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Beam transport in a rarefied gas is investigated in the one-dimensional two-fluid gasdynamic 
approximation with account taken of the self-consistent electric field. The conditions are ana- 
lyzed for the development of beam-plasma oscillations and instabilities that cause total stopping 
of the beam. A quasi-one-dimensional self-consistent gasdynamic model is proposed with which 
to take approximate account of the transverse confinement of a real system. The results of the 
simulation are discussed. 

INTRODUCTION off the beam current. We propose in this paper a two-fluid 

When an electron bean propagating in a rarefied gas gasdynamic model a bounded beam-plasma system and re- 

interacts with the plasma produced by collisional ionization Port the with this model- 

of the gas by the beam, intknse beam-plasma oscillations can 
1. ONE-DIMENSIONAL GASDYNAMIC DESCRIPTION OF 

set in. As three oscillations build up, the electrons can also BEAM-PLASMA 
acquire an energy sufficient to ionize by collision of the neu- 
tral gas, and the ionization becomes avalanche-like, i.e., its We represent the mathematical model of the investigat- 

rate can increase rapidly and the beam can be stopped at the ed beam-plasma instability in the form of one-dimensional 

distances much shorter than the electron mean free path. quasilinear gasdynamic expressions for the basic physical 
This process was named beam-plasma discharge (BPD). ' 

Transport of an electron beam in a gas is simultaneously 
accompanied by many interrelated processes, viz., ioniza- 
tion and excitation of neutral molecules, elastic scattering, 
recombination, diffusion, motion in a self-consistent electro- 
magnetic field, as well as plasma oscillations and others. In- 
vestigation of the BPD is made complicated by the large 
number of these interrelated processes, by the differences in 
their scales, and by their essential nonlinearity as manifest in 
the nonlinearity of the equations that describe the system 
evolution. One of most important causes of the nonlinearity 
of the processes is the self-consistent electromagnetic field. 

In theoretical investigations of beam-plasma instabili- 
ties by analytic or numerical methods, use is made of gasdyn- 
amic equations,2v3 Monte Carlo m e t h ~ d , ~  "large-particle" 
 method^,^,^ and simplified phenomenological  model^.^-^ 
Substantial simplifications are usually introduced to facili- 
tate the analysis. For examples, the system is assumed to be 
~tationary,~ spatially homogeneou~.~ or ~ol l is ionless~~~;  the 
self-field of the beam and plasma is disregarded4 or approxi- 
mated, 237-9 no account is taken of elastic  collision^,^ of the 
beam de~eleration,~ etc. 

In view of these difficulties, the only theory developed 
to some degree of completeness for the BPD is a linear one 
that permits an estimate of the threshold of this process. 
Practical applications, however, of electron-beam technical 
apparatus intended for melting, cutting, and drilling metals 
with an electron beam, as well as the problem of energy 
transfer by an electron beam, i.e., situations in which elec- 
tron-beam transport is vital, call for an investigation of the 
nonlinear spatial and temporal dynamics of the interaction 
of a beam with a gas, and for determination of the regimes in 
which the onset of beam-plasma instabilities does not shut 

conservation laws: 

an, a - + -(n,v) 
at dz 

and the equation for the self-consistent electric field 
e 

div E = -(ni+nio-nb-n,) , 
E 0 

which in the one-dimensional case can also be written in the 
form 

E (2, t )  
I 

e 
= -l [ni (zr, t )  +nio-n, (zf, t )  -n. ( z r ,  t )  ] s i g n  (z-z') dz', 

2eo " 

s ign  (x) =-I at x<O, 

s ign  (x) =O at x=0, 

s ign  (x) =1 at x>0. 

