
Optical properties of homotropically oriented nematic-crystal elliptically deformed 
nematic crystal layer 

0. A. Kapustina, E. H. Kozhevnikov,') and G. N. Yakovenko 

Acoustics Institute, USSR Academy of Sciences 
(Submitted 26 December 1983; resubmitted 3 May 1984) 
Zh. Exp. Teor. Fiz. 87, 849-858 (September 1984) 

A new effect was observed, viz., stationary distortion of a homotropically oriented elliptically 
deformed crystal. This effect is produced when the layer is simultaneously acted upon by periodic 
shear and compression deformation at low sound frequencies, when the viscous wavelength ex- 
ceeds considerably the layer thickness. This effect is not connected with the action of previously 
known mechanisms (velocity gradients, electric or magnetic field) but is due to nonlinear interac- 
tion between the director oscillations and the velocity field. It is shown that the presence of even 
small ellipticity of plate motion (ratio of transverse and longitudinal amplitudesp = low3) leads 
to a significant stationary effect. An adequate description of the effect can be obtained only if 
account is taken of the nonlinear interactions of the director oscillations with the velocity field. In 
the limiting case = 0 the mode describes the polarizational modulation of light in shear defor- 
mation of a homotropically oriented nematic liquid crystal. 

INTRODUCTION 

We have investigated theoretically and experimentally 
the optical properties of a homotropically oriented layer of 
an elliptically deformed nematic liquid crystal (NLC). This 
layer deformation is produced by simultaneous action of pe- 
riodic compression and shear strains of equal frequency but 
shifted in phase. We considered a frequency band in which 
the viscous wavelength exceeded considerably the sample 
system. The optical properties of an NLC layer are deter- 
mined by the director motion, which is described in the case 
of elliptic deformation within the framework of NLC hydro- 
dynamics with inclusion of the quadratic terms in the equa- 
tions for the director and of the motion. We shall show that 
nonlinear effects lead to a time-averaged tilt of the director 
away from the normal, so that it oscillates about a new quasi- 
equilibrium position. The stationary effect is due mainly to 
the action of nonlinear moments and decreases somewhat by 
the liquid flow. This stationary tilt of the director at acoustic 
frequencies is of different nature than the effects observed at 
ultrasonic frequencies, when the molecule rotation is due to 
acoustic fluxes. We construct a theory of the optical proper- 
ties of an elliptically deformed NLC layer and compare the 
calculation results with the experimental data. 

The results reveal a new mechanism of stationary dis- 
tortion of the structure of an NLC layer, a mechanism con- 
nected with nonlinear interaction between the director vi- 
brations and the velocity field, and is important for a correct 
interpretation of the data previously for shear- 
deformed NLC in different laboratories at acoustic frequen- 
cies. The point is that the theoretical analysis of the optical 
behavior of the samples is usually carried out within the 
framework of linear hydrodynamics, which yields a director 
rotation angle q, =: (lo/d )sin wt and leads to a layer optical 
transparency that does not depend on the oscillation fre- 
q ~ e n c y ~ , ~  (here d is the layer thickness, go and w the oscilla- 
tion frequency and amplitude, and t the time). This conclu- 
sion contradicts the results of experiments in which the 
observed optical transparency exceeds the theoretical al- 

ready at several times ten hertz and depends on the oscilla- 
tion It follows from further analysis that the 
discrepancey can be explained by recognizing that in all the 
known experiments the layer was compressed by the "para- 
sitic" transverse component of the motion of the plates en- 
closing the layer, i.e., what actualy took place was the elliptic 
deformation not taken into account by the linear hydrody- 
namic theory. 

THEORY 

Consider two-dimensional deformation of a homotro- 
pically oriented NLC layer with free ends in a coordinate 
frame with the origin (x = 0, z = 0)  at the center of its lower 
boundary and with thez axis perpendicular to the layer. The 
motion of the liquid and the rotation of the molecules take 
place in the xz plane. The external action is specified by the 
motion of the upper boundary of the layer, in the form 

vzj r = d = ~ o  cos at, v ~ ~ ~ = ~ = P v ~  sin at, (1) 

where vo and fluo are the amplitudes of the longitudinal and 
transverse components of the boundary velocity. The lower 
boundary is immobile. We confine ourselves to frequencies 
at which the following inequalities hold: 

(the length of the viscous wave in the NLC is larger and-that 
of the orientational wave smaller than the NLC layer thick- 
ness); 

