the 
momentum.) We shall assume that the diffusion coefficients 
ApiApj /A t have a tensor nature, which will be made specific 
below. 

Going over in Eq. (1) to new variables-the transverse 
energy and the projection of the angular momentum in an 
axially symmetric field D(r) ,  

&I, =xp,- yp,, r= (x2+ y 2 )  I", 
cp=arctg ( y / x )  , 

we obtain 

a f  1 Mz a f  - -j - [ 2 m  (El-U ( r )  ) -51 "' + 
a t  m  

owing to the axial symmetry of this distribution with respect 1 a2f 1 a 
to the directions of the transverse m ~ m e n t u m . ~  (However, in =- B2o- a f  1 + - - B z 0 - + - B i i  a2 f  

dEL2 4 d E ,  d E ,  2  d E L a M ,  
thin crystals, where statistical equilibrium has not yet been 
established, the anisotropy of the scattering is s~bstantial. '~) 

1 d  d f  1 d2f  
+ - - B i l - + - B o 2 -  

2 a M ,  d E ,  2  d M , 2 '  (3) 
In the case of axial channeling of negative particles, the aver- 
aging over the direction of the transverse momentum cannot where 
be carried out since it involves the angular momentum rela- 1 

Bzo = - (pBpx+pvAp , )  ' ,  
tive to the atomic string, which is an approximate integral of m2At  
the motion. In other words, the distribution which is in sta- - - 
tistical equilibrium in this case is not isotropic in the direc- B i t = - - - +  YPx A P ~  XPX-YPV A P ~ A P V  + ~ P v  AP,' 
tions of the transverse momentum. Therefore in the case of m At m At m At  

(4) 

axial channeling of negative particles the scattering aniso- - - - 
tropy does not vanish also in the diffusion coefficients. ApXz A P ~ A P V  AP 

Bo2=y2-  - 2 x y  - + x2 2 
At At At 

2. DERIVATION OF THE KINETIC EQUATION WITH Obtaining from Eq. (2) the increments AE, and AM, 
INCLUSION OF THE ANISOTROPY and comparing their averages with Eq. (4), we see that 

We shall follow the method developed by Beloshitski'i - - 
and Kumakho~"*'~ and used by them in Ref. 5. An alterna- A ELz AM: AE,  AM, 

B z o = F ,  Boz=- , B i i =  
tive method has been developed in plasma theoryI3 (see the At At  (5) 

discussion in Ref. 12). However, in contrast to Ref. 5 we shall The averaging over q, is carried out as in Ref. 5. How- 
proceed from the Fokker-Planck kinetic equation, which ever, in Eq. (4) the angle q, enters explicitly. We shall take 
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into account the tensor nature of Ap, Ap, . Actually, on rota- 
tion by an angle p the momentum increments Ap, are linear- 
ly transformed as follows: 
ApXf=Ap,  cos cpSAp, sin cp, Ap,'=Ap, cos rp-Ap, sin rp. 

However, it is obvious from reasons of symmetry that the 
coefficients By in Eq. (3) should not depend on the rotation 
angle p. This is actually the case, as can easily be seen by 
transforming to cylindrical coordinates rand p and the cor- 
responding momentum projections p, , p, : 

Then 

Using Eqs. (5) and (7) or Eqs. (4) and (6), we obtain - - - 

- -  
Since App , Ap: , and Ap,Ap, , obviously do not depend 
on the rotation of the Cartesian coordinate system by the 
angle p and this angle does not appear explicitly in Eq. (8), 
the quantities Bv are actually invariant with respect to this 
rotation. 

Then, averaging Eq. (3) over p and using as in (5) the 
distribution in r, which is in statistical equilibrium, we ob- 
tain eventually 

where 

and the angle brackets denote averaging over r (T is the peri- 
od of the motion): 

Equation (9) has the same form as in Ref. 5, and the 
difference of the coefficients of Eqs. (10)-(12) is due to the 
anisotropy of the scattering. 

An equation similar to (9) was obtained from a quantum 
approach in Ref. 6, but the coefficients contain errors.'' In 
view of these inaccuracies the influence of the anisotropy in 
scattering by thermal vibrations was not brought out in Ref. 
6. It followed from that work, for example, that the coeffi- 
cient B, , is equal to zero, since as a result of the axial symme- 
try one has 

Ap,Ap,=O. 

The formulas (8) go over respectively into the following: 

Introducing the value of the asymmetry 

we find that 
- - 

1 Ap," 
(%>=(,,)+(i+). 

For the additional term in Eq. (15) a relation similar to 
that for the one-dimensional case1' is valid: 

When Eq. (17) is taken into account it is easy to show that in 
the general case the relations obtained in Ref. 5 are valid: 

1 d AM, AE, 
2 dEL 

where d M . / ~ t  = 0 because dp,/dt = 0. 
Using these relations, we obtain an equation in symmet- 
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ric form with a smaller number of coefficients5: 

which coincides with Eq. (8)  of Ref. 5 .  
Thus, inclusion of the anisotropy does not affect the 

form of the equation, but is felt only in the value of the diffu- 
sion coefficients. 

3. ANALYSIS OF THE DIFFUSION COEFFICIENTS 

In the Lindhard approximation for electronic scatter- 
ing and the approximation of Ohtsuki for scattering by ther- 
mal vibrations, which were used previously in Ref. 5, the 
asymmetry S is not present. 