In (1)-(7) z is the longitudinal coordinate axis along 
which the electronbeam propagates; O<z<l is the considered 
region of length I ,  t the time, e and m, the absolute value of 
the charge and the electron rest mass, E, the dielectric con- 
stant of vacuum, u and n, the velocity and density of the 
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electron beam; u, u,, n, , E, E,, and Te respectively the longi- 
tudinal velocity, the total mean squared velocity, the den- 
sity, the longitudinal kinetic energy, the total kinetic energy, 
and the temperature of the plasma electrons, all connected 
by the equations 

no and ni are the densities of the neutral-gas molecules and of 
the produced positive ions, n, the density of the neutralizing 
ion background, E~ the energy lost by an electron to ioniza- 
tion of a neutral-gas molecule, ai (u) the ionization cross sec- 
tion 4s specified by the experimental curve, and v the elastic 
collision frequency defined as 

v=m/ ( 2 ~ t )  = lAe/e 1/(2At), 

where 482 and IAE/EI are the mean squared scattering an- 
gle and the relative energy loss of longitudinal energy of the 
electrons during the time At, Pr the recombination coeffi- 
cient, E the longitudinal electric field intensity, and 

y e  (1-u2/c2) -'" 

the Lorentz factor (c is the speed of light). The first term in 
the right-hand side of (5) describes the plasma thermal-ener- 
gy loss to gas ionization, and the second the conversion of the 
longitudinal energy into thermal via eleastic collisions. The 
solution (7) of Eq. (6) was written for unbounded space under 
the assumption that the electron beam is injected at z = 0, 
and the charges that leave the region O(z< 1 considered are 
completely absorbed. 

It can be seen from (1)-(7) that models can be used for 
the motion and the ionization losses of the beam electrons in 
a self-consistent field. Moreover, one can model for plasma 
electrons the collisions, ionization by the beam, ionization 
by the plasma electrons, recombination, and thermalization, 
i.e., the conversion of part of the translational energy into 
thermal. We note that the ratios v/v, in (3) and 1.5T,/~, in 
(5) take into account the fact that the plasma-electron ioniza- 
tion loss consists of the translational energy loss and the 
thermal-energy loss in accordance with Eq. (8). The excita- 
tion (inelastic collisions) and dissociation of the molecules, 
sticking (formation of negative ions), multiple ionization, 
and diffusion are not taken into account since these pro- 
cesses are not decisive for the investigated beam-plasma in- 
teractions. For simplicity, v and Pr are assumed constant. 

It is assumed that at the entrance into the system (z = 0) 
thebeam velocity is u(0,t )u, = ( 2 1 / ~ ~ , ) " ~ ,  where&,, (in eV is 
the initial energy of the beam electrons, the density is 
n, (0,t ) = nbo , and the values of v(0,t ) and ne (0,t ) are deter- 
mined from the condition that the solution be smooth in 
second order. We assume that at the initial instant t = 0. 

ng (z, 0) =nbo=n,o=const, u (z, 0) =uo=const, 

ni(z, O)=n,(z, O)=T,(z, 0)-v(z, O)=O, 
(9) 

i.e., the system is quasineutral, with the homogeneous beam 
filling the entire system volume and there are no plasma elec- 
trons. Thus, we disregard the front of the beam injection into 
the plasma and the associated processes, particularly the re- 

verse current. (The reverse current flowing in the plasma 
upon injection of a relativistic electron beam is approximate- 
ly estimated, e.g., in Ref. 2). This neglect is justified, since the 
characteristic ionization time riO = [ai (uO)uOnO]- ' in the out 
system is substantially longer than the passage time of the 
front, which is of the order of T, = 1 /uo, where T, is the time 
offlight of an electron of velocity uo through the system. The 
beam is initially injected into the neutral gas and positive 
ions are gradualy accumulated and cancel the beam space 
charge, and the produced plasma electrons are crowded out 
of the system. Plasma electrons begin to accumulate only 
after the beam-electron space charge is completely cancelled 
by the positive-ion charge, i.e., when nbo = n,. 

During the start of the process, the first term of Eq. (4) 
for the plasma-electron beam density predominates. It de- 
scribes the growth of the plasma density as a result of ioniza- 
tion of the neutral atoms by the plasma electrons. Next, as 
the total kinetic energy of the plasma electrons increases, 
ionization by plasma electrons, described by the second term 
in the right-hand side of this equation, begins to predomi- 
nate. 