(the sound wavelength is larger and the viscous wavelength 
is smaller than the layer length L ). Herep is the density, 17 the 
viscosity, c the speed ofsound in the NLC layer, and K3 is the 
Frank elastic constant. The first of these conditions allows 
us to neglect the effect of the layer boundaries in the calcula- 
tion of the periodically varying molecule-rotation angle and 
to discard the elastic terms in the equation for the director. 
The second allows us to assume that the compressed NLC 
layer behaves as an incompressible liquid. We assume in ad- 
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dition that the NLC satisfies the natural condition L)d. The 
calculation will be carried out for small molecule rotation 
angles, to permit linearization, with respect to the angle, of 
the viscous stresses in the equation of motion of the liquid 
and the moments in the equation for the director. 

The layer compression by low-frequency vibrations of 
its upper boundaries in the direction normal to the layer 
causes the incompressible liquid to spead towards the open 
ends at a velocity having a profile 

u,=const.x (zZ-zd) sin at.  

By determining the velocity v, in terms of u, from the in- 
compressibility condition (div v = O), and the constant from 
the boundary conditions for v,, as well as taking into ac- 
count the velocity v, = v,(z/d )cos wt due to the displace- 
ment of the upper plate in its own plane, we obtain for the 
velocity distribution that satisfies condition (1) in a layer the 
following expressions: 

Z x (z2-zd) 
V,=UO - cos ot+6pvo 

d d3 sin ot, 

2z3-3zZd 
(2) 

u,=-pvo 
d3 

sin ot. 

The equation for the small molecule rotation angle, with 
allowance for the second-order terms, is 

dv, dv, dv, dv, 
=- az--a3-- 71(vv)cp-~zcp (---I 

az ax dz dz ' 
(3) 

where y, = a, - a,; y, = a, + a,; ai are the Leslie viscos- 
ity  coefficient^.^ In the calculations that follow the small 
viscosity coefficients a, and a, are set equal to zero, and 
y l =  - y 2 =  -a - 2 - Y. 

In first approximation, neglecting the influence of the 
layer boundaries and taking Eqs. (2) into account, we get 

The second approximation in (3) leads to an equation for the 
time-averaged molecule-rotation angle p,: 

where v,, is the velocity of the stationary flow in the layer. 
We obtain the equation for v,, by eliminating the pressure 
from the NLC equations of motion and discarding small 
quantities of order (d /dx/d/dz)' -d ' / L  '4 1 : 

where 77, = (a, + a5 - a2)/2 and the angle brackets ( . . . ) 
denote averaging over the period 27r/w. The first term in the 
right-hand side of the equation for p, describes the transport 
of the molecule rotation to the center of the layer from its 
edges, where the rotation angle due to the spreading of the 
liquid upon compression of the layer is a maximum. The 
second term describes the molecule rotation supplementing 
those due to "pure shear" upon compression or dilatation of 
the layer: molecule rotation due to shear increases somewhat 
in one direction when the liquid simultaneously contracts 

along thez axis and expands along x .  Conversely, rotation in 
the other direction decreases somewhat when the liquid ex- 
pands along z and contracts alongx. As a result a cumulative 
rotation of the molecules occurs after each period of elliptic 
deformation. These effects decrease somewhat the station- 
ary flows. 

We solve the equation for v,, under conditions when 
the NLC is anchored to the boundaries: 

u~21i=O=~x21r=d=0 
and the flow is closed: 

i V,Z dz=O. 

We determine the boundary conditions for p, with 
allowance for the finite bonds of the NLC molecules to the 
surfaces that confine the NLC. Assuming a surface orienting 
energy density in the form Fs = (1/2)wp2, we arrive at the 
boundary conditions: 

Solution of the stationary equation under the indicated 
boundary conditions leads to the following expression: 

( ~ z = ' / z f l ~ a ~ ~ ~ K ,  - id-4(-[2z4-3z3d+zd3-6zd3/ (1+25) 

where the dimensionless parameter S = K,/wd determines 
the degree of bonding of the molecules with the boundary; its 
limiting values 6% 1 and S( 1 correspond to weak and strong 
bonds. 

The model of the behavior of the director for elliptic 
deformation of an NLC layer is shown schematically in Fig. 
1. Each point of the moving plate describes an ellipse in the 
xz plane; 6, and Dlo are the amplitudes of the longitudinal 
and transverse vibrations of this plate. 

