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Kinetic phenomena due to phonons and impuritons in He3-He4 solutions are considered. The 
sound-velocity renormalization and the sound damping are calculated, and the times that deter- 
mine the coefficients of viscosity and of thermal conductivity are found. These coefficients are 
found to have complicated dependences on density and on temperature. The results agree with the 
available experimental data. It is shown that the discrepancy between the earlier theory and 
experiment, which exceeds an order of magnitude for weakly concentrated solutions, is due to 
earlier failure to take three-particle phonon processes into account. 

Khalatnikov and Zharkovl have shown in 1957 that the 
kinetic properties of weak He3-He4 solutions are determined 
by interactions of quasiparticles-phonons, rotons, and im- 
puritons. Subsequent intensive experimental and theoretical 
investigations enabled Baym, Ebner, and SaamZ4 ten years 
later to generalize and extend the theory of Ref. 1 to tem- 
peratures below 0.6 K, where the roton contribution can be 
neglected. Since that time and to this day, to our knowledge, 
the starting point for all theoretical calculations and for the 
experimental data reductions are the results of Refs. 2-4. 

This theory has described quite well the experimental 
data in a number of cases. For weak solutions, however, 
when the phonon contribution is substantial, the theory dif- 
fered from the experiment by more than a factor of ten (see, 
e.g., Refs. 5-7). Another decade later, Baym and Pethicks 
analyzed anew the equations of Refs. 2-4. The results of Ref. 
8, however, did not differ in fact from the earlier ones, apart 
from some fine tuning of the parameters, which made the 
discrepancy between theory and experiment even greater. 
This disparity is particularly pronounced in recent precision 
measurements of the velocity of first sound in solutions con- 
taining 5 . 1.5 . lop3, and 5 . 10V3 He3.9 

Analyzing the resultant situation, we arrived at the con- 
clusion that this discrepancy, exceeding an order of magni- 
tude, is due mainly to the fact that no account was taken of 
three-particle phonon processes in Refs. 2-4 and 8. These 
will be shown to change substantially the entire kinetics of 
the solutions. One must not conclude, however, that the ear- 
lier whose premises are used also in the present 
paper, is incorrect. All that is needed is a refinement of the 
region of its validity. It follows from the results presented 
below that the theory of Refs. 2-4 holds either at high pres- 
sures, when three-particle processes are forbidden, or at 
such low temperatures and high concentrations that the 
phonon contribution is negligible compared with that of the 
impurities. It is this which explains the good agreement 
between the theory of Refs. 2-4 and experiment in the indi- 
cated regions. In the remaining cases the experimental data 
cannot be explained without allowance for three-particle 
phonon processes, which alter the characteristic relaxation 
times by more than an order, as is indeed observed in experi- 
ment. 

The purpose of the present paper is an analysis of the 

kinetic phenomena in He3-He4 solutions with account taken 
of three-particle phonon processes. The kinetic phenomena 
in solutions, just as in pure helium,lO~ll can be investigated 
by solving the problem of propagation and damping of sound 
of arbitrary frequency. The times that determine the viscos- 
ity and thermal conductivity coefficients are obtained in the 
hydrodynamic limit. The solution of our problem called for 
a calculation procedure different from those proposed ear- 
lier to solve analogous problems in pure h e l i ~ r n ' ~ . ~ ~  and in 
 solution^.^ The starting point in our scheme is introduction 
of projection operators that permit the use of a correct 7- 
approximation. 

DlPERSlON EQUATION. IMPURITON GAS 

According to Refs. 1-4, the kinetic properties of solu- 
tions of He3 in superfluid He4 can be investigated by starting 
from the kinetic equation for impuritons 

and the kinetic equation for the HeII-excitation gas 

HereJ; and& are the corresponding distribution functions 
and collision integrals, 

is the impuriton Hamiltonian, H4 = E, + p4 v, is the Ha- 
miltonian of the excitations, v, is the superfluid velocity, m 
is the impuriton effective mass, m3 the mass of the He3 atom, 
and Sm = m - m,. 