The positive ions are assumed immobile during the 
times considered, i.e., it is assumed that mogM, where M is 
the positive-ion mass. Thus, the density distribution of the 
produced positive ions during an instant of time t is defined 
by the integral 

which makes Eqs. (1)-(5) and (7) a closed system. 
This gasdynamic model enables us to investigate essen- 

tially nonlinear regimes of beam-plasma interaction and per- 
form computer experiments much more rapidly than on the 
basis of kinetic models such as the large-particle model. The 
use of the two-fluid gasdynamic description precludes the 
possibility of reproducing multistream phenomena, includ- 
ing multistream instabilities and capture of the electron 
beam. For the same reason, the reverse motion of the elec- 
tron beam is excluded and the simulation duration is limited 
in practice by the instant when the beam is completely 
stopped somewhere inside the system. 

2. RESULTS 

The quasilinear system (1)-(5), (7), and (lo) with initial 
conditions (9) is solved by finite-difference methods. Figures 
1 and 2 show some results of the mathematical simulation of 
typical regimes with parameters no= 1.7.10'~ mP3, 
E,, = 10 keV, nbo = 0.8.1014 m-3 (Fig. 1) andn, = I.2.lOl9 
m-3, E,, = 7 keV, nbo = 0.95-1014 m-3 (Fig. 2); the system 
length is 1 = 1 m. It can be seen from the figures that devel- 
opment of beam-plasma instability in the model under the 
influence of random fluctuation decrease the beam velocity 
u to zero within (4-5) T, (curve 3 of Fig. 1 and curve 1 of Fig. 
2). These results differ from the experimental ones," accord- 
ing to which the development of intense beam-plasma oscil- 
lations begins only after the plasma-electron density n, 
reaches a certain threshold value. 
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FIG. 1. Evolution of oscillations in a beam-plasma system: 1 - t /r0 = 3; 
2 - t /rO = 3.5; 3 - t /T,, = 4; 4 - t /rO = 5.38 (the ordinate axis is on the 
left for curves 1-3 and on the right for curve 4). 

The discrepancy between the results can be understood 
by analyzing the dispersion relation. 

abZ + me2 - 
=1 ( i = Y - I ) ,  

( a - k ~ ~ ) ~  a (a-iv) 

which can be easily obtained by linearizing the system (1)-(6) 
relative to a small harmonic perturbation with frequency w 
and wave number k. In Eq. ( l l ) ,  wb2 = r]enb0/&, and 
we = Ten, /E,, where n, is the dc component of the plas- 
ma-electron density. It can be shown that if elastic collisions 
are disregarded, i.e., at v = 0, Eq. (1 1) has two complex-con- 
jugates and two real solutions if one of the plasma frequen- 
cies, w, or we exceeds k,, , i.e., wb > ku, or we > ku,. These 
are therefore the conditions for the onset of hydrodynamic 
two-stream instability. 

The wave number k is determined by the geometry of 
the physical system. The minimum value of the wave num- 
ber k, which is obtained according to experiment in a planar 
one-dimensional bounded system, is kmin, , = T/I (Ref. 11). 
It is also easy to show that in the case of a cylindrical beam of 

FIG. 2. Instability in a beam-plasma system, t = 4.4 7,: 1 - d u o ;  2 - nb/ 
nbo; 3 - n,/nbo; 4 - ni/nbo. 

radius R the minimum wave number in a conducting tube is 
kmin ,R = 2.4/R. 

A value of kmin limited by the transverse dimension of 
the beam is realized in experiment,'' whereas in the one- 
dimensional model there is only one characteristic dimen- 
sion, IsR,  to which kmin ,, (k,, , corresponds. There in the 
investigated model w ,  > kmin, , u, for the same parameters 
(cited above) as in the experiment, and instability sets in at 
any plasma density, whereas in experiment we must increase 
enough to meet the inequality we > kmi, u,. 

In addition, as shown by Pierce,12 a quasineutral beam 
can become unstable to small fluctuations of its density. The 
condition for the onset of this instability in the one-dimen- 
sional case is wb > ~ u , / l  which coincides with the condition 
w, > kminuo for a one-dimensional system when kmin = k- 
min ,I = %-/I. 