The optical transparency of the sample viewed through 
crossed polarizers, with allowance for the variation of the 
molecule orientations over the layer thickness, is given by6 

where I, and I are the intensities of the light passing through 
the first and second polarizers; A n  = nl, - n, ; rill and n, are 
the refractive indices along and perpendicular to the crystal 
optical axis, k, is the wave number of the light in the ordi- 
nary wave, and $ is the angle between the light polarization 
plane and the shear direction (the x axis). Substituting in (4) 
the total molecule rotation angle p = p, + p,, we get 

m=m(t) =sinZ[ (Po+ Pi  sin ot-P2 cos 2ot)/2]sinZ 29, ( 5 )  

FIG. 1 .  Model of behavior of directer n under elliptic deformation. 
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where 

We confine ourselves next to an analysis of the effect in 
the central part of the layer at low values ofp. Then, discard- 
ing the terms proportional t o p  'x2/d ' in the expressions for 
Po and P, and assuming that 12B 2 ~ 2 / d  '( 1 we get 

The transparency m(t ) has a periodic time dependence 
with period 2?r/w. To analyze the result, we represent m(t )s a 
Fourier expansion: 

m 

where m, and mk are the spectral amplitudes of the Fourier 
expansion and a, is the phase lag relative to the shear vibra- 
tions of the plate. 

It follows from (5) and (6) that in the general case the 
transparency is determined both by linear and nonlinear hy- 
drodynamic effects. At low d, w, and lo ,  which satisfy the 
inequality 

o, l ' !~o~0d/ l i '3<l ,  
the nonlinear effects are small and the equation for the trans- 
parency is 

m=sin2 ['12P2 (I-cos 2ot)  ] sin"$. (8) 

In this case the intensity of the light passing through the 
second polarizer has a dc component md, and an ac compo- 
nent m,, I, which is a sum of even harmonics, where 

mo='12 [ I - J o  ( P z )  cos P:] sin2 2$, 

mzn=-'12Jzn (P2)  c3s Pz sin2 2$, 

and Jo and J,, are Bessel functions of first order. 
The values of m, and m,, are determined only by the 

parameter P2 and do not depend on the frequency. The dc 
component of m, is proportional at P2( 1 to the ratio 6 :/d 2; 
with increasing P,, m, increases and reaches at P, = 1.97 to 
first maximum momax = 0.55; with further increase of P, the 
value of m, oscillates about m, = 0.5. The component m, 
reaches its first maximum m,,,, ~ 0 . 3  at P, = 1.2, and also 
oscillates with increasing P,. The first maxima of the func- 
tions J,, shift with increasing n towards larger values of the 
argument, so that the maximum values of the harmonics 
m,, (n>2) shift towards larger amplitudes with increasing 
number n. 

At high frequencies and amplitudes, when the inequa- 
lity O.lBwd{,/K,) 1 holds, the transparency is determined 
by the nonlinear effects and Eq. (5) takes the form 

m=sin2('lzPo+ '/,Pi sin ot)sin2 29, (10) 
where Po > PI. The spectrum of the optical slgnal is repre- 
sented in this case by both even and odd harmonics: 

m0='l2 [I-.To ( P I )  cos Po] sin2 2$, (1 la) 
m,=-'12J,(Pi) cos Po sinz 29, n=l, 2, 3 . . . . (1 lb) 

At Po)Pl the first maximum of the static component corre- 
sponds to the condition P,=?r; the position of the principal 
(1argest)maximum of the harmonics m, can be estimated 
from the condition that the function J, (PI) reach its first 
maximum. Consequently, in the nonlinear region the first 
maximum of the static component of the optical signal 
should be observed at shear amplitudes 6, smaller than the 
principal maxima m, of the harmonics. 

The results are valid at small molecule rotation angles 
p ( l  and if conditions (la) and (lb) are met by w. These an- 
gles are small in the linear region of the effect, at real dis- 
placement amplitudes 6, 5 lop4 cm and layer thicknesses 
d 2 10 pm. Estimating the maximum values of the angle p, 
in the nonlinear region, at S < 1 and 3/2y7;1,-' z 1, we arrive 
at the condition 0.7(P,,/Ankod )'I2 < 1. At the first maximum 
of the static component of the optical signal in the nonlinear 
region (6, = 6,,,,, P,zT) this condition takes at An -0.2 
andk,= 1.5. 105cm-1the formd>dmin~0 .5pm.As~o  
increases this condition is violated at amplitudes 
60 > Cornax (d /dmin 14- 