The set of Eqs. (1) and (2) should be suplemented by a 
continuity equation best written in terms of the variables 
p4 = m4n4 (the He4 density) and& : 

where 

is the momentum density andp, = m3n3 is the He3 density in 
the solution. 
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Equations (1)-(3) must be considered jointly with the 
equation for v, : 

av,iat=- vp,, (4) 

wherep, is the chemical potential of He4 in the solution. At 
low concentrations x = n3/n4 the variation of this potential 
can be written in the form 

c, is the speed of sound in pure He4 at T = 0, Pf is the pres- 
sure of the impurity gas, 

To obtain the dispersion equation that characterizes 
small oscillations in the solutions, the set (1)-(4) must be lin- 
earized. In the upshot we have for the Fourier components of 
the independent variablesp:, v, , Sf3, and Sf,, which describe 
the deviations from equilibrium, 

where vi = a ~ ~ / d p ,  is the quasiparticle velocity, 
E, =p:/2m, and the prime atJ1. denotes the derivative with 
respect to energy. 

It is convenient to introduce new variables: 

Using the conservation laws, we can rewrite Eqs. (6) and (7) 
in terms of the new variables: 

(12) 

Here Iik are the linearized collision integrals and depend on 
63.  

We seek the solutions of Eqs. (1 1) and (12) in the form 

6fi=- jiTgi. (13) 

We rewrite (1 1) and (12) in matrix form 

with the matrices 

o-kv3 0 
a-kv= 

1 3 s + I 3 4  I 0 w-kv, I ' I= I I., 

The formal solution of (14) can be expressed as 

g=Ro6U, (15) 

g =  I I ,  6.- 

with the operator matrix 

dE3 6 m  
- p4'+ - psv. 
dP4 m 

d E A  

- p4'+p4v. 

Using (lo), (13), and (15) we rewrite (8) and (9) in the form 

(k(VpIRI V,>-l)op4' 

df'r 

Here ( $ 1  and Ip) are bra and ket row and column vectors, 
for which the scalar product is defined as 

and the matrices as 

the unit vector n is directed along k. 
Equating the determinant of the set (17) and (18) to zero 

we get the following dispersion equation for the first sound 
(w z c k  ): 

where the matrices are 

In the derivation of (21) we used only the first terms of the 
expansions in the small parametersp,, /p4g 1 andp,, /p4g 1, 
where 

are the densities of the normal components. 
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The entire difficulty of the solution has been reduced in 
practice to calculation of the expression 

K = - ( V I V > t - ( V I R w l V ) ,  (24) 

that enters in (21) an defines the renormalization of the ve- 
locity and absorption coefficient of the sound: 

We define the vector Ix) by the relation 

Ix>=Ral V ) .  (27) 

Then 

K=-(V31V3>-(V41V4>+ ( V 3 1 ~ 3 ) + ( V 4 1 ~ 4 ) .  (28) 

In accordance with (27), the vectors Ix,) and Ix4) can be 
written in the form 

Ix3)= ( ~ - ~ v ~ - ~ I ~ ~ - ~ I ~ ~ + I ~ ~ R ~ I ~ ~ ) - ' ( o  1 V 3 ) +  i134R4a 1 V 1 ) ) ,  

(29) 
I X ~ ) = ( ~ - - ~ V , - ~ I , , - ~ I , , + I , , R ~ I ~ ~ ) - ~  (ol V4)+i143R3m ( V , ) )  , 

(30) 
where 
R3= ( m - k ~ ~ - i I ~ ~ - i I ~ ~ ) - ~ ,  R1= ( m - k ~ ~ - i I ~ ~ - i I ~ ~ ) - ~ .  (31) 

We confine ourselves to temperatures lower than 0.6 K, 
where the roton influence can be neglected. The operators 
I,, and I,, are known14 then to describe Rayleigh scatter- 
ing. In this case, the actions of the indicated linear operators 
on the ket vector are given by 

13'1 lp ( p i )  )= ' I  J ~ 3 4 f 4 ' 1  cp ( p i )  -q (pi)  I dr3' dr4 drh' ) 1 (32) 

Zis 19 (pi) )= 1 J ~ 3 . f . '  [ q  (pi') ( P , )  I dr3 drsl d r i l  )( (33) 

where w3,(p3p,lp3'p4') is the transition pobability density. 
Using (29)-(33), we rewrite (38), accurate to terms linear 

in the small parameter pn4 /pn3 < 1, in the form 

K = K s 3 + K k r f  Kb3+K34. (34) 

The impurity contribution is 
K33=-(V31 V3)+(V3IR3301 V3), 

the phonon contribution 

K,,=-(V41V,>+(V41R401V,>, 

and the phonon + impurity contribution 

K,,=( V41 R4iJh3R33a I V 3 ) ,  (37) 
K3&=(V3 1 R33iZ34RIa I V 4 ) + (  V 3  1R33 (i134-131R11,3) R 3 3 ~  I v3), 

(38) 
RS3= ( ~ - k v ~ - i I ~ ~ ) - l .  (39) 

We proceed now to calculate the impurity contribution. 
The eigenfunctions of the Hermitian operator I,, are known 
to form a complete orthonormal basis. The eigenfunctions 
with zero eigenvalues form the subspace Icv of the collision 
invariants: the number of particles, the energy, the momen- 
tum ( j  = 1, 2, 3, 4, 5): 

where = E, - ( E ~  I 1)/(1 I 1). The vectors Ic,,) and lq5)  
drop out of the calculations, since the z axis is chosen along 
k. 