The buildup of beam-plasma oscillations slows down 
with increasing elastic-collision frequency v, i.e., with in- 
crease of the electron deceleration force due to these colli- 
sions. In the computer experiment, inceasing the frequency v 
by the three orders increased the time to stop the beam fully 
by approximately three times. In this simulation an active 
part was played in the ionization of neutral atoms not only 
by the beam electrons but also by the plasma electrons whose 
energy increased in the beam-plasma oscillations. As a re- 
sult, the growth rate of the plasma density at a certain instant 
of time (marked by the cross in Fig. 3) increased jumpwise by 
approximately 2.3 times at a plasma density comparable 
with the beam density. 

The rapidly growing oscillations revealed by the math- 
ematical simulation are thus the consequence of superposi- 
tion of hydrodynamic and Pierce instabilities, the latter be- 
ing decisive. In the strong fields resulting from the instability 
development, the plasma electrons, are accelerated to ener- 
gies sufficient to ionize the neutral molecules (see the ni (z) 
distribution in Fig. 2. In addition, the beam electrons decel- 
erated in these fields and bunched into clusters also increase 
the ionization of the neutral gas (corresponding to the peak 
of ni (2) near z = I ). 

The one-dimensional model parameters can, of course 
be chosen such that the instability develops only after the 
plasma electron density reaches a certain critical value, simi- 
lar to the development of the process in the experiment. This 
can be achieved, e.g., by decreasing the beam-electron den- 
sity. Indeed, the mathematical simulation showed that in 
this case the oscillations begin to grow only after the plasma 
electrons exceed a certain value. 

FIG. 3. Growth of density of a strongly collision-dominated plasma. 
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One other approach, which meets the experimental 
conditions, to the calculation of the critical regime of insta- 
bility development would be to decrease the length of the 
investigated one-dimensional system. If the length of the 
model system is assumed approximately equal to the beam 
radius, i.e., I z R ,  then k,,,,, ~ k , , , ~ .  In this case, at the 
same beam parameters as in the experiment, instability will 
develop only after the plasma density reaches a certain criti- 
cal value. 

Indeed, in the numerical experiment, the instability 
vanished at low plasma densities. Growth of plasma-beam 
oscillations became observable in the system only after the 
plasma density exceeded the beam density by approximately 
one order of magnitude. To accelerate the simulation, the 
beam was introduced into an already prepared plasma with 
uniform initial density n, (z,O) = n, = const > 0. An in- 
crease of the oscillation growth rate, i.e., of the instability 
growth rate, was observed in the course of the simulation as 
the plasma electron density increased. The wave numbers of 
the oscillations were k = rr/l, i.e., the system length I was 
spanned by half the oscillation wavelength. The instability 
vanished when the neutral-gas pressure was increased onto 
lo-' - lo-' Torr (depending on the plasma-electron den- 
sity). 

3. APPROXIMATE ALLOWANCE FOR THE SYSTEM FINITE 
TRANSVERSE SIZE 

It can be seen from the above analytic and numerical 
results that, at equal parameters, the evolutions of the pro- 
cesses in the one-dimensional model and in experiment differ 
substantially. The reason is that the system is bounded in the 
transverse direction, i.e., one more characteristic dimension 
is present, the beam radius R (I. Usually, particularly in the 
investigated system, a real beam propagates inside a metal 
tube. The interaction of the free electrons with those of the 
bounding conductor screens the space-charge field. 

The reason for this is that although in real systems the 
transverse particle motion is usually restricted by strong uni- 
form magnetic fields, an electric-field gradient is present. 
Seeking a solution of the equation for the potential 

FIG. 4. Plots of w(z,t ) (curve 1) and E (z,t ) (curve 2) in a quasi-one-dimen- 
sional beam-plasma system with I = 1 m and R = 0.06 m at an instant 
t =  1 5 ~ ~ .  

in an axisymmetric system of radius R in the form 
p(r,z) = @ (r)x(z) stipulating that @ (R ) = 0 on the bounding 
conducting tube, we can choose the radially dependent part 
of the solution to be @ (r) = J&), where B = 2.4/R. We 
then obtain for x (z) at fixed r, say r = 0, the equation 