EXPERIMENT 

The experiments were performed with a setup similar to 
that described in Ref. 7. The samples were made of a mixture 
of MBBA and EBBA between plane-parallel glass plates. 
One plate was immobile and the other, connected to an elec- 
trodynamic vibrator, could vibrate in its own plane and in a 
direction perpendicular to it. The longitudinal and trans- 
verse components of these motions were recorded with con- 
tact accelerometers connected to vibrometers. The ratio of 
the vibration phases was monitored with a phase meter. The 
intensity of the light flux passing through the polari- 
zer + NLC layer + analyzer system wa recorded with a 
photomultiplier connected to a dc voltmeter and a spectrum 
analyzer. The light source was an He-Ne laser. The thick- 
ness of the NLC sample ranged in the experiments from 10 to 
100pm, the frequency range was 7-1500 Hz, and the ratiop 
of the amplitudes of the transverse and longitudinal compo- 
nents of the motion ranged from 0.001 to 0.9. Homotropic 
orientation of the NLC molecules in the layer was ensured 
by introduction of lecithin. 

EXPERIMENTAL RESULTS AND DISCUSSION 

It follows from the theory that the spectral composition 
of an optical signal depends on the quantity I = 0. ly&dl0/ 
K,: at 19 1 it contains only even harmonics, whereas at I > 1 it 
contains also odd ones. This confirms the oscillograms of the 
optical and acoustic signals shown in Fig. 2. The change of 
the spectrum (Figs. 2a,b) points to the appearance of a sta- 
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FIG. 2. Oscillogram of optical (upper traces) and acoustic (lower traces) of 
signals obtained at the following values: a) I = 0.14, d = 100 pm, f = 49 
Hz; b) I = 3, d = 100pm, f = 49 Hz; c) 1 = 9.6, f = 82 Hz,D = 25 . 
d = 50pm. 

the "quasi-equilibrium" position defined by the angle q, (see 
Fig. 1). With increasing I this angle increases and the 
numbers of the harmonic components present in the optical 
signal increase (Fig. 2c). 

In Figs. 3 and 4 are compared the theoretically obtained 
static component of the optical signal with the experimental 
data, for different d, P, and$ Figure 3 shows the experiental 
data and the theoretical curves for the static transparency 
component m, within the limits of the first maximum as 
functions of 6 :/d. Specifying the displacement in the form 
of the combination l ; /d  permits separation of the linear - -  - 

region of the effect, where the optical signal is determined by 
this quantity only. To compensate for the variation of the 
light-source intensity from experiment to experiment, m, is 
normalized to the maximum transparency m, ,,, . Curve 1 is 
a plot of Eq. (19a) corresponding to the valueP = 0 and de- 
scribing the static component of the optical transparency of 
the layer under shear deformation. Curves ,4, shifted 
towards lower amplitudes, were calculated for the corre- 
sponding values of the parameters by numerically averaging 
Eq. (5) over the vibration period 27r/w. The NLC parameters 
assumed in the calculations were those for MBBA, viz., 
K, = 7 .  lop7 dyn, y = 0.78 P, 7, = 1.14 P, and An = 0.2 
(Ref. 5). The wave number of the light was assumed to be 
k, = 1.5 10' cm-'. The value of w was chosen to obtain 
agreement between theory and experiment at small layer 
thicknesses, when the bond between the NLC molecules and 
the bounding surfaces cannot be regarded as strong. The 
chosen value w = low3 erg/cm agrees in order of magnitude 
with the experimental values of w for a surface treated with 
lecithin.' The parameter that determines the degree of non- 
linearity of the effect is chosen to be the value of I at the 
amplitude corresponding to the maximum transparency at 
given d andf, viz. I, = I (6, ,,, ). Curve 1 agrees well with the 
experimental data corresponding to small ellipticity, when 
1,<1. In the nonlinear region (I, > 1) the experimental data 
corresponding to I, = 0.8, 15, and 70 also correlate with the 
theoretical curves that describe the change of the sample 
transparency under elliptic deformation. The same regulari- 
ties appear also for the alternating component of the optical 
signal.9 

tionary distortion of the layer structure on going through the We proceed now to analyze the frequency dependence 
critical value I = 1, when the director now oscillates about of the effect under elliptic deformation. Figure 4 shows, as 

FIG. 3. Dependence of the static component of the optical 
signal on the ratio 6 ;/d. Linear region: experimental data - 