We introduce the operators of projection on the sub- 
space of the collision invariants and the subspace orthogonal 
to it: 

Since I u,)  belongs to the subspace of the collision invariants, 
we can replace R,, in (35) by 9,, R3,9,,. Using the defini- 
tion (39) we have 

( a - k ~ ~ - i I ~ ~ )  Rz3=1. (42) 

We multiply (42) by 9,, from the left and from the right, 
and then from the left by 93n and from the right by 9,, . 
From the two equations obtained in this manner we get 

where 
Q=kv3+kv39 , ,  (o-P3,,kv3P3,-i93n13393n) -'p3,,kv3. (44) 

That term of (44) which contains the small parameter 

can be omitted. 
To calculate the second term of (35) we must find the 

matrix elements (C, 10 1 C,. ) and the determinant 
(w - 9,, R 9 , ,  ) of the operator. To calculate the matrix 
elements we use the r approximation, according to which 
9,, I,, 9 ,, can be replaced by - 9 ,, /T,,. We emphasize 
specially that the r approximation can be used only after 
separating the subspace of the collision invariants, since 
I,,(C,~ ) is equal to zero and not to - Ic,,. )/r3,. 

The zeros of the determinant (w - 9 , , D 9  ,, ) give the 
collective modes in the impuriton gas at mr3,(1 the zero 
determinant leads to the following dispersion law: 

(; 1 '' 
( (e3-w3)  us I ( E ~ - - W ~ )  us) . 

z o T , 3 ]  . 
( ~ s  1 6 3 )  

(46) 

where 

The result has a simple physical meaning: sound propagates 
in the impurity gas ("impurity second sound") with velocity 
u, equal to the speed of sound in an ideal gas of particles of 
mass m if the properties of the solution are determined only 
by the impuritons. The second and third terms in (46) de- 
scribe the damping of the impurity second sound due respec- 
tively to viscosity and heat conduction. The result (46) differs 
from that given in Ref. 2 in that it contains a third term equal 
to - (2/5)imr,, in the nondegenerate case. 

Knowing the matrix elements D and the determinant 
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(w - .9 ,, 0.9 ,, ) we can easily calculate (35). From the re- 
sult and from (5), (25), and (26) we find the impurity part of 
the velocity renormalization and the sound absorption coef- 
ficient: 

where 

The result (48) was first obtained in Ref. 12 by perturbation 
theory with allowance for thermal expansion, while (49) was 
obtained in Ref. 4 by the method of variational derivatives. 
In the present paper we determined (48) and (49) by a single 
procedure that permitted the problem to be solved also for a 
phonon + impurity system. 

PHONON GAS IN THE PRESENCE OF IMPURITIES 

We proceed to calculate the phonon impurity contribu- 
tion to the renormalization of the sound velocity and of the 
absorption. Starting from the definitions (22) and (39) and 
recongnizing that 13,1c3,) = 0, the ket vector in (37) can be 
rewritten as 

Substitution of the first term of (50) in (37) yields no contribu- 
tion, since I,,lconst) = 0. The second term of (50) can be 
written, accurate to terms linear in p, as 

The vectors in the last two terms of (5 1) are orthogonal to the 
subspace of the collision invariants, so that the T approxima- 
tion can be used. The parameter w, = (E, I&,)/(&, I 1) is de- 
termined from the orthogonality condition 
( ( ~ 3  - ~ 3 ) ( ~ 3  ' n)l(p, ' n)) = 0. 