At large impact distances the Ohtsuki approximation 
gives a result which is too low since it takes into account only 
close collisions. However, at these distances electronic scat- 
tering is dominant, as was shown in studies of the de-chan- 
neling of positive particles.14 

Distant collisions with nuclei, although they are strong- 
ly suppressed, can provide some contribution in the region of 
intermediate impact distances. The average increment of the 
transverse energy in these collisions was found by Lind- 
hard15 in the impulse approximation. Following this approx- 
imation, we shall discuss the asymmetry of scattering by 
thermal vibrations. The increment of the transverse momen- 
tum in one collision is given by the expression 

d  
AP = - V [ U ( r ' )  -0 ( r )  I ,  r'=r-p, 

U (20) 

where v is the velocity, p is the displacement of the atom as 
the result of thermal vibrations, and v ( r )  is the continuous 
potential of the atomic string U (r )  averaged over the thermal 
vibrations: 

a2 
dpU (r' ) e-ap2, a = -- 

n 2uX2 ' 

Here and below r  is measured in units of the screening con- 
stant a, and the transverse energy in units ofZe2/d, where Ze 
is the charge of the nucleus and d is the period of the atomic 
string; u, is the rms amplitude of the thermal vibrations. 
From this we obtain 
- - 
Apr2 d  - -- A p t  d  - -- -- (Urt2-Drr2)  , - A UqrZ.  
At uZ At vZP (22) 

Integration over the angle variables in (2 1) and (22) gives - 
2a d r r r 1 ~ r , ' 2 e - a ( ~ ' + ~ ' a )  + X = j 

r2 
lo ( 2 a r r 1 ) ,  (23) 

where I, and I, are modified Bessel functions. 
The functionsg, andg, diverge at the lower integration 

limit as a consequence of the impulse approximation. The 
logarithmic singularity which arises here is usually removed 
by bounding the region of integration over r' on the low end 
by some small value r,, . Separating from U'f,  in Eq. (23) 
the Coulomb term 4/f,  which is responsible for this diver- 
gence, we have 

The remaining terms in Eq. (23) now contain no singularities 
and can be obtained6 for the Lindhard potential in the limit 
aC2>1: 

The cutoff parameter r,, for nonrelativistic heavy par- 
ticles is equal to the distance of closest approach in Coulomb 
scattering,15 and for relativistic particles it is equal to the 
diffraction diameter of the nucleus16: 

where M is the mass of the target nucleus. 
In the region r  > u, the expressions (22) go over into the 

following: 
- - 
ApP2 1 -=- A p t  4 u ~ ' 2  --- 
At 2ad ) ,  At 2ad r2 ' (27) 

from which it is clearly evident that in this case the aym- 
metry is substantially different from zero: 

,a-2 - a. '7 
1 

r h  
FIG. 1.  Relative value of scattering asymmetry for the ( 1  1 1 )  axis of sili- 
con as a function of the distance to the atomic string. 
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of Mo = r0(0.5m U,,, ) ' I2 .  As can be seen from the figure, the 
variations in the diffusion coefficients are small. With accu- 

FIG. 2. Diffusion coefficients as a function of El for a given M, = 0.4M0: 
a) d E , / 2 A  t, b) AE, AM, /2At, c) ~ 7 / 2 A r .  The dashed line is a cal- 
culation with neglect of the anisotropy (it is assumed that 
- - 
Apj = Ap: = 1/2 dp:) and the solid line is a calculation with the an- 

isotropy taken into account. 

For the average increment of the transverse energy we 
obtain the Lindhard formula 

In Fig. 1 we have shown the relative value of the asym- 
metry for the (1 11) axis of silicon: 

as a function of the distance to the atomic string r, expressed 
in units of the channel radius ro = [n-Nd 1- ' I 2 ,  where Nis the 
density of atoms and d is the period of the given atomic string 
(r, = 1.16 A is the case considered). In the calculation we 
have included also the scattering by electrons as the result of 
close colli~ions.~ It is evident from the figure that the asym- 
metry is substantial in the region of intermediate impact pa- 
rameters r, as one should expect. 

Calculation of the diffusion coefficients (15) of the ki- 
netic equation (19) with averaging over a distribution in sta- 
tistical equilibrium in the transverse plane was carried out in 
accordance with Eqs. (22) and (24)-(26) with the addition of 
scattering by  electron^.^ The result is shown in Fig. 2 for 
some average angular momentum M, = 0.4M0 characteris- 
tic of rosette trajectories, which are the most stable, which 
are located in the region of intermediate impact parameters, 
and which determine the value of the de-channeling length. 
The transverse energy is given in units of the potential-well 
depth Urn = 73.7 eV, and the angular momentum is in units 

racy 10-20% - we can - restrict the discussion to the quantity 

dE, = (Apf + Api)/2m and not calculate separately a and a. However, for higher accuracy of the calcula- 
tions the anisotropy of the scattering by thermal vibrations 
must be taken into account. The diffusion coefficients deter- 
mine the dependence of the particle distribution in the varia- 
bles E, and M, which characterize the transverse motion on 
the depth of penetration into the crystal.5 
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