(d = 37.5pm, f = 40Hz),O(d = 25prn, f = 70Hz)and A 
(d = 25 pm, f = 40 Hz); theory--curve 1 .  Nonlinear region: 
experimental data-- (d = 15 pm, f = 32 Hz, b =  0.1), 
(d = 100 pm, f = 416 Hz, B = 0.04) and 0 (d = 50 pm, 
f = 1468 Hz, p =  0.9); theory-curves 2 4 .  1 - lo = 0; 
2 - lo=0 .8 ;  3 - l o =  15;4- lo=70.  
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FIG. 4. Frequency dependence of the static component of the optical 
signal. Linear region: experimental data-A(d = 37.5 pm), @ (d = 75 
pm, (d = 25 pm), + (d = 60 pm); theory4ashed line. Nonlinear re- 
gion: experimental data- @ (d = 15 pm, /3 = 0.02),0 (d = 50 pm, 
/3=0.01), H ( d =  15pm,,9=0.1), U(d=50pm,/3=0.08),  @ ( d = 5 0  
pm,/3 = 0.9); theory-urves 1-5 corresponding to the indicated values of 
d and/3. Data of Ref. 2 3  (d = 55pm) and of Ref. I-@, 0, respective- 
ly d = 66,105, and 155 pm. 

functions of frequency, the theoretical curves and the experi- 
mental data for the squared amplitude of the displacement 
corresponding to the first maximum of the function mo(l0), 
divided by the layer thickness: U = 6 ,,,/d. Here, too, the 
theory correlates well with the experimental data. At low 
frequencies, when l0(1, the experimental values of U are 
independent of f and are close to the theoretical 
U = 1.31 - 10W4 cm. Raising the vibration frequency and 
shifting to the region lo > 1 decreases U more the larger P, d, 
and$ At lo > 1 the frequency dependence of 6, ,,, takes the 
form gOmax - f - 'I2. 

These regularities are illustrated by the experimental 
results in the frequency range 7-1500 Hz. To establish a 
correlation between theory and experiment in a wider range 
of frequencies, we analyzed the data of Ref. 2 on the vari- 
ation of the transparency of MBBA samples of thickness 55 
pm under shear deformation at frequencies 0.1 Hz-2 1 kHz, 
as well as the data of Ref. 1 for layer thicknesses 66, 105, and 
153pm at the frequencies 23.3 and 45.2 kHz. These data are 
also marked in Fig. 5. Their analysis shows that the data of 
Ref. 2 correspond to "pure shear" only at frequencies f < 10 
Hz; on the other hand, the decrease of U with further in- 
crease of frequency is in full agreement with the changes that 

follow from the proposed model of elliptic deformation with 
low ellipticity. This allows us to conclude that "parasitic" 
movable-plate vibrations that compressed the NLC layer 
took place in Ref. 2 and but were not taken into account by 
its author. 

At several tens of kilohertz, when the length of the vis- 
cous wave is shorter than d, the shear is no longer uniform 
over the layer thickness. In this case the entire effect evolves 
within a layer whose thickness is of the order of the length of 
the viscous wave. The experimental values ofgo ,,, are then 
lower than predicted by the theory and do not agree qualita- 
tively with its premises. Thus, in Ref. 1 the values of lo  ,,, at 
23.3 kHz and for samples 66, 105, and 153 p m  thick are 
respectively 0.13, 0.18, and 0.15 pm, i.e., practically inde- 
pendent of the layer thickness. This behavior takes place at 
45.2 kHz. The same remark applies also to the data of Ref. 2 
at 21 kHz. This discrepancy between theory and experiment 
can be explained by assuming that in these experiments the 
sample was also compressed, and the observations were 
made not at the center of the layer. A major role in the effect 
should be played in this case by the speading of the liquid in 
the layer located next to the vibrating plate and having a 
thickness of the order of the length of the viscous wave; the 
parameter P, in the linear region can be estimated at 

P z - ' i 2 A n k o q 3 x Z ~ 0 2 ~ ~ ,  (12) 

where q = @~/217) ' /~ is the wave number of the viscous 
wave and 17 is the shear viscosity. 

It follows from a comparison of (6) and (12) that at high 
frequencies, at 0- 1 and x - 1 cm, the linear effect is stronger 
than the quadratic one considered above; in this case f o  ,,, 
does not depend on the layer thickness. However, the lack of 
detailed data on the experiments described in Refs. 1 and 2 
prevents a more complete comparison of the theory with 
results at these frequencies. 
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