It is necessary next, in accordance with (37), to apply the 
operator I,, to (5 1). We use here conservation laws according 
to which 

where IC,~) are vectors of the subspace of the phonon- 
phonon invariants (energy, phonon momentum). As a result 
we change over from impurity to phonon variables. Taking 
(52) into account, it is easy to verify that the contribution of 

the third and fourth terms of (51) to (37) is small compared 
with the contribution of the first in terms of the parameterp. 
The contribution of the second term, which is also propor- 
tional to 0 ,  turns out to be significant in the region wrphi 4 
p(rPhi is the characteristic time to establish equilibrium 
between the phonon and the impurity subsystems). The third 
and fourth terms contain in the indicated frequency region 
and additional small factor wr,,(l. Equation (37) takes as a 
result the form 

Kk3=-(  V41 R 4 i 1 4 3 1 h p 4 n - ( ~ - 2 / 3 A ) p ~ ) .  (53) 

Similar calculations yield 

Using the identity 

R,iI,,I c k j )  =- Ic4,)+R4 (a-kv4) I C ~ ~ ) ,  

we obtain the total phonon contribution kph = K,, 
+ K,, + K,,. Substitution of this contribution in (25) and 
(26) yields the phonon part of the renormalization of the 
sound velocity, and also the absorption coefficient: 

where 

F, b) are Legendre polynomials, y = (p, . n)/p,. 
To calculate the matrix element (57) we must write out 

explicitly the operators I,, and I,,, which act differently in 
the angle and energy subspaces. It is convenient to introduce 
in this connection vectors that are defined in the spaces of the 
angles la), and of the energies I b ), , and the corresponding 
scalar products 

We represent the operator I,,, in accordance with Refs. 
13-15, in the form 

I*'=z!l+zL, 

where Ill describes fast relaxation due to the three-particle 
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processes and having a characteristic time T , ~  in a given di- 
rection, while I, describes the slow establishment of com- 
plete equilibrium in the phonon gas, with a characteristic 
time 7,. It follows from the subsequent calculation that at 
the temperatures and concentrations considered by us estab- 
lishment of complete equilibrium in the phonon gas is gov- 
erned by the phonon-impurity collisions ( T ~ , ~  ( T ~  ), so that T, 

can be omitted. 
The operator I conserves energy in the specified direc- 

tion, i.e., 

Starting from the last condition, the correct T approximation 
can be written in the form 

where 

~ I I =  Ip4)~~(p4l~a(p4lp4)e 

is a projector on the subspace of the eigenvectors of the oper- 
ator Ill with zero eigenvalues. In accordance with the as- 
sumed definition of the scalar product (19), TI, should be 
regarded as independent of the momentum, since the follow- 
ing two conditions must be simultaneously satisfied: 

According to (57), we must find the matrix element of 
the operator 

By iteration we obtain 

~ I I R ~ ~ , I =  ( ~ - ~ I I R I I ~ I I ~ / T I )  - ' ~ I I R I I ~ I I ,  (63) 

where 

R,,= ( a - k v , + i / ~ ~ ~ - i Z ~ ~ ) - ' .  

Using the result of Ref. 3, we express the operatore I,,, accu- 
rate to terms linear in p, in the form 

where 

and the times t, are, according to Ref. 8, 

The second term in (65) describes slow processes, particular- 
ly establishment of energy equilibrium between the phonons 
and the impuritons of frequency defined by t ; ' =PI '. 

It is necessary next to susbtitute (63) in (57) and inte- 
grate with respect to the modulus of the phonon momentum. 
In the upshot we get for the sought matrix element 

where 

Using the identity 

we can rewrite (69) in the form 

(R4)=  (a-(kv,>,-i<Z4,>,)-',  (72) 

(A>R=(Rl ) - ' (RIIA> .  (73) 

To continue the calculations we must be more specific 
about the considered frequency range. Thus, in the hydrody- 
namic limit we get 

According to (65), the operator I,, is diagonal in a Legendre- 
polynomial basis, so that calculation of the matrix element 
(68) with (74) entails no difficulty. Substituting the obtained 
M in (55) and (56) we obtain the renormalization of the veloc- 
ity and the sound absorption in the hydrodynamic limit: 

where 

.rl=(t, ( t , f q )  - ' )I (  (tL+Tll) - I ) ,  

the times T,, T,,, and determine respectively the first and 
second viscosities and by the thermal conductivity. The time 
T,,, E T ~ , ~ ,  as follows from (67), is close to T, and T,. We note 
that Eqs. (75) and (76), just as the hydrodynamic result in 
Ref. 4, are valid at ~ ,~T~)C , /C , ,  where Ci is the heat ca- 
pacity of the quasiparticles. The ;times T, and T, are not 
subject to the indicated constraint. Thus, the first-viscosity 
and thermal conductivity coefficients are respectively 