X"-P2X=-p/~o 

With the aid of the corresponding Green's function we 
obtain from this expressions for the potential 

1 

and for the z-component of the electric field 
I 

1 
E = - J p (z') e-flz-~'l  sign ( z - z l )  hf. 

260 

Equation (12) (Ref. 13), in contrast to (7), has under the 
integral sign an exponential factor that decreases rapidly 
away from the point z. (This exponential can also be treated 
as an approximate allowance for the screening of the field of 
a point charge in a bounded plasma.) Equation (12) for the 
electric field in the system thus allows us to introduce into 
the one-dimensional system another characteristic param- 
eter R in addition to I. In such a model, which can be called 
quasi-one-dimensional, the strong screening of the space- 
charge field at distances larger than R makes the maximum 

FIG. 5. Beam-plasma instability at the instant of 
beam-current shutoff in a quasi-one-dimensional sys- 
tem with I = 1 m, R = 0.06m, t = 29 7,: a--curves 1- 
u/u,, 2-u/uo; b u r v e s  1-n,.10-'4 m-3, 2- 
r ~ ~ . l O - ' ~  mP3, 3-T,.10-2 eV, 4--E.10-5 V/m. 
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characteristic wavelength in the system A,,, -R. Hence 
kmin - l/R. 

The simulation, whose results are shown in Figs. 4 and 
5, has shown that allowance for screening gives rise in a sys- 
tem of length I to oscillations of wavelength2 -R, i.e., with 
wavelengths shorter than without allowance for screening 
(curve 2 of Fig. 4). However, to take into account a charac- 
teristic dimension R (I the computation scheme must satisfy 
more stringent requirements. In particular, it is necessary in 
this case to increase, relative to R, the number of spatial 
subdivision points, and this in turn requires a longer compu- 
tation time. Figure 5 shows the variation of the characteris- 
tic quantities in the system as functions of z. It can be seen 
from this figure that development of beam-plasma oscilla- 
tions in the system gives rise, besides beam stopping, also to 
acceleration of part of the beam electrons to energies approx- 
imately 1.4 times their initial energy (curve 1 in Fig. 5a). We 
note also that although part of the plasma electrons is accel- 
erated in the plasma oscillations to energies comparable with 
the beam energy, their energy is still almost half the initial 
energy of the beam electrons (curve 2 of Fig. 5a) and, as can 
be seen from the n,(z) plot (curve 1 of Fig. Sb), the high- 
energy fraction of the plasma electrons is insignificant. 

CONCLUSIONS 

We presented a self-consistent one-dimensional gas- 
dynamic model that permits the transport of an electron 
beam in a rarefied plasma to be investigated without using a 
number of customary simplifications. Thus, e.g., in Ref. 6 no 
account was taken of the interaction between a beam and the 
plasma it produces. Allowance for this interaction shortens 
severalfold the two-stream instability development time. In 
contrast to Refs. 3 and 7 the present paper considers the self- 
consistent problem without assuming temporal or spatial 

that real systems are laterally limited. We have shown that 
this neglect leads to a simultaneous rapid development of 
two-stream and plasma-beam instabilities during the linear 
and strongly nonlinear stages of the process. By foregoing 
these assumptions we can simulate the space and time dy- 
namics of the process. A computer experiment was used to 
investigate the nonlinear interaction of an electron beam 
with a plasma produced by shock ionization. For a system 
substantially longer than the beam radius in a real experi- 
ment, the model reveals a strong plasma-beam-oscillation 
growth that leads to stopping of the beam after approximate- 
ly several flight times of the beam through the system. An 
instability comprising a superposition of a Pierce and of a 
gasdynamic two-stream instability develops rapidly because 
the system model is not laterally bounded. 

The proposed quasi-one-dimensional gasdynamic mod- 
el modification that lets the space and time dynamics of 
beam-plasma interaction to be simulated assuming the sys- 
tem to have lateral boundaries, permits investigation of the 
process at model parameters that agree with experiment. 
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