All the phonon times were omitted in Refs. 2-4;  this 
corresponds to the limit Til -+w. In this case we have 

Tlm=(tL).  (79) 

This result must be modified, for when (67) is substituted in 
(79) the integrals diverge at the lower limit. The cause of this 
divergence is that the free-path time of the long-wave phon- 
ons increases rapidly with decreasing energy ( t ,  a EL ,) and 
their contribution to the kinetic coefficients becomes pre- 
dominant. The divegence is eliminated either by taking into 
account the fact that the system is finite, or by introducing 
some other mechanism that cuts off the free path of the long- 
wave phonon. The mechanism used in Refs. 2-4  was phonon 
absorption because of the viscosity of the impurity gas. It is 
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necessary then to replace t l1 in the corresponding equa- 
tions by t ' + t ; l, where t, is the characteristic time of the 
indicated process. The second and third terms in (76) coin- 
cide then with the result of Ref. 4. As for the first term, the 
time obtained in Ref. 4 was 7," = (t,), as against our 
((t, - ' + to-')-'). This difference is due only to omission in 
Ref. 4 of terms containing small 0 ,  yet (t  , I) -0 / T ~ , ~ .  It 
follows from the estimates, however, that t, is so long, that to 
and T; must be taken into account in a wide range of tem- 
peratures and concentrations. The second viscosity is thus 
determined by the slow establishment of energy equilibrium 
between the phonons and the impuritons. 

Let us consider now the opposite limiting case T~~ -0. 
Then, according to (77), the reciprocal times average out: 

In contrast to (79) the integrals converge and the times ob- 
tained are approximately shorter by one order, for according 
to (67) a substantial contribution to the integrals of (80) is 
made by phonons with E, z 2aT. The situation here is similar 
to that in a phonon-roton system, for which it was assumed 
in the expression for the distribution function in Ref. 11 that 
T~~ = 0. We emphasize, that this analogy was first noted al- 
ready in Ref. l. A detailed physical interpretation of this 
phenomenon in a phonon-roton system was given in Refs. 16 
and 17. As applied to a phonon-impurity system, the gist of 
the interpretation is the following. First, Rayleigh scattering 
(ti a EL 4, establishes an equilibrium between the energetic 
phonons and the impuritons. We have then T: > T,, in the 
entire considered region of temperatures and concentra- 
tions. Next, all the remaining phonons enter instantaneously 
(T~,  4) into equilibrium with the energetic ones. The time t, 
can be left out in this case, since it is long at all concentra- 
fions and temperatures. If, however, TI, + 00,  the establish- 
ment of equilibrium in the phonon system is determined by 
Rayleigh scattering and by long-wave-phonon absorption on 
account of the viscosity of the impurity gas. The estimates 
that follow indicate that the above limiting cases are applica- 
ble in a rather wide range of temperatures and concentra- 
tions. It is necessary then to start from the general relation 
(77). 

We shall assume for estimates that2s8,15 
zil=2,6. T-5 (81) 

(hereafter the temperature is in K and the times in sec), and 

t .=9,6~4~s-'T-'.  (82) 

Above the degeneracy temperature we have for the time 
73s=10-11X-1T-'/~. F3) 

Averaging in accordance with (80) yields for the characteris- 
tic relaxation time 

T ~ ~ ~ = ~ . ~ O - ~ ~ X - ~ T - ' .  (84) 

The time T;, cited in Refs. 2-4 is longer by more than an 
order of magnitude than the time T : ~ ~  and can be used if 
TI, > fa. As expected from (81)-(83), at saturated-vapor pres- 
sure this inequality is satisfied at very low temperatures and 
high concentrations, when the phonon contributions can in 
fact be neglected. This is the reason why an attempt to re- 

duce the experimental data on the phonon thermal conduc- 
tivity5 and on second-sound absorption6 by assuming times 
7,"hi resulted in a deviation from the theory by more than an 
order of magnitude. The times that follow from these experi- 
ments are of the order of 7;;. 

We note that according to (77) the dependence of the 
phonon-impurity time on the concentration and tempera- 
ture is quite complicated. Actually the relation 7; ' a x  is 
realized at rII 4 and is close to linear if +co. The coeffi- 
cients in the different limiting cases differ then by more than 
one order. 

The situation changes substantially if the spectrum no 
longer decays. Three-particle processes are then forbidden, 
the inequality t ,  (T~,  can be satisfied, so that the data of Ref. 
5 on phonon thermal conductivity at high pressures agrees 
well with the theory of Refs. 2-4. 

As - the procedure proposed here can solve the 
problem at all firphi. In this case, as noted above, it is neces- 
sary to make in (65) the substitution t ; '-t ; ' + t , ', let T~~ 

tend to infinity in (69), and obtain a relation such as (63) for 
R I I  . The result obtained in this case for the sound absorption 
coincides then with the result of Ref. 4. It is valid when the 
temperature are low enough and the concentrations high 
enough to be able to neglect the phonon contribution com- 
pared with that of the impurties. 

We consider now the kinetic regime. To simplify the 
procedure and the final results, we put t, = t, = tphi and 
confine ourselves to the case W T ~ ~ ~  )@. The last inequalility, 
which is valid in a wide range of frequencies and concentra- 
tions, allows us to discard in the calculations the terms that 
contain the small parameterp. The first assumption is in fact 
inessential, for according to (67) the times ti differ little. 

The results can be obtained interms of elementary func- 
tions at arbitrary w~~~~ if TI( (T*,; and (S ) f i ~ ( (  ) 1, where 
S = (v, - c)/c. In this case we have for (72) 

Starting from the definition (65) we obtain in the equal-time 
approximation 

By iteration we reduce (86) to the form 

where 

(87) must next be substituted in (68) and the result integrated 
over the angles. Substituting the calculated Min  (55) and (56) 
we obtain the velocity renormalization and the speed of 
sound: 
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Equations (88) and (89) become much simpler in the high- 
frequency limit wrPhi, 1, where 

The result (92) differs from the analogous result for pure 
He11 (Ref. 18) in that our procedure yields explicit expres- 
sions for the parameters rphi and (8 ). 

The problem is simply solved in quadratures at arbi- 
trary WT,, if orphi ) 1. In this region we can replace in (69) 
by - l/tphi. As a result we get for the matrix element (68) 

Substituting (92) in (55) and (56), we obtain the renormaliza- 
tion and the sound absorption coefficient at arbitary m r l l  if 
WTphi % 1. 

It follows from (88)-(92) that absorption and renormal- 
ization of the speed of sound at (S )wrPhi > 1 depends sub- 
stantially on (S ). In this respect it would be of interest to 
measure these quantities for solutions with different concen- 
trations. Such experiments would yield information on the 
dependence of (8 ) on x.19 

Figure 1 shows for T< 0.6 K the data of Ref. 9 and plots 
of the equations obtained above. The roton contribution 
must be taken into account at T >  0.6 K. The dispersion law 
was chosen in the form 

E L = C P L  ( l - ~ i p 4 ~ - ~ 2 ~ : )  

with parameters y ,  = - 1.3 sec2/g2 . cm2 and 
y2 = 9.77 . sec4/g4 cm4. We note that calculations 
with the times from Refs. 2-4 yield values close to those of 
pure He4 and lead to additivity of the phonon and impurity 
contributions, thus contradicting the results of Ref. 9. 

CONCLUSION 

Our calculations show that the kinetics of a phonon- 
+ impurity system are determined essentially by small-an- 

gle phonon-phonon scattering with a characteristic time rll . 
In the upshot the times T, (77) that determine the dissipative 
coefficients have complicated dependences on the concen- 
tration and on the temperature. In the limiting cases TI, +O 
and r l l + ~  the times T, differ by more than an order of 
magnitude, as was observed in experiment. 

The procedure employed in this paper yields the renor- 
malization and sound absorption in a wide range of frequen- 
cies, temperatures, and concentrations. The speed-renor- 

FIG. 1 Temperature dependence of the renormalization of the speed of 
sound at a frequency 9.93 . lo6 Hz. Dashed line-data of Ref. 9 for pure 
He 11, points-solution with x = 5 . lo4. Solid curve--calculation of the 
present paper. 

malization and the absorption of sound are determined by 
the impurities [Eqs. (48) and (39), by the phonons, and by the 
phonon-impurity interaction. The phonon-impurity part in 
(55) and (56) is combined with the phonon part. For low- 
concentration solutions, the contribution of the impurity 
part is small. The differences between the renormalization of 
the speed of sound and the absorption from their values in 
pure helium is therefore completely determined by the 
phonon-impurity part, as was observed in the experiments of 
Ref. 9. 

We consider it our pleasant duty to thank E. Ya. Ru- 
davskiiand V. K. Chagovets for reporting the results of their 
experiments prior to publication, thereby stimulating the 
present study. 
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